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Abstract. This study investigates the impact of advanced computa-
tional methodologies on brain tumor segmentation in medical imag-
ing, addressing challenges like interobserver variability and biases. The
DeepLabV3plus model with ResNet50 integration is rigorously examined
and augmented by diverse image enhancement techniques. The hybrid
CLAHE-HE approach achieves exceptional efficacy with an accuracy of
0.9993, a Dice coefficient of 0.9690, and a Jaccard index of 0.9404. Com-
parative analyses against established models, including SA-GA, Edge
U-Net, LinkNet, MAG-Net, SegNet, and Multi-class CNN, consistently
demonstrate the proposed method’s robustness. The study underscores
the critical need for continuous research and development to tackle inher-
ent challenges in brain tumor segmentation, ensuring insights translate
into practical applications for optimized patient care. These findings of-
fer substantial value to the medical imaging community, emphasizing the
indispensability of advancements in brain tumor segmentation method-
ologies. The study outlines a path for future exploration, endorsing en-
semble models like U-Net, ResNet-U-Net, VGG-U-Net, and others to
propel the field toward unprecedented frontiers in brain tumor segmen-
tation research.

Keywords: Brain Tumor Segmentation · Deep Learning · Image en-
hancement · Medical Imaging · Ensemble Methods.

1 Introduction

Medical imaging, especially in brain tumor segmentation, has evolved signif-
icantly with the seamless integration of computational methods into neurol-
ogy [1]. Despite the improved visualization of Magnetic Resonance Imaging
(MRI), the complex nature of brain tumors necessitates advanced automated
approaches [22]. Traditional manual segmentation introduces variability and bi-
ases, emphasizing the need for precise medical decisions in treatment planning,
monitoring, and evaluating efficacy [9].
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The rise of computational techniques, especially Convolutional Neural Net-
works (CNNs), has opened avenues to overcome manual brain tumor segmen-
tation limitations [12]. Proficient in capturing intricate patterns, CNNs excel
in delineating tumor regions [25]. However, challenges like data heterogeneity,
class imbalance, and model generalization demand a shift to data-driven ap-
proaches [19]. Promising solutions like SegNet [30], LinkNet [39, 40], and U-
Net [38, 3] with transfer learning [17, 32] require rigorous validation and robust
data augmentation. While ResNet50 and U-Net perform well, addressing brain
tumor imaging complexity necessitates efficient methods [3]. Correlating seg-
mentation with patient survival emphasizes the need for accurate methods. Re-
searchers advocate for comprehensive CNNs, demonstrating effectiveness in au-
tomated detection and proposing robust CNN U-Net models for medical-grade
applications.

The motivation for this research arises from the imperative to overcome lim-
itations in traditional manual brain tumor segmentation. Integrating compu-
tational techniques, particularly deep-learning models, offers a transformative
opportunity to expedite analyses and produce highly accurate and reproducible
results. This research aims to explore the effectiveness of CNN–Transfer Learning
models [35, 37], proposing a novel approach that integrates DeepLabV3plus and
ResNet50 for efficient and accurate brain tumor segmentation. Rigorous eval-
uation will compare the performance of this model against established bench-
marks such as modified U-Net, SegNet, LinkNet, and others. Additionally, the
research assesses the impact of image enhancement techniques, including a hy-
brid of Contrast-Limited Adaptive Histogram Equalization (CLAHE) and His-
togram Equalization (HE), on segmentation accuracy [34, 33]. This multifaceted
approach aims to advance our understanding of computational methods in medi-
cal imaging and contribute insights that may enhance the precision and efficiency
of brain tumor segmentation.

The structure of this paper includes the following sections: Section 2 offers an
overview of related works, emphasizing strengths and limitations. Section 3 de-
tails proposed methods addressing identified challenges, including DeepLabV3plus
and ResNet50. Section 4 presents results, compares performance, and discusses
implications. Finally, Section 5 concludes with a summary of contributions and
potential avenues for future research in brain tumor segmentation.

2 Related Works

Research on brain tumor segmentation and ensemble CNN models has proven
them to be effective in various medical imaging applications [23]. Studies on
glioblastoma segmentation and ensemble learning in hyperspectral image pro-
cessing [20] demonstrate their versatility. The ViT-CNN ensemble model excels
in classifying acute lymphoblastic leukemia [11], emphasizing its potential in
medical diagnosis.

Significant strides have been achieved in brain tumor segmentation, deep
learning, and medical image analysis. The BRATS benchmark [28] has been
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pivotal in unveiling computational challenges. Ensemble CNN models exhibit
remarkable performance [5], emphasizing deep learning’s prowess in categorizing
brain cancers. The importance of data augmentation [15], advancements like the
U-Net application [13, 17, 3], and innovations such as dockerized segmentation al-
gorithms contribute to the expanding research landscape. Refinements in U-Net
architecture [21] and a novel patch-based dictionary learning algorithm extend
segmentation methodologies. Contributions span from automatic segmentation
methods to developing deep learning CNN models for segmentation and classi-
fication [9].

Further advances in brain tumor detection, such as the TransConver network,
showcased the potential of transformer and convolution parallel networks [18].
High accuracy, particularly on the BraTS 2018 dataset, underscores the impor-
tance of dataset-specific evaluations [26]. Employing CNN, deep learning, and
AI algorithms achieves notable accuracies in categorizing and identifying brain
tumors. Additional research focuses on classifying and segmenting tumors using
pre-trained AlexNet, advancing transfer learning for brain tumor classification,
and addressing challenges in automated tumor analysis [41]. Demonstrated ef-
fectiveness in transfer learning for brain tumor multi-classification highlights its
applicability across diverse scenarios. Emphasizing the role of automated seg-
mentation in enhancing research precision, speed, and reproducibility in medical
imaging is also underscored [24].

This research stands out as state-of-the-art within this rich landscape, pre-
senting a significant advancement in brain tumor segmentation using ensem-
ble CNN-Transfer Learning Models [35], specifically the DeepLabV3plus and
ResNet50 approach. The proposed method not only leverages the strengths ob-
served in previous studies but also addresses limitations, contributing to the
continual refinement and progress in medical image analysis.

3 Materials and Methods

3.1 Brain MRI Datasets and Preprocessing

In this study, a comprehensive dataset comprising 3064 TI-CE MRIs obtained
from 233 patients forms the foundation of our research [6]. The dataset is meticu-
lously categorized into three distinct classes: meningiomas (708 images), gliomas
(1426 images), and pituitary tumors (930 images). Each image within the dataset
possesses a corresponding ground truth, represented by masks, enabling the iden-
tification of abnormal regions. Fig. 1 illustrates representative samples of brain
MRI images accompanied by their respective ground truth masks, showcasing
instances of Meningioma (a), Glioma (b), and Pituitary tumors (c).

To optimize the deep learning model’s processing efficiency, a crucial prepro-
cessing step involves resizing the images to a standardized resolution of 256×256
pixels [34, 33]. This resizing facilitates computational efficiency and ensures con-
sistency across diverse input images. Following the resizing process, image en-
hancement techniques are employed to elevate the overall quality of the images.
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Fig. 1: Samples of brain MRI with the ground truth (masks) of (a) Meningioma,
(b) Glioma, and (c) Pituitary.

The first scenario involves the application of Histogram Equalization (HE), a
method widely recognized for enhancing image contrast. The second scenario em-
ploys Contrast Limited Adaptive Histogram Equalization (CLAHE) [34], which
adapts the enhancement process to local regions, enhancing details in specific
areas. The third and fourth scenarios involve hybrid approaches, combining HE
and CLAHE in different sequences: HE-CLAHE and CLAHE-HE [34, 36]. These
variations exploit the synergistic effects of global and local contrast enhance-
ments. HE operates by redistributing the intensity levels of the image histogram
to cover the entire available range. The transformation function T (rk) (Eq. (1))
for each pixel intensity rk in the original image is calculated based on the image
histogram H(i), probability pixels Px(i), and commutative distribution function
cdfx(i).

T (rk) = (L− 1) · cdfx(rk) (1)

where L is the number of intensity levels. The commutative distribution function
is computed by the sum of probabilities up to the intensity level rk (Eq. (2)).

cdfx(rk) =

rk∑
j=0

Px(j) (2)

Finally, the probability pixels Px(j) are calculated as the ratio of pixels with
intensity H(i) to the total number of pixels (Eq. (3)).

Px(j) =
H(i)

N
(3)

where N is the total number of pixels. This process yields the distribution of the
HE-transformed image h(v), effectively enhancing contrast (Eq. (4)).

h(v) =
cdf(v)− cdfmin

n− cdfmin
(4)

Unlike HE, CLAHE adapts its enhancement process with a clip limit (β),
preventing over-enhancement and artifacts. The transformation function T (rk)
for each pixel intensity rk is given by Eq. (5). The clip limit β (Eq. (6)) controls
the amount of contrast enhancement.
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T (rk) = (L− 1)
cdfx(rk)

max (β − cdfx(rk))
(5)

β =
M

n

(
1 +

α

100
(Smax− 1)

)
(6)

3.2 CNN-Transfer Learning Approaches: DeepLabV3plus with
ResNet50

Our proposed approach utilizes ensemble CNN-Transfer Learning for brain tu-
mor segmentation, integrating the DeepLabV3plus model [31] with the ResNet50
backbone [27], as illustrated in Fig. 2. This ensemble design allows for enhanced
predictive capabilities, utilizing the strengths of both models to improve segmen-
tation accuracy and generalization. We adopted a standard data split of 80% for
training and 20% for validation, training the model with a learning rate of 10−3

and the Adam optimizer over 50 epochs, with a mini-batch size of 32 iterations.
The combined architecture optimally captures contextual information and deep
feature extraction, resulting in superior segmentation accuracy.

(a)

(b) (c)

Fig. 2: Ensemble CNN-Transfer Learning Architecture: (a) DeepLabV3plus
model, (b) the transformation from standard convolution to Atrous/Dilated
convolution showcasing sequential processing of dilation pixels, (c) ResNet50
backbone utilized for accurate prediction in brain tumor segmentation.
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DeepLabv3plus Layers are architectural innovations which play a central role
in the proficiency of our ensemble CNN-transfer learning system for brain tu-
mor prediction and segmentation (Fig. 2(a)). DeepLabv3plus brings advanced
semantic segmentation capabilities to the model, explicitly emphasizing the pre-
cise delineation of object boundaries, a critical requirement in medical image
analysis [2]. The architecture includes atrous convolution, also known as dilated
convolution, which allows for an expanded receptive field without an increase
in model parameters. This feature enables the accurate segmentation of brain
tumors by capturing information from fine-grained to high-level features.

Atrous Spatial Pyramid Pooling (ASPP) is another essential element that uti-
lizes parallel dilated convolutions to capture multiscale information effectively,
ensuring recognition of both large and small tumor regions (Fig. 2(b)). Addi-
tionally, feature refinement and decoder modules contribute to model precision,
allowing the distinction of tumor boundaries even in complex images. These lay-
ers significantly enhance the model’s proficiency in brain tumor segmentation.

Further enhancing the understanding of Atrous Convolution, Fig. 2(b) illus-
trates the transformation from standard convolution to Atrous/Dilated convo-
lution. The first two diagrams in Fig. 2(b) depict the fundamental shift in the
convolutional operation, highlighting how Atrous convolution introduces gaps in
the filter, enabling the model to capture information from a broader context. The
third diagram in Fig. 2(b) illustrates the sequential processing of dilation pixels,
emphasizing the stepwise integration of contextual information. This mechanism
is pivotal in our approach, as it empowers the model to better discern fine details
and boundaries in brain tumor images.

Fig. 2(c) delves into the ResNet50 architecture, particularly emphasizing the
Atrous Convolutional layer. This layer plays a crucial role in feature extraction,
allowing the model to capture intricate spatial dependencies within brain tumor
images. The utilization of Atrous Convolution enhances the network’s recep-
tive field, enabling the extraction of more contextual information for improved
segmentation performance.

3.3 Performance Evaluation Metrics for Segmentation Approach

The evaluation of our segmentation approach relies on key performance met-
rics [35], each providing valuable insights into the model’s effectiveness [16].
Accuracy (ACC) is the fundamental metric that quantifies the overall correct-
ness of the model’s predictions by considering true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). The accuracy computes the
ratio of correctly classified pixels to the total number of pixels (Eq. (7)).

ACC =
(TP + TN)

(TP + TN + FP + FN)
(7)

The loss function (L) serves as a measure of dissimilarity between predicted
and ground truth masks. Often expressed as cross-entropy, the loss is calculated
by Eq. (8), where y represents the ground truth, ŷ is the predicted mask, and N
is the total number of pixels.
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L(y, ŷ) = − 1

N

N∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi) (8)

The Dice coefficient, denoted as Dice, assesses spatial overlap and is computed
by Eq. (9). A higher Dice coefficient indicates better spatial alignment between
the predicted and ground truth tumor regions.

Dice =
(2xTP )

(2xTP + FP + FN)
(9)

The Jaccard index, or Intersection over Union (IoU), measures region simi-
larity and is given by Eq. (10). This metric considers the common area between
the predicted and actual tumor regions.

Jaccard =
(TP )

(TP + FP + FN)
(10)

4 Results and Discussion

In this section, we present the results of our proposed approach, which inte-
grates DeepLabV3plus and ResNet50 for brain tumor segmentation. Our model
is evaluated using the BRATS dataset [6], and we compare its performance
with established benchmarks from other researchers. Additionally, we explore
the impact of image enhancement techniques, such as HE, CLAHE, and hybrid
approaches, on segmentation accuracy.

4.1 Results of CNN-Transfer Learning for Brain Tumor
Segmentation: DeepLabV3plus and ResNet50 Approach

This section presents an in-depth exploration of the DeepLabV3plus model with
the ResNet50 backbone for brain tumor segmentation. It sheds light on the
nuanced impact of various image enhancement strategies on its performance.
Four pivotal performance metrics—accuracy, loss, Dice, and Jaccard indices—
are meticulously employed to provide a holistic understanding of the model’s
proficiency across diverse preprocessing techniques. The evaluated model vari-
ants encompass image enhancement methods, including HE, CLAHE, and hybrid
approaches (HE-CLAHE and CLAHE-HE), as summarized in Table 1.

Commencing with the baseline scenario without image enhancement (“-”), the
model achieves an impressive accuracy of 0.9987. However, the discerning anal-
ysis of the Dice coefficient (0.9409) and Jaccard index (0.9048) unveils potential
areas for improvement, specifically in capturing the intricate boundaries of brain
tumors. Subsequent exploration of image enhancement strategies reveals HE as
a pivotal technique, showcasing notable improvements. HE yields the accuracy
of 0.9991, reduced loss (0.0020), and significant advancements in Dice (0.9618)
and Jaccard (0.9270) indices, underlining its efficacy in contrast enhancement
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Table 1: Comparison of brain tumor segmentation performance using different
image enhancement techniques.

Image Enhancement DeepLabV3plus with ResNet50

Accuracy Loss Dice Jaccard

- 0.9987 0.0031 0.9409 0.9048
HE 0.9991 0.0020 0.9618 0.9270
CLAHE 0.9990 0.0024 0.9558 0.9160
HE-CLAHE 0.9991 0.0021 0.9599 0.9242
CLAHE-HE 0.9993 0.0019 0.9690 0.9404

for more precise tumor region segmentation. Building upon the success of HE,
CLAHE contributes to further refinement, achieving the accuracy of 0.9990 and
showcasing benefits in capturing local details, particularly in enhancing local
features within brain tumor imaging data.

The combination of HE and CLAHE (HE-CLAHE) exhibits a synergistic
effect, yielding an accuracy of 0.9991 and higher Dice (0.9599) and Jaccard
(0.9242) indices. This combination underscores the importance of a judicious
blend of global and local contrast enhancements for superior segmentation out-
comes, with the sample of results in Fig. 3.

Meningioma:
Dice=0.9989

Jaccard=0.9979

Glioma:
Dice=0.9990

Jaccard=0.9980

Pituitary:
Dice=0.9940

Jaccard=0.9882

(a) (b) (c) (d)

Fig. 3: Sample of segmentation results illustrating (a) brain MRI with CLAHE-
HE, (b) ground truth (mask), (c) predictions from our proposed method, and
(d) overlap of the original image.

Notably, reversing the order of enhancement techniques (CLAHE-HE) yields
the highest overall performance, emphasizing the significance of the sequence in
optimizing the model’s ability to capture intricate details in brain tumor images.
The results highlight that a careful consideration of preprocessing sequences
tailored to the characteristics of medical imaging data significantly influences
the model’s segmentation efficacy. The model achieves its peak performance
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with CLAHE-HE image enhancement, as confirmed by the graph evaluation in
Fig. 4, demonstrating the robustness and stability of the proposed approach
across diverse brain tumor segmentation scenarios.

Without image enhancement

Histogram Equalization (HE)

Contrast-Limited Adaptive Histogram Equalization (CLAHE)

HE-CLAHE

CLAHE-HE

(a) (b) (c) (d)

Fig. 4: Performance evaluation metrics of the proposed DeepLabV3plus with
ResNet50 model based on (a) Accuracy, (b) Loss, (c) Dice, and (d) Jaccard
indices, showcasing the impact of various image enhancement scenarios on brain
tumor segmentation proficiency.
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4.2 Comparison of the Proposed Method with Other Approaches

This section provides a nuanced analysis of our proposed method’s segmentation
performance across specific brain tumor classes, including Meningioma, Glioma,
and Pituitary, compared to previous studies, as shown in Table 2. The evaluation
metrics considered are accuracy, Dice coefficient, and Jaccard index.

Table 2: Comparison of segmentation efficacy in individual classes of brain tu-
mors for different methods.

Method Dataset (Class) Accuracy Dice Jaccard

Proposed Method

Meningioma

0.9995 0.9809 0.9627
SA-GA [14] 0.8777 - -
Edge U-Net [21] - 0.8880 0.7743
Multiclass CNN [7] - 0.8940 -

Proposed Method

Glioma

0.9995 0.9596 0.9233
SA-GA [14] 0.9785 - -
Edge U-Net [21] - 0.9176 0.8747
Multiclass CNN [7] - 0.7790 -

Proposed Method

Pituitary

0.9995 0.9600 0.9240
SA-GA [14] 0.9512 - -
Edge U-Net [21] - 0.8728 0.7985
Multiclass CNN [7] - 0.8130 -

As detailed in Table 2, our proposed method demonstrates exceptional seg-
mentation performance for Meningioma, achieving the remarkable accuracy of
0.9995. The Dice coefficient (0.9809) and Jaccard index (0.9627) further un-
derscore the precision in delineating Meningioma boundaries. In contrast, the
comparison with SA-GA, Edge U-Net, and Multi-class CNN reveals notable su-
periority, signifying the efficacy of our approach in capturing the intricate details
of Meningioma structures. Our method outperforms existing models, showcasing
its potential for accurate Meningioma segmentation in medical imaging.

In the case of Glioma, as illustrated in Table 2, our proposed method contin-
ues to excel with the accuracy of 0.9995, indicating robust segmentation capabil-
ities. The Dice coefficient (0.9596) and Jaccard index (0.9233) further validate
the accuracy and precision in capturing Glioma regions. Compared to SA-GA,
Edge U-Net, and Multi-class CNN, our method consistently outperforms these
models, emphasizing its effectiveness in Glioma segmentation. The superior per-
formance underscores the potential clinical relevance of our method for accurate
Glioma delineation in medical images.

As depicted in Table 2, our method achieves outstanding results in Pituitary
segmentation, attaining the accuracy of 0.9995. The Dice coefficient (0.9600)
and Jaccard index (0.9240) further highlight the efficacy of our approach in
capturing Pituitary tumor structures. In contrast to SA-GA, Edge U-Net, and
Multi-class CNN, our method demonstrates superior segmentation performance.
The results affirm the applicability of our proposed method for precise Pituitary
tumor segmentation, showcasing its potential impact on diagnostic accuracy.
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The overall comparison across different brain tumor classes emphasizes the
versatility and consistency of our proposed method. By outperforming exist-
ing models across multiple tumor types, our method showcases its robustness
and potential applicability in diverse clinical scenarios. The superior segmen-
tation outcomes across Meningioma, Glioma, and Pituitary tumors collectively
contribute to the comprehensive effectiveness of our proposed method in brain
tumor segmentation.

4.3 Comparative Analysis of Segmentation Performance Across All
Data

This section thoroughly analyzes our proposed method’s segmentation perfor-
mance across diverse datasets, benchmarking it against various state-of-the-art
models detailed in Table 3. Key evaluation metrics, including accuracy, Dice co-
efficient, and Jaccard index, offer a comprehensive understanding of the overall
effectiveness of our approach. The results in Table 3 underscore the robust per-
formance of our method, boasting an impressive accuracy of 0.9993, with a high
Dice coefficient (0.9690) and Jaccard index (0.9404), validating its efficacy in
precisely delineating brain tumor structures. This overall excellence highlights
the versatility of our approach, positioning it as a compelling choice for diverse
medical imaging applications.

Table 3: Comparison of segmentation efficacy across all data with different ap-
proaches.

Method Accuracy Dice Jaccard

Proposed Method 0.9993 0.9690 0.9404
DeepLabV3plus ResNet18 [35] 0.9124 0.9340 0.9748
SegNet CNN-Autoencoder [4] 0.9917 0.7287 -
SA-GA [14] 0.9590 - -
SegNet [30] 0.9340 0.9314 -
U-Net with ResNet [17] 0.9960 0.9011 -
U-Net [13] 0.9780 0.7800 -
Multiclass CNN [7] - 0.8280 -
MAG-Net [8] 0.9952 0.7400 0.6000
Hybrid KFCM-CNN [29] 0.9760 0.8884 0.8204
U-Net based [3] - 0.8900 0.8100
Cascaded Dual-Scale LinkNet [39] - 0.8003 0.9074
SegNet-VGG-16 [30] 0.9340 0.9314 0.914
2D-UNet [38] 92.1600 0.8120 -
CNN with LinkNet [40] - 0.7300 -
U-Net with adaptive thresholding [10] 0.9907 0.6239 -
O2U-Net [42] 0.9934 0.8083 -
CNN U-Net [32] 0.9854 - 0.8196

Our proposed method consistently exhibits superior performance across all
metrics compared to a range of existing models. Outperforming DeepLabV3plus
ResNet18, SegNet CNN-Autoencoder, and others, our method showcases ad-
vancements in segmentation quality, achieving higher accuracy and excelling in
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both Dice and Jaccard metrics. These results underscore its effectiveness in cap-
turing intricate details, emphasizing its potential for accurate and reliable brain
tumor segmentation. Moreover, the method surpasses modified U-Net, SegNet,
and LinkNet in accuracy, Dice, and Jaccard metrics, reinforcing its efficacy across
a diverse range of existing models and highlighting its potential for widespread
adoption in clinical and research settings.

5 Conclusion

In conclusion, our study presents a pioneering approach to brain tumor seg-
mentation, leveraging the DeepLabV3plus model with ResNet50 and incorpo-
rating diverse image enhancement techniques. We have identified the sequence-
dependent impact of enhancement methods through meticulous analysis, high-
lighting the superior performance of the hybrid CLAHE-HE approach. Our
model demonstrated exceptional proficiency in segmenting diverse brain tumor
classes, achieving outstanding metrics with an accuracy of 0.9993, a Dice coef-
ficient of 0.9690, and a Jaccard index of 0.9404, surpassing existing methods.
The robustness of our proposed method across all data further underscores its
effectiveness compared to state-of-the-art models.

While providing valuable insights for medical image analysis, this study ac-
knowledges potential limitations and emphasizes the imperative need for future
research to enhance generalizability and address variations in imaging protocols.
As part of our future work, exploring ensemble models by integrating our pro-
posed method with architectures such as modified U-Net, ResNet-U-Net, VGG-
U-Net, and others could further elevate segmentation performance, contributing
to the evolution of advanced medical imaging techniques.
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