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Abstract. This work introduces an enhanced methodology in the domain of eX-
plainable Artificial Intelligence (XAI) for visualizing local explanations of black-box,
feature-based models, such as LIME and SHAP, enabling both domain experts and
non-specialists to identify the segments of Time Series (TS) data that are significant for
machine learning model interpretations across classes. By applying this methodology
to electrocardiogram (ECG) data for anomaly detection, distinguishing between healthy
and abnormal segments, we demonstrate its applicability not only in healthcare diag-
nostics but also in predictive maintenance scenarios. Central to our contribution is the
development of the AUC Perturbational Accuracy Loss metric (AUC-PALM), which
facilitates the comparison of explainer fidelity across different models. We advance
the field by evaluating various perturbation methods, demonstrating that perturbations
centered on time series prototypes and those proportional to feature importance out-
perform others by offering a more distinct comparison of explainer fidelity with the
underlying black-box model. This work lays the groundwork for broader application
and understanding of XAI in critical decision-making processes.

Keywords: XAI · Visualizations · Anomaly Detection · Time Series · AUC-PALM
· ECG · Dynamic Time Warping Barycenter Averaging · Time Series classification ·
Deep Learning · RNN-autoencoder · reconstruction loss · SHAP · LIME · Healthcare
Analytics · Feature Importance · Model Interpretability

1 Introduction

In many applications, domain experts possess expectations regarding the features that should
generally influence the classification of cases into specific classes. Our focus is on time series
data, particularly with two classes: normal and anomalous. Medical data, such as ECG, which
constitutes time series data, serves as an example. However, it is crucial to note that medical
data is not limited to time series but also includes images, textual, and tabular data. Analyzing
these data types and explaining models working on them is often more straightforward due
to their inherent characteristics, which sometimes make visualization and interpretation more
accessible. This is true particularly in medical imaging, where visualization and interpretation
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are more straightforward due to the data’s visual nature [11,14]. This ease of analysis contrasts
with the complexities of time series data, where explaining model decisions poses significant
challenges.

Interpretability in feature-based black-box explainers, such as Local Interpretable Model-
agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), presents a sig-
nificant challenge, especially when aiming to discern the average influence of features on
predictions for a given class. The study by [15] underscores the applications of XAI in
healthcare, highlighting the critical need for transparency, fairness, and accuracy in AI-driven
decision-making processes.

Visualizing explanations for time series data is particularly challenging due to the com-
plexity of capturing and representing temporal relationships and dynamics effectively. The
study by [21] developed a variety of metrics, such as fidelity, monotonicity, stability, and
interpretability, to validate and evaluate the effectiveness of explanation techniques. Our
visualizations enable experts to ascertain which segments of the series, in this case, ECG, the
model focuses on concerning the normal and abnormal classes. This insight is crucial as it
allows for a deeper understanding of the model’s decision-making process, potentially leading
to improved diagnostic and predictive outcomes.

However, visualization alone, i.e., understanding the model mediated by explainers, is in-
sufficient. It’s imperative to ensure that our explainers faithfully represent the black-box model
they aim to elucidate. We employ a perturbation method, widely recognized in literature,
to achieve this. Yet, there are numerous proposals on how to calculate the AUC Perturba-
tional Accuracy Loss metric (AUC-PALM), especially for time series data where introducing
perturbations thoughtfully is paramount. Our method introduces perturbations around the
prototype of a given class and examines whether perturbations should be proportional or
inversely proportional to feature importance.

In conclusion, our work contributes to the field by providing a methodology that not
only enhances the interpretability of black-box models through visual explanations but also
ensures the fidelity of these explanations through a novel application of the AUC-PALM
metric. By focusing on the specific challenges presented by time series data, we offer insights
that are broadly applicable, underscoring the importance of continuous research and diverse
applications in XAI, as indicated by comprehensive reviews [10,20].

Our main contributions are:

– We highlight the importance of visualizing Time Series (TS) data to improve understand-
ing with local explainers such as SHAP and LIME, making model interpretations clearer.

– Utilizing a metric described in literature [3], the AUC Perturbational Accuracy Loss met-
ric (AUC-PALM), we adapted it for time series analysis, allowing for a finer distinction in
model fidelity, crucial for better model evaluation. Our developed perturbation methods
improve the AUC-PALM measure for any XAI algorithm that attributes importance to
features. These methods are fitted for the analysis of TS data.

– Our method is universally applicable to Time Series data, with a special benefit for
healthcare due to its extensive use in this field. This is showcased through its application
to ECG data, providing precise and understandable model explanations.

The paper is structured as follows: Section 2 reviews current TS classifiers research.
Section 3 describes our method and a use-case study with the ECG dataset and Deep Incep-
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tionTime Model. Section 4 presents visualizations and results using AUC-PALM. Section 5,
and Section 6 concludes the work and future development perspectives.

2 Related works

This section focuses on XAI evaluation metrics and Time Series (TS) classification. Au-
thors [21], presents a comprehensive overview of evaluation metrics for ML explanations.
Metrics for model-based and example-based explanations primarily evaluate interpretability
and simplicity, while attribution-based explanations primarily evaluate fidelity and soundness.
In [8], the authors discuss methods for evaluating various aspects of explainable AI, such as
user satisfaction, trust, reliance, curiosity, and system performance. In [16] authors proposes a
suite of multifaceted metrics to objectively compare different explainers based on correctness,
consistency, and confidence. The paper shows that the proposed metrics are computationally in-
expensive and can be used across different data modalities. Work [1] introduces the concept of
robustness for interpretability, arguing that it is a crucial feature. The authors show that current
methods lack robustness and propose methods to enforce robustness in existing interpretability
approaches. Finally, the aim of the paper [6] is to help researchers to map existing tools and
apply evaluation metrics when developing an XAI system.f The work summarizes the state-of-
the-art review in XAI evaluation metrics and highlights challenges and future developments.

In [19], the authors present the first extensive literature review on XAI for TS classification.
They propose a taxonomy for explanation methods and highlight open research directions.
In "A Model-Agnostic Approach to Quantifying the Informativeness of Explanation Methods
for Time Series Classification" [13], the authors propose a model-agnostic approach for
quantifying and comparing different saliency-based explanations for TS classification. The
authors list a number of explainers for classifiers based on deep neural networks. They also
use perturbations as an evaluation measure. With perturbation-based analysis they show that
the discrimination of TS parts plays a critical role in classification accuracy. They distinguish
2 approaches to perturbation: applied only to discriminative region (Type 1) and applied only
to non-discriminative region (Type 2).

2.1 Evaluation metrics for eXplainable AI - Challenges and Prospects

There exists a multitude of techniques in the field of XAI designed to interpret and understand
the decision-making processes of AI models. Some prominent XAI techniques include Local
Interpretable Model-agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP),
and Counterfactual Explanations [4]. These approaches aim to provide human-understandable
explanations to clarify AI system behavior.

Evaluation metrics in XAI are categorized into subjective, based on human preferences, and
objective, achieved through formal definitions [6], which is depicted in Figure 1. XAI methods
come with metrics specific to the method or focused on behavior of model being explained and
its other aspects like cognitive complexity or computational cost affecting algorithm execution
for large datasets. For evaluating explanation effectiveness in task-specific methods, metrics
like non-representativeness or diversity are critical [18]. Counterfactual explanations demand
metrics for diversity of changes and feasibility [12]. Recommendation systems require tailored,
task-specific metrics [17], while model-related metrics usually focus on feature importance

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63772-8_27

https://dx.doi.org/10.1007/978-3-031-63772-8_27
https://dx.doi.org/10.1007/978-3-031-63772-8_27


4 M. Mozolewski et al.

e.g., sensitivity, monotony [18]. Some methods use oversimplified post-models, evaluated
based on size, complexity, or accuracy [5]. Data modality (e.g. images, text, tabular data),
type and structure of explanations influence selection of metrics [5,13,16]. The evaluation
of explanations consistency and stability is vital for model trustworthiness [3], with particular
challenges and requirements highlighted in space exploration contexts [2]. Comprehensive
reviews indicate a need for continuous research and diverse applications in XAI [10,20].

The Intelligible eXplainable AI (InXAI) framework provides tools for computing metrics
such as Perturbational Accuracy Loss, Stability, and Consistency for explanation models like
SHAP and LIME 4. This framework is significant as the code within the InXAI package is
actively developed with the goal of merging it into the master branch.

Fig. 1: Explanatory evaluation metrics are a relatively young field. There are 2 groups of
explanatory evaluations - those based on objective metrics, calculated numerically, and
human-centric, i.e. reflecting the final utility for the user. Sometimes the division between
these 2 groups is blurred, such as in the case of XAI evaluation metrics for recommendation
algorithms. The metrics highlighted in blue are part of the INXAI package.

2.2 InceptionTime Deep Network for Time Series classification

InceptionTime is a highly successive model [9] for classification of TS. It is an ensemble of
deep Convolutional Neural Network (CNN) models inspired by the Inception-v4 architecture.
InceptionTime shows high accuracy and scalability in TS classification tasks. The network
has its implementation in PyTorch 5.

Considering the gaps identified in the state-of-the-art analysis of explanations for Time
Series data, we propose a methodology with two key aspects: visualization and the adaptation

4 Github: https://github.com/sbobek/inxai
5 InceptionTime (in Pytorch) - GitHub: https://github.com/TheMrGhostman/InceptionTime-Pytorch
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of the AUC Perturbational Accuracy Loss metric, aiming to address these shortcomings
effectively.

3 Methodology

We present proposal of a methodology for evaluating eXplainable Artificial Intelligence (XAI)
algorithms for anomaly detection machine-learning models in Time Series (TS). Our focus is
on local explanations in the form of feature importance, as they are the most general, popular,
and versatile approaches in the domain of XAI. Visuals include among others AUC-PALM.
This metric assesses fidelity of the explainer (its consistency with the explained model)
via perturbing TS data proportionally or inversely to the importance of the given explainer.
Formula for perturbing TS takes into account both the feature importances at the observation
level for the given the explainer and the class prototype. Class prototypes were obtained with
Dynamic Time Warping (DTW) Barycenter Averaging. We demonstrate that, in the case of
TS, it matters whether the damages are consistent with a given TS class or the opposite, which
offers another indication of fidelity.

Fig. 2: The plot presents mean for each class with standard deviation plotted around it. The
classes associated with pathological patterns (R-on-T PVC, PVC, SP or EB and UB) were
recoded as Anomaly class.

3.1 Dataset

The dataset used in the experiments is derived from [7]. It was prepared by Y. Chen, E.
Keogh 6. The preparation process included two steps: extraction of each heartbeat, and mak-
ing each heartbeat equal length using interpolation. The "ECG5000" dataset consists of 5,000
univariate TS, divided into 4,500 for training and 500 for testing. These TS, acquired through
ECG, contain 140 timesteps each. The dataset comprises 5 different classes (with 2 major
ones), each TS has 1 dimension ECG.

Each sequence corresponds to a single heartbeat from a single patient with congestive
heart failure. The dataset includes five classes of heartbeats: Normal (N), R-on-T Premature

6 See: http://timeseriesclassification.com/description.php?Dataset=ECG5000
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Ventricular Contraction (R-on-T PVC), Premature Ventricular Contraction (PVC), Supra-
ventricular Premature or Ectopic Beat (SP or EB), and Unclassified Beat (UB). Since we
utilize a binary classifier in the article, we applied the re-encoding of all ECG classes asso-
ciated with pathological patterns into a single Anomaly class. This is illustrated in 2.

Table 1 Confusion Matrix for the classifier
on the test set across all classes.

Predicted True class #
Normal Normal 306

Anomaly
R on T 164

SP 14
PVC 8

Normal
SP 4

PVC 3
UB 2

Anomaly UB 1

Fig. 3: Example LIME importances for
single observation as plotted by LimeTime-
SeriesExplainer package. One can observe
usage of number of features equal to the
length of the Time Series (140).

3.2 RNN-autoencoder extension

We developed a deep learning model using the Transfer Learning technique. We utilized
a pre-trained RNN-autoencoder model implemented in PyTorch. The model was available
online and trained on the data discussed in Section 3.1, specifically on the Normal class from
the test subset. This allowed the author of the original code, Valkov V. 7, in Collab notebook 8

to determine a cut-off threshold for the cumulative reconstruction loss, beyond which there
was a high probability of belonging to the Anomaly class.

In contrast, we extended the autoencoder with a classification head, consisting of Linear,
Dropout, and Sigmoid layers. The input for the classification head was the difference between
the input and the reconstruction, i.e., the reconstruction loss vector with the length of the TS
(140 samples in each series). Incorporating the reconstruction loss vector allowed us to later
use this vector as one of the explainers and compare it with SHAP and LIME. The model
was fine-tuned with frozen autoencoder weights, on the test subset, this time for both classes:
Normal and Anomaly. We achieved an accuracy of 0.98 on the test set. One can observe with
Confusion Matrix in Table 1 that the classifier mistakes for 3 classes recoded to Anomaly (SP,
PVC, UB) for just 9 observations, classifying them as Normal.

7 See Github: https://github.com/curiousily/Getting-Things-Done-with-Pytorch
8 Time Series Anomaly Detection using LSTM Autoen-

coders with PyTorch in Python: https://curiousily.com/posts/
time-series-anomaly-detection-using-lstm-autoencoder-with-pytorch-in-python
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3.3 Visualisation of importances

SHAP was calculated using the DeepExplainer package 9. For LIME, we employed the Lime-
TimeSeriesExplainer package 10, with the number of features (num_features) set equal to the
length of the series, allowing us to obtain an explainer comparable to SHAP, which is depicted
on Figure 3. We used the output from the RNN-autoencoder for obtaining reconstruction loss
(referred to as "LOSSES"). We developed visualizations to display feature importances for
each explainer, categorized by class. These visualizations show both the average TS and its
standard deviation. A novel aspect of our method is an area around the average TS, indicating
the importance of each TS segment. This area’s upper and lower outlines represent average
values of positive and negative importances, respectively.

Φe
down=min(Φe,0)

Φe
up=max(Φe,0)

Φe
under-line=T̄S+Φe

down ·const
Φe

over-line=T̄S+Φe
up ·const

(1)

T̄S denotes the mean value of TS, while Φe
under-line and Φe

over-line are outlines of impor-
tances. The local explainer, Φe, matches the TS length. Φe

down and Φe
up represent the averages

of negative and positive explainer values, respectively. We draw a range around T̄S on the
plot, with lower and upper edges corresponding to Φe

down and Φe
up, respectively. A constant

multiplier enhances visibility. Additionally, we calculated class prototypes using tslearn’s
barycenters.dtw_barycenter_averaging function. These prototypes were visualized and used
in our TS permutation method.

The resulting plot offers easy interpretation, particularly in binary classification. For
example, with SHAP, the final part of the plot distinctly contributes to different classes. SHAP
identifies cohesive areas, emphasizing their centers more than edges, while LIME finds almost
the entire series area crucial. Comparing with reconstruction loss, both SHAP and LIME high-
light series parts with significant reconstruction loss. These observations are shown in Figure 4.

3.4 AUC Perturbational Accuracy Loss Metric

The next step involved comparing explainers using the Area Under Curve Perturbational
Accuracy Loss Metric (AUC-PALM). This metric serves as a direct measure of the decline
in model performance, providing an intuitive and straightforward method to assess the impact
of perturbations on the explanatory power of the models.

To address visualization, we developed plots where the noisy AUC-PALM is smoothed
exponentially, still ensuring accurate calculation of the metric, as shown in Figure 5. The
graphical representation of AUC-PALM showcases the accuracy loss on the Y-axis against the
degree of perturbation on the X-axis. From this graph, the area under the curve is calculated,
representing the AUC-PALM. This area is a crucial metric for evaluating the robustness of
the explanation models in relation to the changes introduced in the input data. The calculation
of AUC-PALM involves normalizing both the X and Y axes to 100%, making the maximum
possible area under the curve equal to 1.0. Consequently, the area under the curve essentially
represents the average accuracy loss across the perturbed instances.

9 Documentation: https://shap-lrjball.readthedocs.io/en/latest/generated/shap.DeepExplainer.html
10 GitHub: https://github.com/emanuel-metzenthin/Lime-For-Time
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Fig. 4: Comparison of SHAP, LIME and reconstruction loss (denoted "LOSSSES") as
explainers. One can observe, that they differ considerably. In the case of SHAP, the final part
of the graph negatively contributes to the Normal class, and positively to the Anomaly class.
The same is true for LIME, but in this case almost the entire area of the series is important
for explanation. Both SHAP and LIME tend to indicate those areas of the series for which
reconstruction loss is greatest. The red line furthermore indicates the prototype for the class.
Examples are for test set.

Fig. 5: Exponential smoothing of AUC Perturbational Accuracy Loss curves improves clarity,
however does not change the metric value.

We faced challenges in perturbing Time Series (TS) and visualizing results. For perturbing
TS, we considered perturbation around the original TS, around the prototype of the same
class, and around the prototype of the opposite class. The perturbation level should increase
smoothly to transition accuracy from unperturbed to random classification. It should also
reflect the explainer’s feature-importance for a given observation.

For the type of perturbation, we identified three approaches: inverse to feature-importance
("inverted"), consistent with feature-importance ("straight"), and consistent but not propor-
tional beyond a certain threshold ("zoned").
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For TS perturbations, we tested a number of formulas. We will discuss "inverted" and
"zoned" perturbations in detail, as those are the most complex cases. The process has 2 stages:
1. calculation of the perturbation vector, 2. application of the perturbation to the observation.

Stage 1 For feature importance visualization in TS, we normalize the absolute value of the
explainer’s output to create a unit length vector, Fnorm. In the "inverted" case, perturbations
involve subtracting this vector from the unit vector ("[V1]") or dividing the unit vector by
Fnorm, with a small constant to avoid division by zero ("[V3]"). The "zoned" method ze-
ros values below the 80th percentile and replaces higher values with a constant, while the
"straight"r method does not invert feature importances. All methods lead to a normalized
perturbation vector, Pnorm. This is represented by the Equation 2.

Fnorm= F
∥F∥

[V 1]:P =1−|Fnorm|
[V 3]:P = 1

|Fnorm+c|

Pnorm= P
∥P∥

(2)

[around prototype] :R=Pr
[around observation] :R=O

Pfinal=R◦Pnorm

OP =O+[i·rand({1,−1}) for i in Pfinal]·α

(3)

Stage 2 Perturbation application varies based on whether it’s around a class prototype or
relative to the observation itself. We define the "reference" as this chosen TS. Pfinal - the
perturbation vector - is obtained by elementwise multiplication of the importance vector
and reference vector. The final perturbed TS, OP , is the sum of the input observation and
perturbation vector, each component multiplied by a random sign and a scalar for perturbation
strength. See the Formula 3.

As being stated, the reference level can be either the prototype of the class to which the
TS instance belongs: [around prototype], or the observation itself: [around observation]. The
prototype can be either from the same class or from the opposite class. The prototype is calcu-
lated using the Dynamic Time Warping (DTW) Barycenter Averaging method, although this
is not shown in the formula. The final perturbation Pfinal is calculated as an element-wise
product of this reference R and the Pnorm from the previous formula. The perturbation is
applied to the O to obtain the perturbed observation OP in such a way that each component
of the observation has added perturbation components with a random sign. Furthermore, it
is multiplied by the α, which determines the strength of the perturbation and is changed from
a small value to a large one as the AUC-PALM is drawn (calculated).

4 Results

4.1 Joint evaluation of Normal and Anomaly classes

We analyzed the AUC-PALM graphs and values for the test subset, including both Normal
and Anomaly classes, to understand the impact of perturbation strategies on explainer per-
formance. Figures 6 and 7 show that both "inverted" and "straight" perturbation methods
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affect SHAP, LIME, and reconstruction losses differently. The "straight" method results in
larger AUC-PALM differences and quicker convergence to 0.5, indicating a random classifier.
The "zoned" case, performing similarly to "straight", is not shown. SHAP outperformed in
AUC-PALM results, followed by LIME, with reconstruction losses being slightly less effective
but still a viable explainer.

4.2 Insights from individual class analysis

Since SHAP proved to be a more accurate explainer according to the AUC-PALM on the
combined Normal and Anomaly classes, providing better feature importances, we investigated
whether such a relationship also occurs when analyzing the Normal and Anomaly classes sep-
arately. The Table 2 provides a detailed overview of the results from various experiments per-
formed on two classes of data: Anomaly and Normal. A range of tests were conducted for each
data class, taking into account different types of perturbations. The outcomes are represented in
relation to three distinct methods: LIME, reconstruction losses ("REC. LOSSES"), and SHAP.

Fig. 6: An "inverted" method of perturbation for LIME, SHAP, and reconstruction
losses-based explainer. The lower the area AUC, the better the explainer. SHAP performs
the best. Results obtained on test set for Normal and Anomaly classes altogether. The line
is smoothed exponentially.

We adopt the ratio of variance to mean as a measure of the differentiation strength be-
tween different explainers. Notably, the highest ratio of variance to mean is observed for
"straight" condition, both for Anomaly and Normal class. For Anomaly, perturbation around
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Fig. 7: A "straight" method of perturbation for LIME, SHAP, and reconstruction losses-based
explainer. The higher the area AUC, the better the explainer. SHAP is the best once again.
Results obtained on test set for Normal and Anomaly classes altogether. The line is smoothed
exponentially.

Table 2 Results of experiments with various types of perturbations

Class Proportionality Prototype LIME REC. LOSSES SHAP mean var var/mean
around obs. 0.1853 0.2045 0.1697 0.1865 3.032×10−4 1.626×10−3

opposite class 0.1771 0.1784 0.1721 0.1759 1.103×10−5 6.273×10−5inverted
same class 0.1769 0.1988 0.1584 0.1780 4.090×10−4 2.298×10−3

around obs. 0.4014 0.3745 0.4093 0.3950 3.336×10−4 8.445×10−4

opposite class 0.3138 0.2767 0.3380 0.3095 9.525×10−4 3.077×10−3straight
same class 0.4193 0.3558 0.4306 0.4019 1.626×10−3 4.045×10−3

around obs. 0.3481 0.3563 0.3515 0.3520 1.717×10−5 4.877×10−5

opposite class 0.2680 0.2691 0.2934 0.2768 2.068×10−4 7.469×10−4

Anomaly

zoned
same class 0.3444 0.3537 0.3480 0.3487 2.201×10−5 6.313×10−5

around obs. 0.3269 0.3378 0.3332 0.3326 3.020×10−5 9.081×10−5

opposite class 0.3294 0.3376 0.2957 0.3209 4.944×10−4 1.541×10−3inverted
same class 0.3354 0.3403 0.3388 0.3382 6.347×10−6 1.877×10−5

around obs. 0.4134 0.3566 0.3975 0.3892 8.5962×10−4 2.209×10−3

opposite class 0.3993 0.3484 0.4606 0.4028 3.161×10−3 7.847×10−3straight
same class 0.4027 0.3555 0.4029 0.3870 7.461×10−4 1.928×10−3

around obs. 0.3944 0.3592 0.3733 0.3756 3.127×10−4 8.326×10−4

opposite class 0.4054 0.3568 0.3956 0.3860 6.613×10−4 1.713×10−3

Normal

zoned
same class 0.3903 0.3564 0.3755 0.3741 2.888×10−4 7.720×10−4
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same class gave the highest result, while for Normal around opposite class. Nevertheless,
perturbing Anomaly class around the "opposite class" is also a viable and almost equally
potent alternative, only slightly lagging behind the leading solutions. It is apparent from the
results that perturbation centered around the anomalous class yields the most significant effect.
These findings underscore the utility of tailored perturbation strategies in maximizing the
differentiation between various explainers. This indicates that applying perturbations in this
particular way provides the most valuable insights into performance of explainers. Hence, it
can be inferred which approach towards perturbations is the most effective.

The Figure 8 presents the top three results from the Table 2 summarizing the experiments.
As can be observed, under the "straight" condition and "opposite class" for the Normal class,
all three explainers are well separated. In the case of Anomaly, the var/mean metric indicated
that the best perturbation is around the same class, although the chart shows that the "opposite
class" provides more information. For completeness, a chart for one of the worst var/mean
values is also presented. In this case, the chart does not provide significant insight. At the
same time, it is noticeable that explanations for the Normal class are better than those for the
Anomaly class, reflecting the fact that the autoencoder was trained only on the Normal class.

(a) (b)

(c) (d)

Fig. 8: SHAP, LIME and reconstruction losses-based explainer compared with best perturba-
tion method according to var/mean metric (charts (a) - (c)). The higher the area under curve,
the better the explainer. For both Normal and Anomaly class, the best is SHAP. The chart (d)
represents the worst perturbation method, for reference. The line is smoothed exponentially.
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It is important to note that directly comparing the AUC-PALM metric values between
classes carries some risk. The perturbation coefficient α is uncalibrated, so if the model’s accu-
racy does not decline to the same level at the end of the plot, comparing the area under the curve
will not be reliable. Moreover, the presented graph is derived from a different computation
process than the one collected in the Table 2. It can be observed that the calculated AUC-PALM
values exhibit high stability and are consistent up to the third decimal place for SHAP and
reconstruction losses (here referred to as autoencoder losses), and up to the second decimal
place for LIME. The notebook accompanying this paper can be found on our Github 11.

5 Discussion

Our study underscores the role of visualization in elucidating feature importances, as detailed
in 3.3. These visualizations provide immediate insights into the segments of time series
critical for distinguishing between normal and anomalous classes. Often, explanations over-
look the fact that different segments of the series may contribute to anomalies, while others
may indicate normalcy. In our visualizations, we have also considered the character of the
data, creating visualizations that are significantly more useful for medical experts than the
default ones provided by libraries such as SHAP or LIME. Moreover, these visualizations are
compatible with other local, feature-based explanations. This innovation is adaptable to any
black-box, feature-based explanation method, enhancing its utility across various applications.

We have presented an approach to the evaluation of explanation quality in feature-
importance attribution algorithms, such as SHAP and LIME, with a special emphasis on
per-class analysis in Time Series Anomaly Detection. Our work is important for Time Series
analysis, and demonstrated through ECG data analysis described in 3.1, showcasing the
applicability of our methods also in healthcare scenarios.

Central to our analysis is the exploration of various perturbation scenarios to understand
their impact on model performance in Time Series (TS) data. By employing Dynamic Time
Warping (DTW) Barycenter Averaging for prototyping, we navigate through perturbations
around class prototypes and the observation itself, enhancing our understanding of feature-
importance-based explanations (see 3.4). Our methodology introduces novel perturbation
methods, such as "straight" (proportional to feature importance) and "zoned" (above selected
threshold), alongside "inverted" (inversely proportional) approaches, to discern the efficacy of
explainers, with the "straight" method proving superior in explainer differentiation. This ap-
proach not only facilitates rapid identification of class-dependent areas in binary classifiers but
also extends to multi-class scenarios by treating them as a stack of binary classifiers, thereby
underscoring its universality across different classifier architectures, including non-deep learn-
ing models (see 3.2). Furthermore, we explore the use of reconstruction loss from autoencoder-
based models as a baseline for comparison with feature importance-based explainers.

6 Conclusion

This study has explored the important role of visualizations in conveying to domain experts
which parts of a time series are globally significant for predicting a given class, whether nor-
11 Jupyter .ipynb notebook for paper: https://github.com/mozo64/tsxai/blob/main/06_time_series_

anomaly_detection_ecg_clear.ipynb
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mal or anomalous. These visual aids provide a rapid insight into the model’s decision-making
process, based on local explanations for feature-based models in both machine learning (ML)
and deep learning (DL) anomaly detection contexts.

While literature describes various methods for perturbation, our approach to calculating
AUC Perturbational Accuracy Loss metric (AUC-PALM) allows for a more explicit differenti-
ation between different explainers, facilitating informed decisions on which is more effective
in specific scenarios.

We systematically investigated perturbations: around the prototype of the given class, the
prototype of the opposite class, and directly around the observation itself (without a prototype),
presenting formulas for calculating AUC-PALM in each case. In our experiments using SHAP,
LIME, and reconstruction loss as a baseline, the most significant distinction was observed
with perturbations around the prototype of the opposite class (or, for simplicity, anomalous
class would suit for most cases), proportional to feature importance—a condition we termed
"straight." This highlighted SHAP’s superior performance and pointed out the reconstruction
loss’s limitations. Our findings underscore the necessity for nuanced and accessible explana-
tory tools in the field of anomaly detection. By providing clear visualizations and a robust
metric for explainer evaluation, we aim to bridge the gap between complex data patterns and
actionable insights, enabling more effective decision-making in critical applications.

Future directions include refining our approach by training class-specific autoencoders
and conducting experimental studies with participants to evaluate the effectiveness of our
techniques in real-world machine-learning problems, i.e. predictive maintenance scenarios,
paving the way for more interpretable and reliable anomaly detection in Time Series data.
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