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Abstract. Cervical cancer is the fourth most common cancer among women. 
Every year, more than 200,000 women die due to cervical cancer; however, it is 
a preventable disease if detected early. This study aims to detect cervical cancer 

by identifying the cytoplasm and nuclei from the background using deep learning 
techniques to automate the separation of a single cell. To preprocess the image, 

resizing and enhancement are adopted by adjusting the brightness and contrast of 
the image to remove noise in the image. The data is divided into 80% for training 
and 20% for testing to create models using deep neural networks. The U-Net 
serves as baseline network for image segmentation, with VGG19, ResNet50, Mo-

bileNet, EfficientNetB2 and DenseNet121 used as backbone. In cytoplasmic seg-

mentation, EfficientNetB2 achieves a precision of 99.02%, while DenseNet121 
reaches an accuracy of 98.59% for a single smear cell. For nuclei segmentation, 
EfficientNetB2 achieves an accuracy of 99.86%, surpassing ResNet50, which 

achieves 99.85%. As a result, deep learning-based image segmentation shows 
promising result in separating the cytoplasm and nuclei from the background to 
detect cervical cancer. This is helpful for cytotechnicians in diagnosis and deci-
sion-making. 
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1 Introduction  

Cervical cancer describes the development of malignant tumors of normal cells that 
initially covered the upper part of the cervix [1], which is the fourth most common 
cancer among women [2]–[4]. Every year, more than 200,000 women die of cervical 

cancer; approximately three-quarters of these deaths occur in developing countries [5], 
mainly due to a lack of medical resources and experts. However, it is one of the pre-
ventable diseases if detected early through screening [6]. Cytological tests, such as Pap 
smear, are crucial screening procedures to identify abnormalities in the cervical region 
[7]. To find and identify nuclear and cytoplasmic atypia, the diagnostic process requires 
a cellular-level examination under a microscope by a cytologist or pathologist [8]. 

However, manual analysis is labor-intensive, error-prone, and time-consuming [9].  
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Furthermore, due to factors such as the shortage of pathologists and regional eco-
nomic differences, manual analysis has not been able to meet the urgent needs of pa-
tients. The presence of blood clots, mucus, overlapping cells, and other types of tissue 
and debris are factors that determine the quality of an image [2]. These may not be 
clearly visible to humans to identify abnormal cells from normal ones. Improving the 
screening capacity is the most effective way to reduce the incidence of cancer and save 

lives. This helps experts in diagnosis, reduces errors and workload, and speeds up the 
screening process [9]. Segmentation is one of the crucial tasks in the screening process 
because it can help better understand the morphological properties of cells by analyzing 
their constituent parts, such as the nucleus and cytoplasm [10].  

The physical properties of the cytoplasm and nucleus are essential to determine 
whether a cell is normal or abnormal. Accurate cell segmentation helps experts identify 

normal and malignant cells within a Pap smear. Therefore, the screening process helps 
to detect abnormalities early before they become malignant [11]. To automate cervical 
cell segmentation and improve cervical cancer detection accuracy, deep learning-based 
computer-aided diagnostic techniques have been used [3]. The most challenging aspect 
of automating cervical cell screening is the precise segmentation of the nuclei and cy-
toplasm. In this study, we divide the image between the background and the cytoplasm 

and nuclei. In image segmentation and recognition, the U-Shape Network Structure (U-
Net) has been shown to be extremely superior [12].  

The aim of this study is to develop and evaluate deep learning (DL) models for the 
image segmentation of cytoplasmic and nucleic cervical cells, aiming to simplify and 
automate the separation of single cells. The remainder of this paper is organized as 
follows: Section 2 introduces the methods used, Section 3 presents the segmentation 

results and discusses the findings, and Section 4 provides concluding remarks.  

2 Materials and Methods  

In this section, the data collection, preprocessing technique, implementation detail and 
model development are discussed. 

2.1 Dataset Collection   

The dataset used for this study was collected from the Pomeranian Medical University 

in Szczecin, Poland. It consists of 419 cytological images with a resolution of 1130 x 

1130 pixels in BMP format. In most images, the nuclei of abnormal cells appear large 

with blurred borders and low contrast between the cytoplasm and the background, mak-

ing them highly susceptible to false predictions. The images from different classes 

along with their corresponding masks are depicted in Fig. 1.  

 

 

 

 
 

Fig. 1 Sample images with corresponding mask: a) HSIL, b) LSIL, and c) NSIL 

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63772-8_25

https://dx.doi.org/10.1007/978-3-031-63772-8_25
https://dx.doi.org/10.1007/978-3-031-63772-8_25


 Comparison of DL models to detect cervical cancer  3 

In contrast, the nuclei of normal cervical cells are tiny and exhibit high contrast.  The 

dataset includes images classified as high-grade squamous intraepithelial lesion 

(HSIL), low-grade squamous intraepithelial lesion (LSIL), and normal squamous in-

traepithelial lesion (NSIL), with 124, 61, and 234 images respectively. 

2.2 Pre-processing of the Data  

Medical images are often inconsistent, noisy, and incomplete; therefore, preprocessing 
becomes crucial to improve the performance of the model [13]. In the preprocessing 
phase, we begin by creating masks for the samples collected from the hospital. Masks 
are created using OpenCV. The initial step involves converting the image to grayscale. 

Subsequently, thresholding is applied to generate a binary mask using the Otsu method. 
Morphological operations, such as erosion and dilation, are performed to eliminate 
noise and enhance the cell boundary in the mask image. Finally, mask images are gen-
erated, with the cytoplasm represented in white and the background in black. After-
wards, the images are separated into the image data and masks (labels). Following this, 
the dataset is divided into a training set and a testing set with a ratio of 80% and 20%, 

respectively. All images are resized to a size of 224 × 224 pixels. Addit ionally, image 
enhancement techniques such as adjusting brightness and contrast are applied to reduce 
noise. Data augmentation is then used to improve the performance and generalization 
of DL models and to reduce overfitting problems. In this study, geometric transfor-
mations, such as rotation, flipping, and scaling were applied. Sample images after en-
hancement and augmented images are shown in Fig. 2. 

 

 

 

 

                                        
Fig. 2 Sample image a) after enhancement, b) data augmentation 

2.3 Implementation Details  

In this U-Net structure, the objective is to automatically extract a region of interest 
(ROI) around the tumor in the cervix. To train the model, it is necessary to define the 
experimental setup and hyperparameters. The DL framework used to implement the 
model is Keras with TensorFlow in Python. The experiment was conducted on a Win-

dows 11 operating system, utilizing a 12th Gen Intel(R) Core (TM) i5-12500H proces-
sor, 32GB of RAM, and an NVIDIA GeForce RTX 4060 GPU model. The training 
hyperparameters used for the study are listed as follows: a batch size of 18 and training 
for 100 epochs without early stopping. The Adam optimizer [14] was employed with a 
learning rate set to 0.003. The Jaccard distance is utilized as the loss function, measur-
ing the dissimilarity between predicted and actual sets. Minimizing the Jaccard distance 

aids in producing predictions that closely match the actual mask. Performance evalua-
tion metrics for the model include accuracy, sensitivity, precision, Intersection over 
Union (IoU), and Dice coefficient. 

                   a                                                                     b                                                    
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2.4 Training the Model 

In this section, we discuss model training using a U-shaped neural network that employs 
data consisting of five down-sampling modules and five up-sampling modules. The 
down-sampling (encoder) reduces the spatial dimension of the feature maps while in-
creasing their depth, and the up-sampling (decoder) is to decode the encoded data, uti-

lizing information from the concatenation, and increase the spatial dimension back to 
the original input size. The concatenation path helps to retain spatial information during 
the up-sampling process. As the image size is reduced on the encoder path, the decoder 
path increases the image size. The down sampling includes two convolutional layers, 
max pooling, batch normalization, and activation function. The filter size is 3 × 3 for 
each convolution layer and 2 × 2 for each max pool layer. The input image is 224 x 224 

x 3, and the number of filters increases in each block: 64, 128, 256, 512 and 1024. The 
central block has 1024 filters for 2 convolution layers. In the decoder path, transposed 
convolution (up sampling), concatenation, convolution layers, batch normalization and 
activation functions are employed. As the image size increases, the number of filters is 
decreased: 1024, 512, 256, 112 and 64. The final output size is 224 x 224 x1 which is 
the segmented image.    

We then train U-Net as the base, with VGG19, ResNet50, MobileNet, Efficient-
NetB2, and DenseNet121 as the backbone. These pre-trained models are employed for 
feature extraction and are most widely used in literature. To connect the pre-trained 
model to the U-Net architecture, we follow the following procedures: In the encoder, 
the initial layer of the pre-trained model backbones captures features and reduces the 
spatial dimension of the input image. The layers with reduced spatial dimension con-

nect to the deepest layer of pre-trained backbone, used for capturing abstract features 
and retaining high-level semantic information while reducing the spatial dimensions. 
Subsequently, the decoders up-sample the feature maps and reconstruct the spatial in-
formation. The transposed convolutions increase the spatial resolution, and the features 
of the corresponding layer in the encoder are concatenated during the up-sampling pro-
cess. The cervical cell segmentation model is shown in Fig. 3.  

 
 
 
 
 

 

 
 
 
 
 
 

 
 
 

 
Fig. 3 The cervical cell segmentation model 
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In this U-Net architecture, there are two convolutional layers in each block: the first 
one includes a 3 x 3 convolutional layer, batch normalization, and a ReLU activation 
function. The second consists of a 3x3 convolutional layer, batch normalization, a 
ReLU activation function, and spatial dropout. For down-sampling and up-sampling, a 
filter size of 2x2 is used. In addition, a sigmoid activation function is applied in the last 
layer. These pretrained models serve as the backbone of the U-Net. The VGG 19 archi-

tecture comprises 16 convolutional layers and 3 fully connected layers, totaling 19 lay-
ers to learn weights [15]. ResNet50 can achieve a very deep network of up to 152 layers 
by inserting a skip connection, to pass the input from the previous layer to the next layer 
without altering it [16]. MobileNet is an architecture designed for mobile devices that 
combines efficient computation and separable convolution in depth [17] with a depth 
layer of 28 [18]. EfficientNet is a scaling method that uniformly scales all depth, reso-

lution, and breadth parameters using a compound coefficient. EfficientNet substantially 
outperforms other convolutional networks in various tasks [19]. The baseline network, 
EfficientNetB0, has a subsequent network until EfficientNetB7 and EfficientNetB2 is 
one of these networks. DenseNet is a CNN architecture of 121 layers and is used to 
improve the information flow by connecting each layer to the other layer behind it. As 
a result, the decision is based on all layers rather than just the final layer [20]. Finally, 

we tested the performance of the model, which can be used to predict entire image 
masks and obtain relevant information about the images. This can be helpful for medi-
cal professionals who diagnose diseases and make decisions.  

3 Results and Discussion  

In this study, we segmented the pixels of the images into cytoplasm, nuclei, and back-
ground. Data were divided into training, validation, and testing sets. The U-Net-shaped 
structure served as the base model, and VGG19, ResNet50, MobileNet, EfficientNetB2, 

and DenseNet121 were used as backbones to segment the images. The backbones are 
typically used to extract the features. Accuracy, sensitivity, precision, IoU, and dice 
coefficient were used to evaluate performance and compare different models. Table 1 
presents a comparison of the performance of cytoplasm segmentation using various 
approaches.   

 

Table 1 Results of cytoplasmic segmentation 

Methods   Accuracy  Sensitivity   Precision  IoU  Dice coef 

U-Net  97.03 78.6 93.01 97.03 84.77 
U-Net +Vgg19  98.64 93.91 92.83 97.9 80.53 

U-Net +Resnet50 97.43 82.66 97.28 97.89 87.81 

U-Net +MobileNet  97.67 79.75 96.61 97.18 78.52 
U-Net +EfficientNetB2 98.10 83.36 99.02 97.98 88.93 
U-Net +Densenet121 98.59 91.68 94.56 98.48 87.5 

 

In Table 1, U-Net itself is used as the original network and serves as a backbone for the 
other pretrained architectures to segment the image. U-Net, as a base model, achieves 
better performance in the cervical cell segmentation task using EfficientNetB2 as the 
backbone, with a precision value of 99.02% and an accuracy of 98.59% in 
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DenseNet121. The result of the segmented nuclei is shown in Table 2. In nuclei seg-
mentation, both EficientNetB2 and ResNet50 produced impressive results with accura-
cies of 99.86% and 99.85%, respectively. The U-Net architecture, with pretrained mod-
els, was employed to extract crucial features related to cervical cancer. U-Net was used 
to segment the Pap smear images, with the aim of identifying specific areas within cer-

vical cells such as the cytoplasm and nuclei. 

Table 2 Nuclei segmentation result 

Methods   Accuracy  Sensitivity   Precision  IoU  Dice coef 

U-Net  99.25 80.01 95.10 99.50 84.95 

U-Net +Vgg19  99.69  86.23 99.76 99.60 84.25 
U-Net +Resnet50 99.85 92.07 95.72 99.77 87.20 

U-Net +MobileNet  99.78 91.63 95.17 99.71 90.34 
U-Net +EfficientNetB2 99.86 97.75 98.13 99.80 89.33 

U-Net +Densenet121 99.82 87.51 98.66 99.76 88.09 

 

The ground truth (actual mask) comprises three components of pixels: the background, 

the cytoplasm, and the nucleus. Fig. 4 shows the results obtained from various classes 
of segmentation of the test set.   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 4 Results of the test set in order of original image, actual mask, predicted mask, overlay on 

predicted cytoplasm/nuclei, and segmented cytoplasm/nuclei 
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The first two rows are the resulting cytoplasm, whereas the third is for the nuclei seg-
mentation. The first column displays images of cervical cells. The second column pre-
sents the actual masks for the cytoplasm and nuclei, while the third column displays the 
model’s prediction for the cytoplasm and nuclei. In the fourth column, overlays are 
applied to the predicted outputs, and the fifth column shows the segmented output of 
the cytoplasm and nuclei, respectively. The predicted column closely resembles the 

actual images, indicating that the model correctly separated the cytoplasm and nuclei 
from the background images and removed unwanted information. These results aid 
medical experts in identifying abnormal cells from normal ones. To fine-tune the hy-
perparameters, we explored different epoch values, and 100 epochs consistently pro-
duced superior outcomes. 

4 Conclusions 

In this study, we used the U-Net shaped structure with transfer learning algorithms as 

a backbone for accurate segmentation of cells in Pap smear images to detect cervical 
cancer in the early stages. Deep learning-based methods require large amounts of data 
for effective training; however, in medical imaging there is a lack of data that may 
impact the model's performance. When the number of images is small, transfer learning 
algorithms are effective in improving model performance. This involves transferring 
weights from a pretrained model to a specific task. We evaluated U-Net as a baseline 

with EfficientNetB2, which yields an accuracy of 99.02% and 99.86% for the cyto-
plasm and nuclei, respectively. Furthermore, DenseNet121 is the basis for this new da-
taset, achieving a precision value of 99.02% and an accuracy value of 98.85% in Res-
net50. These results are promising for segmenting cervical cells to identify the cyto-
plasm and nuclei of the background. The result of this study is helpful for radiologists 
in making decisions in the cervical screening system.   
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