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Abstract. Chronic Kidney Disease (CKD) is a common disease with
high incidence and high risk for the patients’ health when it degrades
to its most advanced stages. When detected early, it is possible to slow
down the progression of the disease, leading to an increased survival rate
and lighter treatment. As a consequence, many prediction models have
emerged for the prediction of CKD. However, few of them manage to
efficiently predict the onset of the disease months to years prior. In this
paper, we propose an artificial neural network combining the strengths of
convolution and involution layers in order to predict the degradation of
CKD to its later stages, based on a set of 25 common laboratory analyses
as well as the age and gender of the patient. Using a dataset from a
French medical laboratory containing more than 400 000 patients, we
show that our model achieves better performance than state-of-the-art
models, with a recall of 83%, F1-score of 76%, and 97% overall accuracy.
The proposed method is flexible and easily applicable to other diseases,
offering encouraging perspectives in the field of early disease prediction,
as well as the use of involution layers for deep learning with time series.

Keywords: Machine Learning - Chronic Kidney Disease - Disease pre-
diction - Data processing - Big Data Analytics - Artificial Neural Net-
works - Convolutional Neural Networks - Involutional Neural Networks

1 Introduction

Chronic Kidney Disease (CKD) is a long-term condition corresponding to a
malfunction of the kidneys. The kidneys play a crucial role in filtering waste
products and excess fluids from the blood to form urine. In CKD, the kidneys
gradually lose their ability to function effectively over time. This can cause a
wide range of complications, such as anemia or an increased risk of cardiovascular
diseases. In the most severe cases, CKD can lead to kidney failure, making heavy
treatments such as dialysis or kidney transplantation necessary.

When detected early, it is generally possible to slow down the progression of
the disease with lifestyle changes and medication. While it is normal for kidney
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function to decrease with age, certain patients can experience an accelerated
degradation and quickly evolve to advanced stages of the disease. Therefore,
those patients are likely to not be properly monitored and risk more severe
health consequences.

However, it is difficult to predict the speed at which one’s renal function
might decrease. There lies the crux of the challenge : using seemingly-normal
biological data to predict an abnormal evolution of the patients’ renal function.
Risk factor calculations exist, such as the Kidney Failure Risk Equation (KFRE)
[26]. However, establishing the formulae for these calculations can be difficult,
and depends on the targeted population. In that regard, an alternative based
on machine learning could be beneficial, as they can easily be retrained on new
data. In particular, this would allow every medical laboratory to maintain their
own model, catered to their own patient base.

In this paper, we propose a neural network model based on convolution and
involution layers for the early prediction of a degradation in kidney function,
thus helping with the monitoring of CKD for patients at risk. Our model is
based solely on common laboratory tests, and its predictions could therefore be
integrated seamlessly into a biological report, without requiring any additional
information on the patient.

2 Related work

Disease prediction and detection has received a lot of attention in the literature,
especially in recent years. The type of data and the techniques used to analyze it
depend on the disease that is studied. Diabetes, for example, has been extensively
researched, both for risk prognosis [16,28] and blood glucose prediction [17].
Other diseases, such as Alzheimer’s disease [1, 8] or colorectal cancer [12] have
been studied in a similar manner with various types of data: not only laboratory
tests, but also imaging, and even environmental and lifestyle data [4].

In addition to ”classic” machine learning approaches, such as tree-based
methods, support vector machines, or artificial neural networks, other meth-
ods such as survival analysis [21,22,29] and knowledge-based approaches [19,
27] have been used to establish prediction or risk-stratification models, as well
as discovering semantic relationships in medical data.

Chronic Kidney Disease (CKD) in particular is one of the conditions that
has received the most attention in the literature, because of its high incidence.
Machine learning tasks often focus on the detection of CKD using Electronic
Health Records (EHRs) and laboratory results like creatinine or eGFR (es-
timated Glomerular Filtration Rate) [11,23], using various methods such as
Support Vector Machine, Random Forest, XGBoost, Logistic Regression, Neu-
ral networks, AdaBoost, etc. These models usually achieve very good accuracy
(sometimes over 99%), but it could be argued that this classification task is easy,
because CKD itself is diagnosed using eGFR (refer to Section 3.1 for a more de-
tailed explanation). In other words, if eGFR is part of the learning features, the
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use of machine learning for the diagnosis of CKD at one point in time can be
questionable.

In order to prevent complications in CKD, it is much more interesting to
be able to predict the onset or the progression of the disease months or years
in advance. A lot less research can be found in the literature on the subject.
Bernardini et al. [3] propose a semi supervised learning for short term prediction
of ckd stage using 2.5 years of history, but is quite restrictive on the patients that
the model can apply to, since all fields must have been observed in the patients’
history. Zhao et al. [30] use a combination of genetic and non genetic features to
study risk factors in CKD for patients with a 5-year followup, but their dataset
contains only a small sample of patients with similar characteristics. Chuah et
al. [6] predict the progression of patients to end-stage CKD within 2 years and
compare their results against those obtained by clinicians. While they obtain,
93.9% global accuracy, they have a high false negative rate leading to 60% recall.
Finally, Razavian et al. [24] propose a prediction model for 133 diseases, including
end-stage CKD, based on a set of 18 common laboratory tests. Using ensemble
algorithms based on convolutional neural networks (CNN) and long short-term
memory networks (LSTM), they manage to predict the onset of these conditions
up to 15 months prior. They obtain 92% AUC for end-stage CKD, but do not
present other performance metrics. Besides, if their model shows good AUC on
certain diseases, simultaneously predicting such a high number of diseases leads
to poorer performance on many of them.

While recurrent networks (such as Gated Recurrent Units [7] or Long Short-
Term Memory networks [9]) have been shown to provide good results for time
series classification, including in the domain of disease prediction [24], we would
like to explore the use of new types of layers and their ability to efficiently
extract meaningful features in a patient’s biological history. In particular, to the
best of our knowledge, no works in the literature use involution layers [14] to
perform disease prediction based on biomarkers. This type of layer, designed as
an ”inversion” of convolutional layers, has given good results in the literature on
other tasks, in particular for image recognition. However, just like CNNs, they
can be used to perform predictions using time series. Liang et al. [15] even show
that combining involution and convolution can provide better results than using
one or the other separately.

In this paper, our focus will be the prediction of the progression of CKD
using a model combining convolutional and involutional layers. In a population
of more than 400 000 patients, we will detect those who move to a critical stage
of the disease within the next year.

Our contribution is as follows:

— We propose a combined convolutional and involutional neural network model
to perform the early prediction of the progression of CKD. Involutional net-
works in particular have not, to the best of our knowledge, been used for
disease prediction in the literature. This type of architecture is novel in this
field, and opens up new perspectives to build neural networks that are bet-
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ter able to capture meaningful features when studying longitudinal biological
data.

— We use a set of features consisting exclusively of the patient’s age and gender,
and 25 commonly-measured laboratory analyses. These markers do not only
include biomarkers related to renal functions, such as eGFR or creatinine,
but also extends to other groups, including the lipid panel and blood counts.
This is an alternative to the most common approach consisting in finding
targeted biomarkers, which is difficult and disease-dependent. Using common
biomarkers makes our framework more flexible and easily applicable than
most in the literature.

— We analyze the performances of our model on a real dataset originating
from a French medical laboratory, with over 400 000 patients. Our model
provides good results despite large amounts of missing data, which matches
real-life use cases. We compare our results with those obtained by state-of-
the-art models, and show that the combination of convolution and involution
provides better results in terms of accuracy, precision and F1l-score, than
either of the networks used individually.

3 Methods

In this section, we will define precisely the machine learning problem we are
trying to solve, before describing in detail the model.

3.1 Problem definition

In this study, our goal is the early prediction (months to years prior) of the pro-
gression of Chronic Kidney Disease (CKD) to an advanced stage of the disease.

In order to classify the gravity of this disease, physicians use the estimated
Glomerular Filtration Rate (eGFR), which quantifies the filtering capacity of
the kidneys. It is expressed in mL/min/1.73m? and computed with the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI) equation [13]:

eGFR = 141 x min(g, 1) x max(g, 1)71209 % 0.99349¢ (1)

K K
In the above equation, x = 0.9 for males and x = 0.7 for females, a = —0.411
for males and o = —0.329 for females, and Cr is the level of serum creatinine

expressed in pmol/L.

Following the guidelines provided by the Kidney Disease - Improving Global
Outcomes (KDIGO) organization in their 2022 clinical practice guidelines for
diabetes management in CKD [25], we consider the five following stages of CKD:

— Stage 1 (normal or high kidney function): eGFR > 90 mL / min / 1.73 m?

— Stage 2 (mildly decreased kidney function): 60 < eGFR < 90 mL / min /
1.73 m?

— Stage 3 (mildly to moderately decreased kidney function): 30 < eGFR <
60 mL / min / 1.73 m?
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— Stage 4 (severely decreased kidney function): 15 < eGFR < 30 mL / min
/1.73 m?
— Stage 5 (kidney failure): eGFR < 15 mL / min / 1.73 m?

In the above classification, stage 1 corresponds to the lowest stage of pro-
gression of the disease, while stage 5 corresponds to end-stage CKD and usually
either requires dialysis or kidney transplant for the patient. Stages 2 and 3 are
intermediate stages: while stage 2 is almost never concerning, stage 3 can some-
times indicate a more severely decreased kidney function depending on other
parameters, such as age or albuminuria levels.

In this study, we will consider stages 4 and 5 to be the "positive” cases. This
differs from other works in the literature, where only kidney failure (stage 5) is
predicted [2, 23]. Indeed, from a medical point of view, it is interesting to predict
earlier stages of the disease to start monitoring and treating the patient [25].

3.2 Model

With these stages established, we can define the machine learning task as follows:
we select a cohort of patients, and try to determine whether they will progress
to stage 4 or 5 during a certain prediction window, using a set of laboratory
analyses (biomarkers) over time. We are thus treating a binary classification
problem.

The difficulty of modeling the patients’ history is that there is variability for
both dimensions of the input: the length of the patients’ history can vary because
they do not necessarily have the same amount of records, and the analyses they
take at each given point in time can also vary. To address this issue, similarly
to the works of Razavian et al. [24], we use a sliding window framework: each
patient has a variable-length, continuously-valued history of laboratory analyses
X. For each of those matrices, at each time point ¢, we select the B months
before t to form the input X;_p.;. Data is marked as missing for the months
where no analyses were taken.

We then look at the value of eGFR in a prediction window P after a ”gap”
G in order to label the input matrix. The gap ensures that clinical tests realized
just before the prediction window are not used by the model and guarantees an
7early” prediction. Data is labeled using the different stages defined in Section
3.1. For a label to be attributed, two measurements separated by at least 90 days
must be observed within one of the stages’ ranges. This precaution, recommended
by KDIGO2022 [25], ensures that the renal disease is indeed chronic, and not
the result of a temporary phenomenon. It also helps reduce noise in the dataset.

In Fig. 1, we show an example. Each square on the timeline represents a
month, and the white square corresponds to the observation date t. The param-
eters in this example are B = 6, G = 2 and P = 5. This means that using six
months of biological history (in light blue), the model would predict whether
this patient reaches stage 4 or stage 5 CKD within a 5-month prediction window
(in dark blue) after t+ G. The gap (in dark grey) is arbitrarily set to two months
in this illustration. While it is theoretically possible to set any value for B, G
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and P, all the results in this article were obtained with the parameters listed in

4.1.

Observation date t

INNEEEEEER 2 BEN

: :

*

Backwards window B Gap G

Prediction window P

Fig. 1: Time model of the patients’ biological history

3.3 Cohort selection

Fig. 2 shows our patient selection process.

Out of 888 961 patients with at

least one eGFR measurement in our dataset, we select those who have at least
three eGFR measurements, since our approach relies on studying the history of
biomarkers. For each of the 468 933 patients we have left, we are able to create
several matrices using the sliding window framework described in section 3.2.
Each matrix is labeled using the criteria defined in 3.1. We recall that stages 4
and 5 constitute the positive case (labeled 1).

888 961 patients with at least 1 eGFR measurement

| At least 3 eGFR measurements

. NOT STUDIED

yes

468 933 patients

Y

(Insufficient data)

| Compute and label matrices

12 015 patients

Y
Irregular variations
- -

|

—————— ¢
STAGE 1 STAGE 2 STAGE 3
eGFR 2 90 60 < eGFR< 90 30 < eGFR< 60

440963 738925 375165
matrices matrices matrices

T

59559 16 147
matrices matrices

“NEGATIVE” STAGES

“POSITIVE” STAGES

Fig. 2: Patient selection flowchart
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3.4 Feature engineering

The abundance of missing data is one of the main challenges in dealing with
medical data - especially so with laboratory data, because different patients
are prescribed different analyses (or sets of analyses). However, there are some
biomarkers that are very commonly measured compared to others, and form a
"baseline” of analyses upon which other biomarkers can be added in specific
cases. Targeting these baseline biomarkers is fundamental to our study, since we
aim to detect abnormalities in common laboratory data. As a consequence, we
select all features that are present for a significant amount of patients, in this
case 25%. Out of the 76 available biomarkers available in our dataset, we are
thus left with 25 commonly-measured laboratory analyses, and two demographic
features (age and gender). It is important to note that those markers are not
all traditionally associated with the renal function, as we use for example the
lipid panel and blood counts. This means that our model can be used routinely,
without necessarily suspecting CKD and prescribing specific tests for it, which
is a strong advantage in the context of disease screening.

The full list of features is provided in Table 1. Preliminary analyses have
shown that the results given with this subset of analyses are equivalent to those
obtained using all biomarkers, and are being computed faster thanks to the
reduced dimensionality.

3.5 Pre-processing

Management of missing data By using a set of common biomarkers, we
have already limited the amount of missing data. However, due to the way we
create matrices as presented in Section 3.2, there remains a lot of gaps in the
matrices, because biomarkers are almost never measured every month. As a
consequence, we need a strategy for the management of this missing data. We
impute missing values for a feature based on the mean value for that column
within the patient’s history. We decide not to compute the mean based on the
whole dataset, so that the imputed values remain close to the patient’s, therefore
being more meaningful.

Management of class imbalance The classes we have defined are heavily
imbalanced in the dataset, since patients at stages 4 and 5 a minority in the
dataset (as seen in Fig. 2). As such, positive samples represent about 5% of the
total number of samples.

Several strategies have been employed in the literature to deal with class
imbalance, such as over-sampling the minority class, under-sampling the ma-
jority class, Synthetic Minority Over-sampling Technique (SMOTE) [5] and its
variants, or the definition of imbalance-aware cost functions such as Balanced
Binary Cross-Entropy (BBCE) [18].

In order to avoid discarding the majority of the dataset, we decide to use an
oversampling technique to address class imbalance. In particular, we use random
oversampling, which provides the best results in our preliminary tests.
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3.6 Machine learning model

Neural network model Convolution layers are popular in artificial neural
networks, notably in the fields of image recognition, image segmentation, and
computer vision. They rely on the learning of filters, or kernels, which are able to
capture abstract patterns in data. When dealing with images, these patterns can
be local edges or textures. However, convolution layers and convolutional neural
networks (CNN) have been shown to also be able to tackle time series, including
in disease prediction [24]. Fig. 3a shows a simple example of convolution, where
a 2x2 kernel was learned by the network and applied to the data. The output is
obtained by convolution product between the data matrix and the kernel, and
represented on the right of the figure.

Involution layers were introduced by Li et al. [14] as an "inversion” of con-
volution, in that they are spatial-specific and channel-agnostic. In particular, it
means that instead of learning a filter and applying it to the entire data ma-
trix, an involution layer learns a unique function that will create different filters
for each element of the matrix (pixels for an image, biomarker values in our
case). This process has a twofold advantage: involutional networks require less
parameters in general, since only one function needs to be learned to generate
the filters; and they are by nature better at capturing local phenomena. Fig. 3b
shows an example of involution. The network learned a kernel generation func-
tion ¢, which is used to generate a 3x3 kernel from the centermost element of
the data matrix. This kernel is then applied to the matrix, which results in the
output depicted on the right.

Liang et al. [15] show that combining the respective strengths of convolution
and involution lead to increased performance on image classification. Similarly,
we decide to create a neural network architecture combining convolution and
involution for the prediction of CKD progression. Both types of layers can be
adapted for use with time series by considering a two-dimensional input, where
each column corresponds to a biomarker, and each row corresponds to a specific
date. In other words, each row represents a biological record for the patient at
a given date.

The architecture of our neural network model is presented in Fig. 4. We
use a convolutional layer with twelve 1x3 kernels. ReLU activation is used for
non-linearity, and followed by a batch normalization layer [10]. After this, we
append two blocks constituted of an involution layer with 3x3 kernels and ReLU
activation, and a MaxPooling layer. The output of that layer is flattened and
fully connected to 64 neural units, before the output layer provides the binary
prediction. Binary cross-entropy is used to compute the loss, and the whole
model is implemented using the Keras Python library. Hyperparameters have
been fine-tuned by using a sample of the data.

In order to evaluate the performance of this model, which we will call com-
bined model, we define two other models:

— In the first one, we replace each involution block by another convolution
block, similar to the one defined above (convolution layer, batchnorm and
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(b) Involution

Fig. 3: Schematic illustrations for convolution and involution

ReLU activation). This model will be referred to as the convolution-only

network.

— In the second one, we remove the convolution block, leaving only the involu-
tion blocks. This model will be referred to as the involution-only network.

e ey
1 1 | .
! Analyses : ] L O )
1 1 Convolution Layer Vi Q N
! , Record #1 I (12 kernels of shape 1x3) | y Q
el O
1 1 Batchnorm + RelU i S
! Record #N ! P O  Binary
v O output
Input Q
Flatten
+ Fully connected
+RelU

Fig.4: Architecture of our neural network

Model evaluation Accuracy, which is defined as the proportion samples clas-
sified correctly, is not enough to assess the performance of a model with high
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class imbalance. If the proportion of samples in the majority class is signifi-
cantly higher than in the minority class, then good accuracy can be achieved by
only predicting the majority class. This must be avoided in real-life applications,
especially when it comes to disease screening.

For this reason, we will also consider other performance metrics that take
into account the quality of prediction on both the majority and minority class:

— Recall (also called sensitivity or true positive rate) measures the proportion
of actual positive samples that are correctly identified by a classifier. It is
computed as TPZ%, where TP is the number of true positives (positive
samples classified correctly) and FN is the number of false negatives (posi-
tive samples classified incorrectly). A high recall is desirable in our context
of disease screening.

— Precision measures the accuracy of the model on positive samples. It is
computed as TPTJF%. A high precision indicates a low number of false posi-
tives, which is generally preferred.

— F1-score is the harmonic mean of sensitivity and precision. As such, it
gives a balanced measure of the classifier’s performance. It is computed as
2}3: e’gﬁfgﬂ”’_ﬁgjﬁ;ﬁ” The Fl-score gives equal weight to precision and recall,
making it a popular metric to study imbalanced datasets.

— Area under ROC curve (AUC). The Receiver Operating Characteristic
curve plots the true positive rate against the false positive rate at differ-
ent classification thresholds. A higher area under this curve indicates better
performance.

4 Results and discussion

4.1 Experimental setup

The experiments were realized on a dataset containing nearly 900 000 patients
that had at least one eGFR measurement in their biological history, which we
use to create our training and test datasets as described in Section 2. The data
was gathered between 2010 and 2022, strictly anonymized at its source and
was hosted on a highly secured server. While the full dataset is not publicly
available, we decide to use it because it contains a large amount of day-to-day
laboratory results, as opposed to hospital data, which may be biased towards
positive cases. Code and anonymized data samples are provided at https://
github.com/CristalOSL/ckd-prediction.

Regarding the technical setup, all treatments are realized on the Windows
10 operating system with an Intel Xeon Gold 6126 CPU (2.60GHz) and 128 GB
RAM. We use Python 3.9 as our programming language. Data is manipulated
with the Dask library (2023.2.0) for parallel computing, and Pandas (1.5.3) for
lighter treatments. Data imbalance is managed using Imbalanced-learn (0.10.1),
and the neural networks are implemented using Keras (2.14.0).

The set of features we have used for this study is detailed in Table 1. For all
biomarkers, we have also provided the associated Logical Observation Identifiers
Names and Codes (LOINC) standardized code [20].
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Table 1: Features used in the study

Feature LOINC
Age -
Gender -
Creatinine 2160-0
Estimated Glomerular Filtration Rate 62238-1
Mean Corpuscular Hemoglobin Concentration 28540-3
Red blood cell distribution width 30385-9
Platelets in plasma 26516-5
Leukocytes 26464-8
Hemoglobin 718-7
Neutrophils 30448-5
Lymphocytes 26474-7
Monocytes 26484-6
Hematocrit 20570-8
Erythrocytes 26453-1
Mean Corpuscular Hemoglobin 28539-5
Mean Corpuscular Volume 30428-7
Cholesterol 2093-3
Triglyceride 2571-8
Cholesterol in HDL 2085-9
Cholesterol non HDL 43396-1
Glucose 2345-7
Potassium 2823-3
Alanine aminotransferase 1742-6
Aspartate aminotransferase 1920-8
Sodium 2951-2
Chloride 2075-0
Prostate Specific Antigen 2857-1

In the following simulations, the model described in 3.2 is parameterized as
follows: we use a backwards window of B = 12, a prediction window of P = 12
and a gap of G = 3. In other words, we perform the prediction of the evolution
of CKD towards stage 4 or 5 within the year after a three-month gap, using a
year of biological history.

4.2 Experimental results

The first part of Table 2 shows the results obtained in our prediction task,
comparing the three models described in 3.6: the involution-only model, the
convolution-only model, and the model combining both convolution and invo-
lution layers. The performance metrics are those that were presented in 3.6:
accuracy (Acc.), area under ROC curve (AUC), precision (Prec.), recall (Rec.)
and Fl-score (F1). A threshold of 0.5 was used to compute the latter. In order
to compare these results with those obtained in the literature, the lower part
of Table 2 displays these performance metrics for different models. Unavailable
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figures are indicated by a dash. Since all models do not perform the exact same
prediction task, the ”Positive” column indicates which stages are considered to
be the positive samples for each individual model. Besides, all of these stud-
ies have been performed on different datasets, making the comparison difficult.
Because of these differences, Table 2 should be interpreted as an overview of
state-of-the-art models and their respective performance.

Overall, we observe that our models achieve good performance compared to
the literature: we obtain the best overall accuracy, recall and F1-score, as well as
competitive AUC and precision. As explained in 3.6, obtaining a high recall is
particularly important in our context of disease screening, since it indicates that
few positive cases are missed. Our high F1l-score also indicates a good balance
between the detection of positive cases and the accuracy of those predictions.

If we compare the combined model to the involution- and convolution-only
models, we notice that it achieves the best performance in terms of overall ac-
curacy, precision and fl-score, while remaining comparable in terms of AUC
and recall. Precision in particular is significantly higher, being 20% above the
involution-only model in that regard. We conclude that this combined model
strikes a good balance between the performance metrics (as indicated by the
high Fl-score), and manages to detect most positive cases while keeping a rel-
atively low proportion of false positives. This shows that the combination of
convolution and involution layers is able to better capture patterns within the
patients’ biological history in order to predict the onset of CKD.

Table 2: Experimental results and overview of results obtained for CKD predic-
tion in state-of-the-art models

Model Positive Acc.|AUC|Prec.|Rec.|F1
Involution-only model Stages 4 & 5(0.967|0.911 |0.610 |0.850(0.710
Convolution-only model Stages 4 & 5(0.952(0.908 [0.500 |0.860(0.630
Combined model Stages 4 & 5|0.976|0.905 [0.710 [0.830(0.760
Razavian et al. ensemble model [24] Stage 5 - 0.920 |- - -
Razavian et al. ensemble model [24] Stage 3 - 0.864 |- - -
Chuah et al. XGBoost [6] Stage 5 0.939|- 0.750 [0.600(0.670
Bernardini et al. SS-MTL model [3] Stages 2 to 5|0.746|0.811 [0.657 |0.731|0.665
Zhao et al. logistic regression model [30]|Stage 5 - 0.894 |- 0.827|-

5 Conclusion

In this paper, we have proposed a combined convolutional and involutional neural
network for the prediction of stage 4 and stage 5 CKD a year in advance, using
a year of biological history. Our model includes 25 very commonly-measured
biomarkers, as well as age and gender, thus being adapted for practical use by
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medical laboratories. By testing our model on a large dataset containing labo-
ratory analyses for over 400 000 patients, we have demonstrated that its perfor-
mance was an improvement over state-of-the-art models in terms of accuracy,
recall and Fl-score, and offers more balanced results than models using only
involution or convolution. More generally the use of such networks with time
series should be further explored.

A future avenue of research is the generalization of this model to other dis-
eases, as it only uses common laboratory results and makes no assumptions on
the patients, meaning it could be easily transferable to conditions like diabetes
or even prostate cancer. However, the generalization to other diseases poses new
challenges, such as the selection of an optimal set of analyses allowing for maxi-
mum performance, and the selection of the best model parameters with regards
to the backwards window and prediction window, since different diseases may
evolve at different speeds. One could also explore the use of automated machine
learning to adapt the model’s hyperparameters to the various diseases that would
be studied, and the possibility to perform transfer learning between them.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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