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Abstract. Medical data often presents as a time series, reflecting the disease's 

progression. This can be captured through longitudinal health records or hospital 

treatment notes, encompassing diagnoses, health states, medications, and proce-

dures. Understanding disease evolution is critical for effective treatment. Graph 

embedding of such data is advantageous, as it inherently captures entity relation-

ships, offering significant utility in medicine. Hence, this study aims to develop 

a graph representation of Electronic Health Records (EHRs) and combine it with 

a method for predictive analysis of COVID-19 using network-based embedding. 

Evaluation of Graph Neural Networks (GNNs) against Recurrent Neural Net-

works (RNNs) reveals superior performance of GNNs, underscoring their poten-

tial in medical data analysis and forecasting. 

Keywords: Graph neural networks, data representation, electronic health rec-

ords. 

1 Introduction 

Recent advancements in deep learning have yet to fully integrate into clinical deci-

sion-support systems, but the digitization of health records has spurred machine learn-

ing research in medicine, particularly in EHRs. While this surge underscores the grow-

ing relevance of the field, the utilization of EHRs spans from database establishment to 

embedding methodologies [1]. Our focus lies specifically on leveraging graph embed-

dings within medical records, representing a novel approach in this domain. 

Medical data often manifests as time series, portraying disease progression over time 

within longitudinal health records or clinical notes documenting hospital treatments. 

EHRs serve as rich repositories for various electronic health tasks, including predictive 

modeling of clinical risks such as in-hospital mortality and readmission rates, disease 

correlations exploration, classification, and medical decision support. Predictive mod-

eling of future clinical events is thus a vital objective in medical practice. Predicting 

sequences of clinical events typically involves latent entity and event embedding cou-

pled with neural network models like RNNs. However, medical records pose unique 

challenges due to their sparsity, irregularity, and heterogeneity, hampering effective 
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predictive model creation. Graph embedding offers inherent advantages by capturing 

entity relationships, particularly beneficial in the medical domain. Therefore, our study 

aims to develop a predictive analysis tool for disease progression using network-based 

embedding methodologies, specifically exploring methods for transforming longitudi-

nal medical record data into graphs to elucidate disease trajectories, followed by the 

construction and comprehensive analysis of GNNs. 

The remainder of this paper is organized as follows. Section II reviews related work 

in the field. Section III provides details on the creation of patient graphs. In Section IV, 

the experimental setups with the proposed embedding approach and GNN are ex-

plained, along with the presentation of results. Finally, Section V concludes this paper, 

summarizing the findings and suggesting avenues for future research. 

2 Related Work 

2.1 Transformation Methods 

The temporal dynamics inherent in time series data can be effectively captured through 

a graph model representation, akin to a discrete model of the underlying dynamic sys-

tem. This model, guided by Takens theorem, facilitates the restoration of the system's 

state space. In [2], various transformation methods for time series data into complex 

network representations are categorized into three distinct classes: proximity networks, 

visibility graphs, and transition networks. In the context of personal medicine, predic-

tion, and classification tasks utilizing EHRs, the conversion of temporal EHR data into 

graph structures has emerged as a pivotal approach for leveraging inherent graph prop-

erties in subsequent analyses. Given the heterogeneous nature of EHRs encompassing 

medications, diagnoses, clinical notes, and lab results, diverse modeling techniques are 

imperative to accommodate this diversity. Despite the prevalence of articles mentioning 

“medical records” and “graphs” a significant portion does not delve into graph theory 

or utilize graphs to represent individual patient data [2]. However, a subset of studies 

effectively leverages graph structures to encode temporal relationships within time se-

ries data. 

2.2 Methods of Health Records Transformation to Graph 

Patient medical records can be represented in a knowledge model in two primary ways: 

as a scope depicting common patient features and their interrelations or as temporal 

graphs for individual patients. Notably, Khademi M. and Nedialkov N. S. [3] con-

structed a probabilistic graphical model using clinical data, integrating it with deep be-

lief networks for breast cancer prognosis. Chen et al. [4] proposed a graph-based semi-

supervised learning algorithm for risk prediction, utilizing Cause of Death information 

as labels and temporal relationships between examination items as edges. Liu et al. [5] 

developed a temporal phenotyping approach based on graph representations of EHR 

events, extracting significant graph bases for interpretability. Esteban et al. [6] applied 

latent embedding models to clinical data for event sequence prediction, while Zhang et 
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al. [7, 8] proposed integrative medical temporal graph-based prediction approaches, al-

beit with varied success rates. Notably, Tong et al. [9] introduced an LSTM-GNN 

model for patient outcome prediction, effectively combining temporal and graph-based 

features.  

Similarly, graph methods for patient clustering were developed [10], emphasizing 

the construction of network-like structures based on patient similarities. Additionally, 

Hanzlicek et al. [11] and Kaur et al. [12] described graph-based models for storing 

medical records, facilitating efficient data retrieval and decision support functionalities. 

These studies underscore the diverse applications and potential of graph representations 

in healthcare, from predictive modeling to decision support systems. 

 From the review, it can be inferred that graphs are not yet widely adopted as a form 

of health data representation. However, this area of research shows promise and war-

rants further exploration. For sequence prediction tasks, methods based on individual 

patient data graphs are recommended, as they effectively capture temporal relationships 

between health states. Conversely, for classification tasks, scope representation may be 

more beneficial, as it encapsulates common features and their interrelations. Neverthe-

less, the most promising avenue for future research lies in the discovery of methods that 

represent inter-patient connections. Such approaches hold the potential to enhance 

prognostic capabilities and inform clinical decision-making by leveraging similarities 

among medical cases. Thus, further investigation into graph-based representations in 

healthcare is imperative for advancing predictive analytics and decision support sys-

tems in medicine. 

3 Creating EHR representation through graphs 

EHRs serve as comprehensive repositories of patient health information, capturing vital 

aspects of their medical journey. Transforming this rich temporal data into a structured 

graph representation holds immense potential for facilitating various healthcare tasks, 

ranging from predictive modeling to clinical decision support. In this chapter, we pre-

sent a novel pipeline for creating graph representations of EHRs. Our approach involves 

gathering patient state data during hospitalization periods, embedding each state, and 

subsequently constructing a graph where nodes represent patient states and edges en-

code temporal and proximity-based relationships. 

3.1 Data description  

The study utilized a dataset comprising 6188 medical records encompassing 1992 dis-

tinct patients who received treatment for COVID-19 at Almazov National Medical Re-

search Centre in St. Petersburg, Russia, spanning from June 2020 to March 2021. Each 

treatment case is characterized by a comprehensive set of indicators, as detailed in Ta-

ble 1. 

These medical indicators comprise a spectrum of information, spanning past medical 

conditions, laboratory analysis results, physical measurements, lifestyle factors, and 

medication types. They collectively provide a comprehensive overview of patients' 
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health profiles, supporting clinical analysis and decision-making. The dataset com-

prises 40 integer features, 11 floating-point features, and 3 date features. 

Table 1. Medical indicators of treatment cases. 

Group Features 

Controlled Medications 

Omeprazole, nadroparin calcium, esomeprazole, amlodipine, am-

broxol, domperidone, mebrofenin, technetium, mometasone, bisopro-

lol, dexamethasone, hydrochlorothiazide, hydroxychloroquine, rabe-

prazole, enoxaparin sodium, perindopril, acetylcysteine, azithromy-

cin, valsartan, methylprednisolone, loratadine, chloroquine, sodium 

chloride, indapamide, prednisolone, atorvastatin, dextran, lisinopril, 

losartan 

Dynamic Factors 

Temperature, lymphocytes count, aspartate aminotransferase, heart 

rate, respiratory rate, total bilirubin, mean platelet volume, platelet 

crit, lymphocytes percentage, decreased consciousness, severity 

grade on CT scan, lactate dehydrogenase, platelet distribution width 

Static Factors Age, sex 

Controlled Procedures 
Blood transfusion, oxygen therapy, non-invasive ventilation, invasive 

ventilation 

Process Variables Process stages, current process duration 

Dates and length of stay Admission date, end episode, length of observation 

Target Variable Outcome 

 

 

3.2 Pipeline description 

The pipeline is initiated by collecting data pertaining to patients' states during hospital-

ization periods. Each state is characterized by a set of features capturing relevant clini-

cal parameters and temporal information. Preprocessing steps involve cleaning the data, 

handling missing values, and standardizing features to ensure uniformity across the da-

taset. 

To capture the intricate relationships within patient states, TabNet, a state-of-the-art 

tabular data embedding technique, is employed [13]. This network leverages sequential 

attention mechanisms to learn informative embeddings from tabular data, effectively 

capturing both local and global dependencies. By embedding each patient state using 

TabNet, the multidimensional characteristics are encoded into a compact representa-

tion, facilitating downstream graph construction. 

The crux of our pipeline lies in the construction of a graph representation that en-

capsulates the temporal and proximity-based relationships among patient states. A two-

pronged approach to edge creation is adopted: temporal connections and proximity-

based connections. Incorporating both features is crucial for capturing the sequential 

order of events and the contextual relationships between patient states in EHRs, our 
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model gains a deeper understanding of disease dynamics and patient interactions. This 

enriched context improves the model's ability to generalize to new data and adapt to 

changes in healthcare practices. 

Temporal Connections: Patient states are sequentially connected in time, reflecting 

the temporal progression of their medical journey. Each state is linked to its subsequent 

state within the same patient's trajectory, forming a temporal sequence of nodes. 

Proximity-based Connections: To capture inter-patient relationships, the Euclidean dis-

tance between each patient state is computed to identify the closest states of other pa-

tients. Two approaches are explored: (1) connecting each state to the closest three states 

of any other patient (see Fig. 1), or (2) imposing a constraint wherein a state can only 

be connected to a state of another patient once, thereby fostering diverse inter-patient 

connections (see Fig. 2). The choice between these approaches can be determined ex-

perimentally or tailored to specific healthcare objectives. For visualization purposes, 

graphs featuring 10 patients are provided. The complete graph comprises 6182 nodes, 

each with 24 features, wherein each node is labeled with either 0 or 1 based on the 

outcome, and 22737 edges representing temporal and interpersonal connections. 

 

Fig. 1. Graph without constraints on the connections of patients. Colors represent different pa-

tients, and node labels are selected by the outcome. 

Constructing a graph without connection constraints reveals discernible clusters 

within the data. Notably, patients experiencing negative outcomes tend to cluster to-

gether, suggesting shared characteristics or medical trajectories. Additionally, the ob-

served clustering patterns hint at the potential grouping of patients with close medical 

histories, indicating the influence of shared anamnesis factors on cluster formation. 
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 Fig. 2. A graph constructed with diverse inter-patient connections. Colors represent different 

patients, and node labels are selected by the outcome. 

In a graph with connection constraints, distinct groups of patients are still discerni-

ble, albeit with more blurred boundaries. However, this method holds promise for clas-

sification tasks as it captures more ambiguous connections, allowing for the identifica-

tion of subtle relationships between patient clusters. 

Further experimentation and validation are needed to assess its efficacy and gener-

alizability across healthcare contexts. 

4 Experiments 

The experimental results provide valuable insights into the performance of the sug-

gested representation method used as a source for Graph Convolutional Network 

(GCN) and Graph Isomorphism Network (GIN) models for mortality prediction tasks 

based on patient state graphs, performing node classification. This choice is due to their 

unique ability to effectively capture relational information and structural dependencies 

inherent in graph data. By aggregating information from neighboring nodes, GCNs can 

effectively model the complex interactions between patient states, capturing crucial 

temporal and contextual dependencies. GINs are invariant under permutations of the 

nodes, so they learn and generalize patterns across different patient trajectories, regard-

less of their specific ordering or representation.  

The proposed GCN architecture consists of three hidden layers of GCNConv, each 

followed by ReLU activation function. The input to the model is the feature vector 

representing each patient state, which is passed through the GCN layers along with the 

edge indices representing the connectivity of the graph. Dropout with a probability of 

0.5 is applied after the first GCN layer to prevent overfitting. The output of the final 

GCN layer is passed through a linear layer with an output dimension of 1, followed by 

a sigmoid function to produce the final classification probability indicating the likeli-

hood of patient mortality. 

The GIN architecture consists of two GINConv layers, each comprising a sequence 

of linear transformations followed by batch normalization and ReLU activation 
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functions. Similar to GCN, the input to the model is the feature vector representing each 

patient state, which is passed through the GINConv layers along with the edge indices 

representing graph connectivity. The aggregated features are then passed through a lin-

ear layer with an output dimension of 1, followed by a sigmoid function as well. And 

for the sake of experiment, along with graph networks RNN model tested with 3 hidden 

layers was. 

The choice of metrics was driven by their relevance to mortality prediction. While 

accuracy measures overall correctness, precision assesses the proportion of true posi-

tive cases among predicted positives, and recall gauges the model's ability to identify 

all true positive cases. Emphasizing recall ensures the accurate identification of patients 

at risk of mortality, vital for early intervention.  

The observed metrics of the models are presented in Table 2. 

Table 2. Observed metrics of the models. 

Model Accuracy Precision Recall 

GCN without connection constraints 0.8208 0.5341 0.7743 

GIN without connection constraints 0.8722 0.5771 0.8329 

GCN with connection constraints 0.8023 0.2875 0.6145 

GIN with connection constraints 0.8458 0.3298 0.6875 

RNN 0.7832   0.6680 0.7352 

 

The first type of graph, without connection constraints, allowed for the formation of 

clusters, leading to improved performance of both GCN and GIN models. This suggests 

that the graph structure contributed to more accurate representations and enhanced pre-

dictive performance. The absence of constraints likely facilitated the models' ability to 

capture underlying patterns and relationships within the data. While both models per-

formed well, GIN showed superior ability in capturing true positive cases while mini-

mizing false positives.  

In perspective of outcome prediction, these results suggest that incorporating graph-

based representations of patient states can enrich predictive modeling. 

5 Conclusion 

In conclusion, our study introduces a novel approach for Electronic Health Record 

(EHR) representation using graphs, promising advancements in healthcare analytics 

and predictive modeling. By employing graph-based representations of patient states, 

temporal and relational dependencies crucial for accurate predictions were captured. 

Leveraging advanced machine learning techniques like Graph Convolutional Networks 

and Graph Isomorphism Networks further enhances predictive capabilities. 

Our experiments confirm the effectiveness of our approach. While the incorporation 

of connection constraints in graph construction didn't improve efficiency, its potential 

applications warrant further investigation. Analyzing specific cluster characteristics 

could shed light on their impact on model performance. 
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In summary, adopting graph-based representations for EHRs revolutionizes 

healthcare analytics, enabling comprehensive analysis while preserving temporal and 

relational contexts. Our approach lays the groundwork for future advancements in EHR 

representation and predictive modeling, driving towards more effective healthcare so-

lutions. 
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