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Abstract. Machine learning on large-scale genomic or transcriptomic
data is important for many novel health applications. For example, pre-
cision medicine tailors medical treatments to patients on the basis of
individual biomarkers, cellular and molecular states, etc. However, the
data required is sensitive, voluminous, heterogeneous, and typically dis-
tributed across locations where dedicated machine learning hardware is
not available. Due to privacy and regulatory reasons, it is also problem-
atic to aggregate all data at a trusted third party. Federated learning is
a promising solution to this dilemma, because it enables decentralized,
collaborative machine learning without exchanging raw data.
In this paper, we perform comparative experiments with the federated
learning frameworks TensorFlow Federated and Flower. Our test case is
the training of disease prognosis and cell type classification models. We
train the models with distributed transcriptomic data, considering both
data heterogeneity and architectural heterogeneity. We measure model
quality, robustness against privacy-enhancing noise, computational per-
formance and resource overhead. Each of the federated learning frame-
works has different strengths. However, our experiments confirm that
both frameworks can readily build models on transcriptomic data, with-
out transferring personal raw data to a third party with abundant com-
putational resources.
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1 Introduction

Machine learning has the potential for a paradigm shift in healthcare, towards
medical treatments based on individual patient characteristics [32,9]. For exam-
ple, precision medicine uses biomarkers, genome, cellular and molecular data,
and considers the environment and the lifestyle of patients [17,19]. Machine
learning on large scale genomic and transcriptomic data enables the identifica-
tion of disease subtypes, prediction of disease progression and selection of tar-
geted therapies. Therefore, models need to be trained on large, diverse patient
cohorts (sample size) with high-resolution genetic characterization (number of
features). This is challenging: The data is commonly distributed across multiple
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Fig. 1: Key challenges of Federated Learning.

healthcare institutions that may not possess the high-performance computing
resources needed to build large deep-learning models. The sensitive nature of ge-
nomic and transcriptomic data presents privacy challenges. Genomic mutations
and markers could even allow to re-identify individuals and their relatives [27].
This disallows to freely share such data with centralized aggregators.

Federated learning (FL), as shown in Figure 1, allows for decentralized model
training across multiple data sets without requiring to transfer sensitive raw
data [24,29]. Only model parameters are exchanged between the aggregator and
participating clients, and the overall computational burden is effectively shared.
Adding noise [3,5,8] to shared parameters could further increase privacy.

In this paper, we investigate the technical and conceptual challenges that
arise when implementing FL on transcriptomic data. Figure 1 illustrates our
four key challenges: Architectural Heterogeneity refers to different numbers of
clients with varying computational capabilities. Statistical Heterogeneity relates
to data distributions and sizes. Gaussian Noise addresses the impact of apply-
ing noise to the data, e.g., to achieve Differential Privacy, with different models
(Logistic Regression and Sequential Deep Learning) and problem types (Binary
and Multi Label). Finally, Resource Consumption addresses storage, communica-
tion overhead and training times. To explore these challenges, we have conducted
comparative experiments with two state-of-the-art FL frameworks – TensorFlow
Federated (TFF) and Flower (FLWR) – and transcriptomic data. In particular,
we make the following contributions:

– We train disease prognosis and cell type classification models with TFF and
FLWR using hyperparameter tuning, and we measure the model quality.

– We analyze the effects of the number of clients, the amount of training data
and data distribution on the global model quality.

– We measure the impact of Gaussian noise, locally applied to the weights, on
the global model quality.

– We compare memory consumption, run-times and network traffic of TFF
and FLWR from both the client’s and the aggregator’s perspective.
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We have demonstrated that FL frameworks can be readily applied to preci-
sion medicine applications. Even more, we obtained an excellent global model
with an AUC of up to 0.98 for disease prognosis and cell type classification with
transcriptomic data. This performance is robust in the presence of diminishing
data quality, increasing clients and diverse data distributions, and it reduces the
necessary computational resources for the individual medical institution.

Paper structure: Section 2 introduces related work. Section 3 describes our
methodology. Section 4 presents our experimental results. Section 5 concludes.

2 Related Work

This section reviews related work in the fields of FL and its applications in
precision medicine, and discusses technical challenges and FL frameworks.

Federated Learning and Applications FL [24] allows distributed clientsN1, ...,Nn

to collaboratively train a model Mglob without sharing raw data. Instead of cen-
tralizing the data sets like in traditional machine learning, each client Ni trains a
local model Mi on its own data set. The model parameters are then shared with
a central aggregator, which aggregates them to create a global modelMglob. This
process is repeated as more data is collected, with clients continuously updating
their local models and forwarding the updated parameters to the aggregator.
Raw data remains with the respective clients and is never transmitted.

FL is used for collaboration across medical institutions, hospitals, health care
insurers or other entities [34,4,10,20]. Some problems relevant to medicine were
addressed by [32] and [9] who trained a federated model to model Alzheimer’s
and Parkinson’s disease. Beguier et al. [5] present a differentially private and
federated cancer occurrence prediction based on genomic data. For practical
implications and benchmarking of frameworks for FL, however, there is less lit-
erature available. The multi-class data set we use in experiments [16], to our
knowledge, has not been modeled by any FL system. The authors of the binary
data set propose a collaborative learning method named swarm learning without
an aggregator [30]. This method achieves very good model quality, but does not
take into account many challenges that arise when bringing FL in to produc-
tion. We identified four major challenges with heterogeneity in data distribution,
participating clients, consumption of computational resources and privacy:

Technical and Conceptual Challenges The issue of statistical heterogeneity
of training data in FL encompasses both the distribution and size of the data.
This challenge involves dealing with the non-IID (non-independent and identi-
cally distributed) nature of distributed data, which can lead to skewed or biased
model training [26,18]. Additionally, the size of data sets of each client can vary
significantly, where smaller data sets may not adequately represent the popu-
lation, impacting model quality and generalizability. Fu et al.[12] showed that
not only data heterogeneity can influence the model’s quality, but also the vary-
ing number of clients which we call architectural heterogeneity. Navigating
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these aspects of statistical heterogeneity is crucial for ensuring the robustness
and efficacy of FL models. In the context of transcriptomic data and health-care
institutions both issues are very common since hospitals vary greatly in their
sizes and specialization or different laboratories introduce bias due to small dif-
ferences in sequencing protocols and machinery [29].

Furthermore, while FL is designed to enhance privacy by training mod-
els locally and sharing only model updates, ensuring the privacy and security
of these updates against potential inference attacks remains a critical concern.
Multiple works showed, that there is no formal privacy guarantee for FL without
additional privacy-enhancing techniques [18]. Recent publications [7,33] showed
that baseline FL is vulnerable to reconstruction attacks, while others [13,25] suc-
cessfully performed Membership Inference Attacks (MIA). Multiple works [8,5,3]
explored Differential Privacy in a FL scenario for medical data. Differential Pri-
vacy protects the privacy of individual data points in a training data set while
allowing ML models to benefit from the overall information. It adds controlled
noise to data or model parameters, making it difficult to infer specifics about
individual entries. However, the application of noise usually comes with informa-
tion loss. For transcriptomic data in combination with clinical patient data, this
is a dilemma since biomarker signals are often weak for multi-factorial diseases.
Hence, privacy levels need to be carefully chosen to find a trade-off between
model quality, which is highly critical in medical applications, and privacy.

Finally, resource consumption presents another challenge for FL. The di-
verse and potentially resource-limited nature of participating clients in a FL net-
work can lead to inefficiency and delay [18,12]. Furthermore, the communication
required for model updates and synchronization in FL adds to network band-
width demands, which can be a bottleneck in resource-limited environments.

FL Frameworks The field of federated learning is rapdily evolving, and there
are many existing open-source FL frameworks, such as TensorFlow Federated
(TFF) [2,14], Flower (FLWR) [6], PySyft [35], FATE [22] and FedML [15]. These
frameworks vary in terms of their features, ease of use, and specific use cases.
The choice of a federated learning framework typically depends on the specific
requirements and constraints of the application.

Both PySyft and TFF are well established and benefit from a large com-
munity support. While TFF is based on the TensorFlow ecosystem, PySyft
works primarily with PyTorch. Both PySyft and FATE provide multiple op-
tional privacy-enhancing methods such as Differential Privacy and Secure Multi
Party Computation. FLWR is designed to be framework-agnostic and can work
with various machine learning frameworks, including TensorFlow, PyTorch, and
others. In terms of abstraction level, Flower’s API is more high-level and is, there-
fore, supposed to be more user friendly than TFF and PySyft. While FLWR and
FATE only allow simulation and cluster deployment, FedML provides a flexible
and generic API and allows on-device training. Also, FedML can be used for var-
ious network topologies such as Split Learning, Meta FL and Transfer-Learning.
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3 Methodology

This section explains our experimental concept, the data sets we used, and the
architectures of the machine learning models for our experiments.

3.1 Experimental Concept

To quantify the impact of our four key challenges on FL with transcriptomic
data, we measure the quality of a global model obtained by FL on centralized
data first. With this baseline, we conduct comparative experiments to explore
the effects of Architectural and Statistical Heterogeneity on the model quality.
We explore the impact of Gaussian noise to enhance privacy and measure its
effect on the model. Furthermore, we assess the Resource Consumption at the
aggregator and the clients.

To draw robust conclusions, we vary problem type and model architecture.
In particular, we conduct experiments not only on a binary-labeled data set but
also on a multi-class data set. This aligns with clinical research, which typically
covers a variety of diseases and research questions rather than a single condition.
In multi-class problems, the complexity increases as the model must differentiate
between multiple, often overlapping conditions.

We decided to use the FL frameworks TensorFlow Federated (TFF) [2,14]
and Flower (FLWR) [6]. Our choice was driven by multiple factors: We prioritize
documentation and usability. Furthermore, we are interested in exploring hori-
zontal FL with frameworks that have programming interfaces at different levels
of abstraction. Finally, frameworks with the same communication protocol allow
to compare the network performance.

3.2 Data Sets

We use two data sets. The Acute Myeloid Leukemia data set [31] was previously
obtained from 105 studies, resulting in 12,029 samples with binary labels. We call
it the binary-labeled data set. It consists of gene expressions by microarray
and RNA-Seq technologies from peripheral blood mononuclear cells (PBMC) of
patients with either a healthy condition or acute myeloid leukemia (AML).

The multi-class data set includes expression profiles generated by single-
cell RNA-Seq for cell types of the human brain, in particular the middle temporal
gyrus (MTG). The data set was published by [16], who isolated sample nuclei
from eight donors and generated gene expression profiles by single-cell RNA-
Seq for a total of 15928 cells (samples) describing 75 distinct cell subtypes. We
reduced the number of classes (cell types) to make the data set more suitable
to experiment with class imbalance. For that we selected only the the five most
abundant cell types (classes) leading to 6931 cells (samples) for training. We
preprocess both data sets as in previous analyses and benchmarks [31,30,17,16].
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3.3 Model Architectures

We experiment with a logistic regression model and a deep-learning model.
Following [30], the deep-learning model uses a sequential neural network archi-
tecture. It consists of a series of dense layers, each with 256, 512, 128, 64, and
32 units, all activated using the ’relu’ activation function. Dropout layers with
dropout rates of 0.4 and 0.15 prevent overfitting. The configuration of the output
layer is based on the number of classes in the data set.

Table 1: Optimized Hyperparameters

Data Set Model Hyperparameters

Binary
Deep Learning Adam, L2: 0.005, Epochs: 70

Logistic Regression SGD, L2: 0.001, Epochs: 8

Multi Class
Deep Learning Adam, L2: 0.005, Epochs: 30

Logistic Regression SGD, L2: 1.0, Epochs: 10

For our baseline and for hyperparameter tuning, we train both models on cen-
tralized data. In particular, the hyperparameter space was randomly searched
to find Cross Entropy as optimal loss function with a batch size of 512. Hy-
perparameters that differ in the respective combinations of model and data are
summarized in Table 1. We denote the rounds of training based on the local
epochs, so that the total number of epochs remains a constant. Assume one
round of training and two clients using 100 local training epochs. With two
rounds of training, this would be 50 local epochs for both clients.

4 Experiments

In this section, we describe our experimental setup and our analysis results
regarding model quality, data quality and resource consumption.

4.1 Experimental Setup

We perform all experiments using one CPU core from an AMD(R) EPYC(R)
7551P@ 2.0GHz - Turbo 3.0GHz processor and 31 Gigabyte RAM for each client.
The network is a 100 Gbit/s Infiniband. We measure the network traffic with
tshark [1]. No GPU is used during the experiments. To ensure resource par-
ity among different frameworks and the central model, each training process is
bound exclusively to one CPU core. Our experiments are implemented in Python.
For preprocessing and data loading, we used the libraries Pandas [23] and Scikit-
learn [28]. Both the logistic regression model and the deep-learning model were
implemented using Keras, with default settings and federated algorithms from
FLWR and TFF [2,14,6]. The default of FLWR is a federated averaging strategy
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in a client-aggregator setup. Additionally, we compute the average score of each
metric for every client. The default building function in TFF uses a robust ag-
gregator without zeroing and clipping of values as model aggregator. The clients
of TFF all use the eager executor of TFF and are loading the data with a custom
implementation of the data interface of TFF [2]. In this configuration, FLWR
and TFF implement the federated averaging algorithm with a learning rate set
to 1.0 [24]. The code to our experiments can be found at [21].

For our experiments, we tested combinations of Logistic Regression (LogReg)
and Sequential Deep Learning (DL) models together with binary problems (Bi-
nary) and multi-label problems (Multi). In the figures, we abbreviate the combi-
nations of models and problem types as Binary LogReg, Multi LogReg, Binary
DL and Multi DL. For each combination, we tested 3, 5, 10, 50 clients and 1,
2, 5, 10 rounds of training, and we measured model quality and computational
resources used. To analyze the effect under investigation, we iterated over the
respective other parameter and reported the averaged result, i.e., when varying
the number of clients, we conducted tests for each training round configuration
and presented the cumulative effect observed across all training rounds.

4.2 Model Quality

To explore the impact of heterogeneity on the global model, we use a 5-fold cross
validation and compute the Area Under the Curve (AUC). A higher AUC value
(closer to 1) indicates a better model, that distinguishes between the classes
more effectively. We compare the AUC of the centralized baseline with the AUC
obtained with FL and varying numbers of clients and training rounds. In the
following, we explain our key findings.

Finding 1: Boosting training rounds does not always enhance model
quality. We assumed from previous work (cf. Sec. 2) that an increasing num-
ber of training rounds improves the quality of the global model. To examine
the impact of frequency of weight updates among clients during training, we
varied the numbers of training rounds and kept the total number of epochs con-
stant. This approach is consistent with our round configurations optimized with
hyperparameter tuning, as described in Section 3.

Consider Figure 2). The left two columns of diagrams show the results of our
experiments with varying numbers of rounds, the right ones varying numbers of
clients over the respective other variable. The top line of diagrams were obtained
with deep learning models, the bottom line with logistic regression. We find that
the AUC of the global model does not improve significantly with the number of
rounds for logistic regression. Deep learning benefits slightly with more rounds of
weight updates (see Figure 2). For non-balanced data sets, matching most real-
world FL scenarios, updating rounds prove to be more effective to mitigate class-
imbalance across different clients (see Figure 3). Thus, healthcare institutions
should carefully chose the number of rounds in FL applications, based on the
data distribution and machine learning algorithms used.
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Fig. 2: AUC with respect to an increasing training rounds and clients

Finding 2: Fewer clients and more data increases model quality. To
analyze the effect of the number of clients, we split the training data in disjoint
subsets and distributed them to clients. Each subset has the same size and
class distribution as the whole data set. The data on each client is then split
into training and test data with a ratio of 80:20. The test data of all clients is
combined and the aggregated FL model is evaluated on this test data. Then,
both FL frameworks were used to train a global model.

For a small number of clients, Figure 2 reports that the AUC of FL is similar
to our baseline (AUC 0.98), proving that FL can reach centralized model quality
in real-world scenarios. A slight decrease for 10 clients can be discovered which
is followed by a drop in AUC in the extreme case of 50 clients. This results from
the reduced size of local training data: As the number of clients increases, the
data set is divided among them, resulting in a reduction in the training data
available for local training. The limited data size does indeed reflect a possible
scenario where small healthcare institutions want to attend to a FL scenario.
We conclude that clients should only allowed when they provide a substantial
number of samples on which local model training can be performed.

Finding 3: Model quality is driven by models, not by frameworks.
Figure 2 shows that the logistic regression model has an overall lower model
quality than the deep learning model for the multi-class problem, as its highest
AUC value is 0.90 for both frameworks. In contrast, the deep learning model has
an AUC of 0.99 for TFF and 0.98 for FLWR. This emphasizes the superiority
of deep learning for this data set, and underlines that the model (and their
hyperparameterisation) must fit to the problem.

Benchmarks for a direct comparison of model quality are rare, especially for
transcriptomic data. We wanted to learn if there is a difference between FLWR
and TFF across the tested scenarios. As Figure 2 illustrates, if all parameters and
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aggregation algorithms for FLRW and TFF are configured in the same way, both
frameworks deliver a similar model quality. This observation holds for various
configuration. Healthcare institutions are therefore free to select FL frameworks
based on functionality (e.g. privacy-support), usability and computational re-
source demand, instead of concerning model quality.

Finding 4: Class imbalance impairs federated learning. A challenge for
FL is that data points are usually not independent and identically distributed
(IID), leading to statistical heterogeneity. With transcriptomic data, a balanced
class distribution among all clients seems unlikely. Therefore, we explored the
effect of data imbalance on the global model’s quality. We investigate IID- and
non-IID-data by methodically increasing the imbalance to find a sweet spot of
imbalance and model quality.

Binary DL Multi DL

Fig. 3: AUC with respect to an increasing class imbalance and training rounds
over all imbalance configurations

We start our experiments with a number of clients equal to the number of
classes, and all classes are equally distributed among the clients. Subsequent
experiments increase the number of samples from one class while reducing the
number of samples from another class. This process is repeated independently
for each client and class, until each client contains samples from a single class.
Due to lack of space, we present a visualization of only a subset of the conducted
experiments (Figure 3). Detailed visualizations and results can be found at [21].

We compare the resulting AUC with an equally-distributed data set. As Fig-
ure 3 shows, deep learning can indeed fight class imbalance. However, if the
imbalance exceeds a certain threshold, a sudden drop in AUC can be expected.
The threshold depends on the data set and machine learning algorithm. Our
results indicate that a non-IID distribution not necessarily results in poor model
quality. But, the model quality in the presence of non-IID is strongly depen-
dent on the problem type and data set. This can be further increased with the
appropriate model selection. As Figure 3 shows, deep learning is robust with a
drop in AUC at 90% imbalance. Whereas more training rounds does not improve
the robustness for logistic regression, it does for deep learning. We also inves-
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tigated the effect of multiple rounds to a non-IID setting. Again, we increased
the training rounds over all configurations in data distributions and report the
average. The increase in a number of training rounds leads to an improvement
of model quality for deep learning with non-IID data (see Figure 3), but does
not affect the quality of logistic regression, regardless of the problem type [21].
Thus, healthcare institutions need to consider that the model quality depends
on minimal number of samples per class. This number depends on aspects like
the training algorithm.

4.3 Data Quality and Privacy

There are many anonymization approaches such as Differential Privacy, which
apply noise to the data. Because TFF and FLWR have different levels of support
for Differential Privacy, we have chosen a general approach to investigate the
impact of anonymization on model quality: We add Gaussian noise to the local
parameters before aggregation.

Fig. 4: AUC with respect to an increasing local Gaussian noise

Finding 5: Adding noise to the weights has a strong impact on model
quality. Our experiments use five clients and varying noise parameters 0.01,
0.03, 0.05, 0.07, 0.085, 0.1. We observe that all model and problem types deal
with some noise. However, at some point AUC drops to approx. 0.07 – 0.085.
TFF copes with noise better than FLWR, possibly because TFF uses regular-
ization techniques that mitigate the impact of noisy updates. Increasing the
training rounds does not improve the model quality, but slightly decreases AUC.
Thus, if healthcare institutions want to apply differential privacy, sophisticated
approaches are required to ensure model quality.
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4.4 Computational Resources

When analyzing the computational resources of a federated system, both the
local and the global perspective are relevant. We investigate the aggregated
training time, memory consumption and network traffic for the clients and the
aggregator. Again, we present our main findings and refer to [21] for detailed
results.

0

Fig. 5: Local training time with respect to increasing training rounds and clients

Finding 6: FL does not increase individual training times. We measure
the training time for each client individually over multiple training rounds. Recall
that we keep the total number of training epochs and the total number of samples
constant, i.e., the more clients, the fewer local training rounds and the smaller
the sample sizes per individual client. Thus, we assume that more clients result in
smaller training times per client. Figure 5 confirms this. The figure is organized
in the same way as Figure 2, i.e., models in rows and problem types in columns.

FLWR provides a much faster local training compared to TFF, because of
differences in their implementation. The difference between centralized training
and federated training is less distinct for logistic regression than for training
deep learning models.

Thus, healthcare institutions benefit more from federated training for com-
plex machine learning approaches with long training times such as deep learning
models. From a global perspective, the increased network traffic (see Figure 7)
might slightly increase the total training times. This depends on the number of
round and clients, and the network capacity and latency of the coordinator.

Finding 7: Memory consumption is effectively shared. We measured the
aggregated memory consumption for both the clients and the overall system.
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Fig. 6: Local memory usage with respect to increasing training rounds and clients

As the number of clients or rounds increases, the overall resource consumption
increases due to the increase in coordination effort. However, the client-wise re-
source consumption decreases, which is an advantage for healthcare institutions.

We observed that both the clients and the global FL system as a whole re-
quire more memory with deep learning than with logistic regression. This was
expected, because deep learning uses much more parameters than logistic re-
gression. Second, TFF uses much more memory than FLWR (Figure 6, again
with models in rows and problem types in columns). We conclude that FL saves
healthcare institutions a significant amount of memory, at the cost of a slight
increase in global training time and global memory requirements. Further, FL
frameworks show distinct differences in their training times and memory con-
sumption revealing potential for optimization of FL tools.

Finding 8: The network load is not a bottleneck. To assess the network
load, we assume that the amount of data transmitted and received is determined
by the data serialization method of the framework, and is not influenced by
hardware or interference from other clients. Therefore, we experiment with a
fixed number of 10 clients. In accordance to the increased memory usage of
TFF, TFF comes with higher network traffic as well. Additionally, since deep
learning needs to share more parameters than logistic regression, the network
traffic rises from 4 MB (peak for LogReg) up to 30 MB (peak for DL).

For comparison, an average household has a bandwidth of 209 Mbps and can
easily handle the network demands [11]. We conclude that the network traffic
is acceptable for healthcare institutions, and may pose a problem only for the
training of very large neural networks such as foundation models. The frame-
works have different demands on computing resources, but this is not a basis for
selection in most medical scenarios, and it does not restrict the applicability of
FL on transcriptomic data.
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Binary DL Multi DL

Binary LogReg Multi LogReg

Fig. 7: Network traffic with respect to an increasing number of rounds

5 Conclusions

We have analyzed the challenges of applying Federated Learning to transcrip-
tomic data regarding architectural hegerogeneity, statistical heterogeneity, Gaus-
sian noise and resource consumption. This is important for application areas such
as precision medicine, where sensitive patient data is distributed among clients,
which do not possess the computational resources for traditional machine learn-
ing approaches. In particular, we tested two real-world data sets and use-cases
with varying numbers of training rounds and clients, and we compared a cen-
tralized baseline with two FL frameworks.

Our analysis shows, that for multi-factorial problems and high number of
features, deep learning models outperform logistic regression models in terms of
model quality. Increasing the number of training rounds does not greatly improve
the global model quality, showing the high effectiveness of weigh aggregation in
FL. However, hyperparameter tuning has a large impact. Transcriptomic data is
robust to some class imbalance, especially using deep learning models. Problem
type and data set are key factors for robustness, also with respect to the amount
of training data. Privacy-preserving Gaussian noise can lead to a drastic loss in
model quality. FL saves memory and training time for individual clients: The
more clients, the lower the individual load. Flower consumes less computational
resources than TensorFlow Federated, requires less knowledge about FL, but
is also less customizable. The network traffic we measured seems acceptable for
typical health institutions. Finally, our findings confirm that FL is applicable and
beneficial for disease prognosis and cell type classification using transcriptomic
data.
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