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Abstract. This paper approaches a new model for arrhythmia diagnosis based on 

short-duration electrocardiogram (ECG) heartbeats. To detect 8 arrhythmia clas-

ses efficiently, we design a Deep Learning model based on the Focal modulation 

layer. Moreover, we develop a distance variation of the SMOTE technique to 

address the problem of data imbalance. The classification algorithm includes a 

block of Residual Network for feature extraction and an LSTM network with a 

Focal block for the final class prediction. The approach is based on the analysis 

of variable-length heartbeats from leads MLII and V5, extracted from 48 records 

of the MIT-BIH Arrhythmia Database. The methodology’s novelty consists of 

using the Focal layer for ECG classification and data augmentation with DTW 

distance (Dynamic Time Warping) using the SMOTE technique. 

The approach offers real-time classification and is simple since it combines 

feature extraction, selection, and classification in one stage. Using data augmen-

tation with SMOTE variant and Focal-based Deep learning architecture to iden-

tify 8 types of heartbeats, the method achieved an impressive overall accuracy, 

F1-score, precision, and recall of 98.61%, 94.08%, 94.53%, and 93.68% respec-

tively. Additionally, the classification time per sample was only 0.002 seconds. 

Therefore, the suggested approach can serve as an additional tool to aid clinicians 

in ensuring rapid and real-time diagnosis for all patients with no exclusivities. 

Keywords: Signal processing, Arrhythmia, Heartbeat, Electrocardiogram, 

Diagnosis, Classification, Deep Learning, Healthcare sustainability. 

1 Introduction  

 According to the 2023 report of the World Heart Federation (WHF) [1], cardiovascular 

diseases (CVD) represent a global threat to the population. Deaths due to CVD have 

increased by 60% worldwide in the past 30 years. Therefore, it is essential to prioritize 

implementing tools to prevent premature heart attacks and strokes. To this end, arrhyth-

mia detection proves important since it is the cause of most sudden cardiac arrests. 

Arrhythmia is a medical condition that results either in fast, slow, or irregular heartbeats 
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[2]. Some of the most common types of heartbeats associated with arrhythmia are Prem-

ature Atrial and Ventricular contractions. To diagnose these heartbeats, we rely on the 

analysis of the electrocardiogram (ECG), a non-invasive tool that records the electrical 

signals in the heart, to investigate symptoms of arrhythmia. 

Various techniques in literature have been applied to categorize ECG signals auto-

matically into heart rhythms or heartbeat classes. Heart rhythm describes the overall 

pattern of electrical activity in the heart, while heartbeat classes refer to specific types 

of individual heartbeats within a given rhythm. This work focuses on the classification 

of heartbeats. The classification is preceded by pre-processing, feature extraction, and 

feature selection. The pre-processing stage may comprise noise removal, data segmen-

tation, data normalization, data reduction, and signal compression.  

Noise includes power line interference, muscle noise, motion artifact, baseline wan-

der, and high-frequency artifacts. Discrete Wavelet Transform (DWT) with its various 

wavelet distributions, is often used for noise removal [3-6]. More improved versions of 

wavelets were developed in [7, 8]. The Pan-Tompkins algorithm proposed by Pan and 

Tompkins in 1985 [9] was used for segmentation and QRS detection in [5, 10, 11] and 

for R-peak detection in [3, 6, 12]. Principal Component Analysis (PCA) is widely used 

for dimensionality reduction. It is also used for feature extraction [13]. Other methods 

can also be employed such as Discrete Wavelet Transform [14, 15], Higher Order Sta-

tistic (HOS) [5, 10, 16], Independent Component Analysis (ICA) [17], and Fast Fourier 

Transform (FFT) [14]. These are known to be hand-crafted methods for extraction. 

Deep learning with CNN layers, is also used for end-to-end extraction as in [18-20].  

When dealing with imbalanced data, augmentation techniques can be used to address 

this issue. SMOTE [21, 22] and GANs [23] are effective methods in reducing overfit-

ting during training, while other techniques only increase data volume by adding noise, 

without measurable improvement in dataset performance and variance [24]. 

     To detect cardiac rhythms, several approaches have been employed, ranging from 

traditional machine learning algorithms to complex architectures. Support Vector Ma-

chines (SVM) achieved an accuracy of 98.91% [5], 94.30% [10], and 98.8% when com-

bined with Genetic Algorithm [8]. Feed-Forward Neural Network reached respective 

accuracy of 98.90%, 94.52%, and 99.80% in [5, 10, 25]. Long-Short-Term-Memory 

(LSTM) finds numerous applications in time series, including the classification of ECG 

signals [4, 18]. Moreover, Convolutional Neural Networks (CNN) hold a significant 

position in deep learning and provide accurate results when detecting arrhythmias [3, 

23, 24]. When combining CNN and LSTM, both temporal and spatial information are 

captured [21, 23]. More complex architectures were developed to address the problem 

of vanishing gradients [26], by combining a Residual Network and LSTMs to detect 

five heartbeats and achieve 99.4% accuracy. [27] yielded an accuracy rate of 97.9% by 

leveraging the proficiency of three networks - CNN, LSTM, and bi-directional GRU.  

The authors' prior work focused on using machine learning to diagnose Atrial Fibril-

lation (AF). In [28], a multi-dynamics analysis of the QRS complex using SVM and 

MKL models yielded sensitivity of 96.54% and 95.47%, respectively. Other previous 

research consisted of extracting features from R-wave derivatives to aid in medical de-

cision-making, particularly for detecting AF [29-31]. 
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This work focuses on classifying eight types of heartbeats. These include Normal 

beats (N), Atrial Premature beats (A), which can lead to sustained arrhythmias if fre-

quent or persistent, and Premature Ventricular beats (V), which are common and may 

be associated with serious ventricular arrhythmias if left untreated. Left Bundle Branch 

Block beats (L), which may indicate an increased risk of cardiovascular events. Right 

Bundle Branch Block beats (R) are considered serious as they are often associated with 

structural heart diseases. Paced beats (p) are generated by a pacemaker, to help the heart 

muscle contract when the natural heart rate is too slow or when there is a heart block. 

Fusion of Ventricular and Normal beats (F), occur when the electrical signals of prem-

ature ventricular beat and normal beat coincide in time. Fusion of Paced and Normal 

beats (f), reflect the combination of the artificially paced beat and the natural beat ini-

tiated by the sinus node. 

These heartbeats were chosen because they may cause major health problems if not 

addressed, and their morphology may be difficult to distinguish from other heartbeats. 

A novel method based on Deep Learning classification has been developed to iden-

tify eight types of heartbeats. The short-duration signal is typically used when dealing 

with heartbeat diagnosis, and its use is advantageous as the algorithm focuses on dy-

namic sequences and feature extraction within a narrowed time frame. The use of a 

Residual network, which is a 12-layer CNN, for feature extraction and LSTM-Focal 

block for prediction can be generally employed to classify other time-series data. There-

fore, this approach could be widely applied. The aspects of our study encompass: 

 The processing of variable-length ECG heartbeats. 

 The use of MLII (modified limb lead II) and V5 leads from the ECG. 

 Data augmentation using new DTW-SMOTE variation. 

 Feature extraction using a Residual Network. 

 Heartbeat classification model using a Focal Modulation layer. 

To our knowledge, no other papers in the literature used focal layers for ECG diagnosis. 

2 Material and methods 

    In this paper, a Deep Learning model based on Residual Network and LSTM-

Focal architecture is designed to classify eight types of heartbeats. It is an end-to-end 

model, excluding any hand-crafted methods for feature extraction or selection. The Re-

sidual block, inspired by the Residual Network [32], which comprises 12 convolutional 

layers, is used for deep feature extraction. The LSTM and focal layers are mainly used 

for classification. The network inputs variable-length ECG heartbeats, ranging from 81 

to 439 samples, and returns the heartbeat class. In terms of preprocessing, we applied 

noise removal, normalization, heartbeat segmentation, and data augmentation.  

2.1 Assumptions  

Our approach is based on the following assumptions: 
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 Heartbeat segmentation is realized based on R-peaks annotations. 

 The ECG signal was de-noised, to ensure the exclusion of any significant inter-

ferences that could affect the classification accuracy. 

 The majority of cardiac heartbeats, possess distinct patterns within ECG data.  

 Each ECG sample contains one class heartbeat. 

 The use of an End-to-end structure that combines feature extraction, selection, 

and heartbeat classification in one stage. 

2.2 ECG database 

An open-access database, hosted on Physionet [33], is used in this paper since it is 

regularly utilized for arrhythmia research and contains annotated heartbeats. The MIT-

BIH Arrhythmia database [34] is a collection of 48 half-hour excerpts of two-channel 

ambulatory ECG recordings that were acquired from 47 subjects. The recordings were 

digitized at a rate of 360 samples per second per channel, with an 11-bit resolution and 

covering a range of 10 millivolts. The database contains seventeen types of heartbeats. 

Eight types of heartbeats are extracted from leads MLII and V5. The signal is first 

cleaned then normalized and segmented. Finally, it is passed through a data augmenta-

tion process to ensure the dataset is no longer imbalanced. 

The test data is extracted before data augmentation, forming 30% of the original 

dataset, which contained 111,471 heartbeats in total, to assess efficiently the perfor-

mance of the classification model with imbalanced unseen data. 

We obtain a dataset of 475,248 heartbeats in total after augmentation. The dataset is 

then stratified equally between classes and split into the training set (80%) which con-

tains 380,198 heartbeats and the validation set (20%) which contains 95,050 heartbeats. 

2.3 Methods: Preprocessing 

Noise reduction.  

The main goal of noise reduction is to eliminate or minimize the random variations 

in the signal. This technique aims to enhance the clarity of the underlying information 

whilst improving the signal-to-noise ratio. The ECG signal contains different types of 

noise, each should be removed with a special filter.  

Baseline wander is a low-frequency artifact that arises from charged electrodes or 

patient movement and breathing. A high-pass Butterworth five-order filter [35] with a 

cutoff frequency of 0.5 Hz is used to remove baseline wander. The Gain of the n-order 

filter is given by (1), where 𝜔 is the filter frequency and 𝜔𝑐 is the cutoff frequency. 

𝐺𝑛(𝜔) =
1

√1+(
𝜔

𝜔𝑐
)

2𝑛
 

 (1) 

Power-line interference is a high-frequency artifact caused by improper grounding 

of the ECG equipment. We smooth the signal with a moving average kernel, which is 

a Finite Impulse Response Filter [36] privileged when dealing with time series, with a 

width of one period of 50 Hz. The output of the FIR filter of n-order is given by (2): 
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𝑦(𝑘) =  ∑ 𝑏𝑖 ∗ 𝑥(𝑘 − 𝑖)𝑛
𝑖=0   (2) 

 𝑥(𝑘) is the input signal and 𝑏𝑖 is the value of the impulse response at the 𝑖𝑡ℎ instant. 

Data Normalization.  

Applying Min-Max normalization results in smaller standard deviations, which 

helps to eliminate the impact of outliers. In addition, rescaling improves the backprop-

agation process during Deep Learning by speeding up the convergence rate. Fig. 1 high-

lights the effect of data normalization and noise removal on the ECG signal. 

 

Fig. 1. Noisy Vs de-noised and normalized ECG signal. 

Heartbeat segmentation.  

The Discrete Wavelet Transform (DWT) technique is used for dynamic heartbeat 

segmentation by detecting P-wave onsets and T-wave offsets based on the annotations 

of R-peaks provided by the MIT-BIH Arrhythmia database.  

DWT enables signal decomposition by passing it through a series of low-pass and 

high-pass filters to extract the required information. It facilitates the capture of both 

spatial and temporal information in a signal. Fig. 2 shows the delineation of cardiac 

heartbeat where the morphological and temporal characteristics can be depicted.  

The segmented heartbeats vary in size, but to meet the requirements of the Deep 

Learning model, we apply zero padding to ensure uniform input size. 
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Fig. 2. R-peaks annotations from Physionet (Top), heartbeat segmentation with DWT (Bottom). 

Data augmentation.  

In machine learning, models trained on unbalanced datasets may have biased behav-

ior in favor of the majority class. As a result, the model may perform poorly on the 

minority class, leading to limited generalization ability to unseen data. 

To address this issue, SMOTE [37] is widely used for dealing with class imbalance, 

by oversampling the minority class. The technique generates synthetic examples by 

interpolating between existing neighbor instances found with the KNN algorithm. The 

classic version is based on the Euclidean distance to detect the KNN neighbors.  

This paper presents a new variant of SMOTE that uses the DTW (Dynamic Time 

Warping) [38] similarity distance to detect the K nearest neighbors. The aim is to find 

the best mapping with minimal Euclidean distance matching. As the data consists of 

variable-size heartbeats, their distance cannot be measured with the classic Euclidean 

formula. However, DTW can handle series that have different lengths and may be 

warped in the time domain, to find the optimal alignment where the patterns like troughs 

and peaks can be correctly matched due to the one-to-many mapping.  

The DTW algorithm computes the optimal alignment path dynamically by consider-

ing various alignments and selecting the one that minimizes the cumulative distance.  

Let’s consider two Times Series of the Normal heartbeat class, 𝑋 = (𝑥1, … , 𝑥𝑁)  and 

𝑌 = (𝑦1, … , 𝑦𝑀) of lengths 𝑁 ∈ ℕ and 𝑀 ∈ ℕ respectively. The DTW distance is ex-

pressed by (3) where  𝐷 is an 𝑁 by 𝑀 matrix defining the accumulated distance between 

𝑥𝑖 and 𝑦𝑗. It is computed dynamically as shown in (4). 

𝐷𝑇𝑊(𝑋, 𝑌) =  √𝐷[𝑥𝑁 , 𝑦𝑀] (3) 

𝐷[𝑥𝑖 , 𝑦𝑗] = 𝑑(𝑥𝑖 , 𝑦𝑗) + min(𝐷[𝑥𝑖−1, 𝑦𝑗−1], 𝐷[𝑥𝑖−1, 𝑦𝑗], 𝐷[𝑥𝑖 , 𝑦𝑗−1])  (4) 

 𝑑(𝑥𝑖 , 𝑦𝑗) is the Euclidean distance between elements 𝑥𝑖 and 𝑦𝑗. 
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The optimal alignment path is then found by backtracking from 𝐷[𝑥𝑁 , 𝑦𝑀] to 

𝐷[𝑥1, 𝑦1], while following the minimum cumulative distance.  

We apply DTW-SMOTE by resampling all the classes but the majority class. Table 1 

shows the distribution of heartbeats after applying the DTW-SMOTE variant. 

Table 1. Original data Vs DTW-SMOTE data 

Type of heartbeats Original distribution Smote Distribution 

Normal beat (N) 59,406 59,406 

Right bundle branch block beat (R) 5032 59,406 

Left bundle branch block beat (L) 4338 59,406 

Paced beat (p) 4027 59,406 

Premature Ventricular beat (V) 2657 59,406 

Atrial Premature beat (A) 1700 59,406 

Fusion of paced and normal beats (f) 451 59,406 

Fusion of ventricular and normal beats (F) 418 59,406 

 

To evaluate the performance of the DTW-SMOTE variant, we applied two Machine-

Learning techniques for the classification of the augmented data using both classic 

SMOTE and DTW-SMOTE. The Decision Tree model applied to the SMOTE variant 

reached a better classification performance with an overall accuracy of 94.40% while 

the SVM model achieved almost similar results on both classic SMOTE data and DTW-

SMOTE data. The evaluation metrics (in %) are detailed in Table 2. 

Table 2. Evaluation metrics of Decision Tree and SVM on SMOTE and DTW-SMOTE data. 

 Decision Tree SVM 

SMOTE DTW-SMOTE SMOTE DTW-SMOTE 

F1-score 79.94 81.78 70.64 70.59 

Precision 75.47 78.40 63.80 63.75 

Recall  86.20 85.86 87.77 86.83 

Accuracy 93.95 94.40 88.44 88.53 

 

2.4 Methods: LSTM-Focal classification model 

       A deep neural network is designed to classify eight types of heartbeats. It consists 

of a Residual Network [32] for feature extraction and LSTM-Focal for classification. 

Feature extraction with Residual Network (ResNet).  

The usage of residual blocks, which include skip connections, allows the network to 

directly learn residuals (the difference between input and output), making the model 

easier to train without encountering the vanishing gradient problem. The Residual Net-

work used in this approach is a 12-layer convolutional neural network.  

Convolution layers with different kernel sizes are performed on cardiac heartbeats 

to obtain feature maps, each one selecting various features from the ECG signal, i.e. 
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peaks, troughs, waves, and local patterns... An adaptive average pooling layer is applied 

at the end of the model, to condense all of the feature maps into a single one, capturing 

all relevant information. We obtain as an output a 1-D vector of 512 features.  

Heartbeat classification with LSTM-Focal based model.  

The last block of the heartbeat classification model is the prediction block. The ar-

chitecture of the global model is shown in Fig.3.   

The prediction block takes as an input the ResNet features and outputs the ECG 

heartbeat class. The architecture consists of two LSTM layers [39] that are very adept 

at capturing patterns and variations in ECG sequences with temporal dependencies.  

The LSTM layers are then followed by a focal modulation layer which is a part of 

the FocalNets [40], designed by Microsoft in 2022, where the self-attention mechanism 

[41] is completely replaced by a focal modulation module for modeling token interac-

tions in vision. This module allows better generalization ability through dynamic focal 

layers instead of static convolution kernels.  

In the present approach, we implement only the focal modulation layer given that it 

represents the core of the FocalNet. This layer allows the model to selectively focus on 

specific parts of its input with more lightweight operations. The process is based on 

aggregation followed by interaction between the aggregated parts of the input. Unlike 

self-attention which gives priority to the interaction over the aggregation. 

First, the output of the LSTM layers 𝐻 is projected linearly and then split into query 

𝑞, context 𝑌0, and gates 𝐺𝑙 . These three components are passed through three major 

operations of the focal modulation layer: 

 Hierarchical Contextualization: In this stage, the initial context 𝑌0  ∈ ℝ𝐻∗𝑊∗𝐶  is 

passed through a series of Depth-Wise Convolution (DWConv) and GeLU layers. 

These blocks are termed focal levels 𝑙 and the output of each level is a context 𝑌𝑙 . 

The final feature map 𝑌𝐿+1 goes through a Global Average Pooling layer. The 

corresponding equations of the aforementioned steps are defined in (5) to (7). 

𝑞, 𝑌0, 𝐺 = 𝑓(𝐻) (5) 

           𝑌𝑙 = 𝑔𝑙(𝑌𝑙−1)  ∈ ℝ𝐻∗𝑊∗𝐶    , 𝑙 ∈  {1,  … ,  𝐿}    (6) 

𝑌𝐿+1 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑌𝑙)  ∈ ℝ𝐶  (7) 

𝑓 is the linear projection layer and 𝑔𝑙 is the focal layer where 𝑙 denotes   the focal 

level. (𝐻, 𝑊, 𝐶) is the output size corresponding to Height, Weight, and Chan-

nels. 𝑙  denotes the focal level where 𝑙 ∈  {1,  … ,  𝐿}.    

 Gated Aggregation: Gates 𝐺𝑙 ∈ ℝ𝐻∗𝑊∗(𝐿+1) are employed to perform a weighted 

aggregation over the context 𝑌𝑙 . Next, the output Z is passed through a convolu-

tional layer ℎ to obtain the modulator 𝑀. The equations are shown in (8) and (9): 

𝑍 =  ∑ 𝐺𝑙𝐿+1
𝑙=1 ⨀ 𝑌𝑙   ∈ ℝ𝐻∗𝑊∗𝐶 (8) 

𝑀 = ℎ(𝑍) ∈ ℝ𝐻∗𝑊∗𝐶 (9) 
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 Interaction: where the initial query 𝑞 interacts with the context aggregation. An-

other post- linear projection function is applied with Dropout to provide the final 

focal output according to (10). 

𝐹𝑜𝑢𝑡 = 𝑙𝑖𝑛𝑒𝑎𝑟(𝑞⨀𝑀) (10) 

The output of the focal modulation is then normalized with the batch-normalization 

technique, which helps accelerating the learning process. Finally, a Fully-connected 

layer is added to the model to output the eight heartbeat classes.  

Furthermore, this paper includes a comparison experiment using the LSTM-attention 

model, which employs an attention mechanism instead of the Focal module. This com-

parison serves to highlight the impact of the Focal layer on the classification result. 

 

 

Fig. 3. The prediction block based on LSTM-Focal layers. 

Environment setup. 
 For the hardware characteristics, all the experiments were run on a cluster equipped 

with GPU node. The model of the GPU graphic card is NVIDIA GA102 [GeForce RTX 

3090] with 192 G of RAM. 

3 Results of classification 

For heartbeat recognition, a heartbeat fragment of 439 sample-long is fed to the input 

layer of the Residual Network in batches. Each time series accumulates 512 features. 

The output is then processed in the LSTM-Focal block to produce the heartbeat class.  

Fig. 4 shows the training and validation accuracy. The LSTM-Focal model is trained 

during 50 epochs, during which the learning is stabilized and reaches a maximum train-

ing accuracy of 99.94% and validation accuracy of 99.87%. 

The model is then tested on unbalanced heartbeats. It succeeded in recognizing cor-

rectly 32,977 fragments out of 33,442, yielding an overall accuracy of 98.61%. The 

evaluation criteria for the test data are shown in Table 3.  As can be observed, the model 

reached high F1-score performances for classes N, L, R, and p since they form the 

majority of the test data. The model yielded an overall precision, recall, and F1 score 

of 94.53%, 93.68%, and 94.08% respectively. The lowest recognition performance was 

observed for the F class which contained only 179 fragments during the test.  

The LSTM-attention model is trained to assess the effectiveness of the Focal layer 

on the classification. Fig. 4 shows that the model takes 15 epochs to stabilize, it reaches 

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63772-8_31

https://dx.doi.org/10.1007/978-3-031-63772-8_31
https://dx.doi.org/10.1007/978-3-031-63772-8_31


10  A. Boulif, B. Ananou, M. Ouladsine, S. Delliaux 

an overall training and validation accuracy of 99.31% and 99.5% respectively. Accord-

ing to Table 4, we conclude that the LSTM-Focal model reaches a better classification 

performance with an overall accuracy of 98.61% Vs 97.65% for the LSTM-Attention 

model. The use of the Focal layer enhanced the ability of the model to correctly identify 

the positive heartbeats during the classification with an overall precision of 94.53% Vs 

89.94% for the model with the attention mechanism. 

The time required for testing one heartbeat is measured by averaging the prediction 

time over all samples. It is shown in equation (11) where 𝑒 represents the execution 

time at step 𝑡. 

𝑇 =  ∑
𝑒𝑡

𝑛

𝑛
𝑡=0  (11) 

We measure the variation of the classification time by calculating the mean and stand-

ard deviation over all iterations. As a result, in each time, we find a constant average 

classification time of 0.002 seconds with zero deviation for a single heartbeat. 

 

Fig. 4. Training and validation accuracy of LSTM-Focal (a) and LSTM-attention (b) models. 

Table 3. Evaluation metrics (in %) of the LSTM-Focal model using test data. 

Heartbeats Precision Recall F1-score 

Atrial Premature beats (A) 91.01 91.63 91.32 

Fusion of Ventricular and Normal 

beats (F) 

85.09 76.54 80.59 

Left bundle branch block beats (L) 96.85 97.47 97.16 

Normal beats (N) 99.21 99.23 99.22 

Right bundle branch block beats (R) 98.56 98.56 98.56 

Premature Ventricular beats (V) 95.47 94.29 94.88 

Fusion of Paced and Normal beats (f) 90.86 92.27 91.56 

Paced beats (p) 99.19 99.48 99.33 

Macro average 94.53 93.68 94.08 

Weighted average  98.60 98.61 98.60 

Overall accuracy        98.61 

Table 4. Overall evaluation metrics (in %) of the LSTM-Focal and the LSTM-attention models. 

Model Precision Recall F1-score Accuracy 
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LSTM-Focal 94.53 93.68 94.08 98.61 

LSTM-attention 89.94 92.49 91.17 97.65 

4 Discussion  

In order to confirm the effectiveness of the proposed model, we compare it with some 

ECG diagnosis approaches in literature, that have used the MIT-BIH Arrhythmia data-

base. The comparison criteria are listed in Table 5. They include the number of heart-

beat classes, the feature set, the classification algorithm, and the overall accuracy.  

Our model, indicates one of the best performances recorded in arrhythmia diagnosis. 

It outperformed certain models that used more complex architectures such as U-Net 

[44] and Google-Net [45], with an accuracy of 96.30% and 97.32% respectively Vs 

98.61% for our model. Other models that outperformed the current approach either used 

feature extraction before classification, as in [21], or used only one ECG lead. 

The majority of state-of-the-art methods work on the classification of 5 types of 

heartbeats: N, V, L, R, and A. These are the most common in open-access databases. 

When compared to [3, 43, 46], the proposed method achieves a higher accuracy, par-

ticularly when using the same type of input (raw data). In comparison to techniques 

working with 17 classes [11, 43], the proposed method outperformed these models with 

an accuracy of 98.61% Vs 89.95% and 91.33% respectively. This is due to the fact that 

training the model with a large number of imbalanced classes reduces performance and 

causes the model to fail to correctly distinguish minority classes. 

Among the Machine Learning methods shown in Table 5, it can be said that the SVM 

are efficient for heartbeat classification and can outperform DL models when combined 

with appropriate feature extraction methods such as Wavelet Transform and PCA.  

Table 5. Comparison of the proposed methods to Literature methods. 

Paper N° of beats Feature set Classifier Accuracy 

Martis et al. [10] 5 HOS+PCA Feed Forward NN 94.52 

Park et al. [11] 

 

17 RR interval, R 

and P waves’ 

positions and 

amplitudes 

Decision tree 

 

89.95 

 

Li et al. [8] 5 DWT, PCA, 

LDA, KICA  

SVM and Genetic al-

gorithm 

98.80 

Acharya et al. [3]  5 Raw data CNN 94.03 

Qin et al. [42] 6 Wavelet 

multi-resolu-

tion and PCA 

One-Versus-One 

SVM 

 

99.70 

 

Yang et al. [19]  5 PCA-Net SVM 97.77 

Yildirim et al. [43] 17 Raw data CNN 91.33 

Oh et al. [44] 5 Raw data Modified U-network 97.32 

Yildirim et al. [18]  5 Raw data LSTM 99.23 

Kim et al. [45] 5 Raw data GoogleNet with 2  

inceptions 

96.30 

 

Zubair et al. [46]  5 Raw data CNN 96.36 
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Irfan et al. [21] 5 PCA CNN + LSTM 99.35 

The authors’ 

approach 

8 Raw data LSTM-Focal modula-

tion 

98.61 

 

The present approach using the LSTM and Focal Modulation for classification seems 

to be efficient for most heartbeats due to the focus of the Focal layer on specific ECG 

features. Yet, we noticed that F heartbeat, which is the fusion of Normal and Ventricular 

beats, was misclassified into categories N or V. Also, p heartbeat was mainly misclas-

sified into paced and Normal beats. Therefore, the classification of types f and F heart-

beats led to the lowest accuracy. To encounter this problem, another feature should be 

extracted, to distinguish between the fused heartbeats.  

5 Conclusion  

In this paper, we propose a SMOTE variant based on DTW distance for data augmen-

tation and a new Focal-based model for ECG heartbeat diagnosis. The DTW-SMOTE 

allows addressing the issue of data imbalance since the DTW similarity measure finds 

with more precision the neighbors to select for data generation. A Residual Network 

consisting of convolutions is employed for feature extraction. It is based on skip con-

nections that avoid the loss of information derived from earlier layers, and take into 

account the spatial dimension of the ECG data. The model uses LSTM layers to capture 

any temporal dependencies and to keep in memory the long-term context information. 

Afterward, a Focal Modulation layer is introduced for more feature enhancement. Due 

to the use of dynamic kernels, the mechanism can effectively focus on features differ-

ently and help improve the heartbeat classification. The model reached an accuracy of 

98.61% in detecting eight types of heartbeats, on the MIT-BIH Arrhythmia database.  

To sum up, the essential elements of our work include: 

 The use of variable-length ECG heartbeats, extracted from 2 leads (MLII and V5), 

 Data augmentation using new DTW-SMOTE variation, 

 End-to-end structure, including deep feature extraction and Focal classification. 

As for the sustainable aspect of this study, the automatic diagnosis model can help with 

the early detection of heart disorders. This can alleviate the overall burden on healthcare 

systems.  

Our model can be extended to recognize other types of heartbeats by using other 

databases. Additionally, the Focal layer can be applied for the classification of rhythm 

categories instead of heartbeat classes. 
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