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Abstract. The aim of the research is to assess the applicability of methods of 

artificial intelligence to the analysis and prediction of infectious disease dynam-

ics, with an aim to increase the speed of obtaining predictions along with enhanc-

ing quality of the results. To ensure the compliance of the forecasts with the nat-

ural laws governing the epidemic transmission, we employ Physics-Informed 

Neural Networks (PINN) as our main tool for the forecasting experiments. With 

the help of numerical experiments, we show the applicability of the approach to 

infectious disease modeling based on coupling classic approaches, namely, SIR 

models, and the cutting-edge research related to machine learning techniques. We 

compare the accuracy of different implementations of PINN along with the sta-

tistical models in the task of forecasting COVID incidence in Saint Petersburg, 

thus choosing the best modeling approach for this challenge. The results of the 

research could be incorporated into surveillance systems monitoring the advance 

of COVID and influenza incidence in Russian cities. 

Keywords: Mathematical Epidemiology, SIRD Models, Physics-Informed 

Neural Networks, Forecasting, Python. 

1 Introduction 

Simple mathematical models, such as SIR models, based on differential equations, are 

known from the beginning of XX century and are still in wide use for epidemic outbreak 

prediction, having a great ability to generate easily interpretable results. In fact, a large 

part of the decision-making frameworks developed around the world to analyze and 

combat COVID-19 were based on SIR models (e.g., [1], [2]). However, they are often 

unable to capture peculiarities of disease dynamics related to stochastic effects, as well 

as to consider the uncertainty in input data. The differential model output is 100% de-

termined by the values of the input parameters and is represented by a smooth incidence 

curve, although the real incidence usually has fluctuations around the trend. Also, de-

spite the fact that SIR models belong to the simplest explanatory models available for 

simulating disease dynamics, they still require implementation of the calibration algo-

rithm and might suffer from the local optima problem, giving incoherent results. In this 

aspect SIR models are more complicated to handle than the statistical models, - espe-

cially to the domain specialists not directly connected with modeling and differential 
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equations, - so they are far from being “out-of-the-box” solution for decision making 

in epidemiology. At the same time, the statistical approaches, although suitable for 

long-term forecasting of seasonal illnesses [3], are hardly applicable for predicting 

peaks and outbreak longevity because of the complicated physical laws governing out-

break incidence dynamics.  

To provide a more effective prediction tool which is also easy to use, machine learn-

ing approaches can be employed [4]. While more sophisticated and often more accurate 

than simple statistical models, they also have their disadvantages. Particularly, LSTM 

networks which are commonly used for forecasting purposes in mathematical epidemi-

ology [5], [6], require massive datasets for training, which are often not available, es-

pecially in cases of infections caused by novel or mutated viruses.  

One of the ways to overcome the problem of the ML-based predictors, which do not 

“know” the laws of incidence dynamics due to scarce amount of training data, is essen-

tially to feed them those laws directly, thus obtaining a hybrid approach incorporating 

ML techniques and SIR-type models. Thus, there exists an opportunity of enhancing 

the quality of cutting-edge methods with the help of age-old [7] differential equations. 

The corresponding approach is called PINN (physics-informed neural networks) [8]. 

Although PINNs have already received appreciation in the domains like physics, their 

application to epidemiological problems is still not widespread. In most of the corre-

sponding papers known to the authors, PINNs are used to predict cumulative dynamics 

of epidemics in big territories, of the scale of separate countries, thus the regarded in-

cidence time series are rather smooth and could be easily handled by neural networks. 

The efficiency of PINN applied to noisy city-level incidence data is yet to be assessed. 

In this research, we use PINN for the aim of predicting COVID-19 incidence in Saint 

Petersburg and comparing its efficiency depending on modifications of PINN. The re-

search question addressed is whether PINN can be considered an efficient “out-of-the-

box” solution for the problem of disease forecasting. The answer on that question will 

clarify whether PINN can become a core component of decision-making frameworks 

used by domain specialists and policy makers to plan control measures on the city level. 

2 Methods 

2.1 SIRD Model 

The SIRD model is one of the primary models for studying and modeling the spread of 

epidemics. It is based on a simpler SIR model [7] but includes an additional category, 

thus dividing the population into four categories: Susceptible (S), Infected (I), Recov-

ered (R), and Dead individuals (D). In this system, each class of individuals is assigned 

to a specific compartment, and transitions between compartments represent the move-

ment of individuals between different states. When “Susceptibles” (S) come into con-

tact with infected individuals, they can also become infected and transition to the “In-

fected” category (I). “Infected” individuals (I) either recover and are moved to the “Re-

covered” category (R) or, they may die and move to the Dead category (D). All the 

rates, i.e. of infection transmission α, of recovery β, and of mortality γ, are considered 

constant. We assume that individuals who recover from the virus gain complete 

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63772-8_23

https://dx.doi.org/10.1007/978-3-031-63772-8_23
https://dx.doi.org/10.1007/978-3-031-63772-8_23


 Future Helps The Past 3 

immunity against future infection, so our model is limited to the simulation of a single 

COVID-19 wave. The total population N = S+I+R+D is considered to be constant. The 

corresponding differential equations have the following form: 
𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼,  

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 −  𝛿𝐼, 

𝑑𝑅

𝑑𝑡
=  𝛾𝐼, 

𝑑𝐷

𝑑𝑡
=  𝛿𝐼. 

 

2.2 Physics-Informed Neural Network 

Physics-informed neural networks (PINNs) are specialized neural networks designed 

for addressing supervised learning tasks while incorporating the principles of physics, 

especially those associated with intricate nonlinear partial differential equations and 

ordinary-differential-equations (ODEs) [8]. Models based on PINNs adhere to physical 

laws by incorporating a loss function that includes the residuals from physics equations 

and boundary conditions. These models utilize automatic differentiation to compute the 

derivatives of the neural network output concerning its inputs (spatial and temporal 

coordinates, and model parameters) [9]. By reducing the loss function, the network can 

accurately approximate solutions [10], [11]. By leveraging these differential equations, 

PINNs enhance the learning process, enabling the algorithm to converge toward the 

correct solution, even when the available training data is limited. 

In a specific application, PINNs were utilized for data approximation and the iden-

tification of unknown paramters of the SIRD model. Following an in-depth analysis of 

the system, the model can calculate the coefficients within the system of differential 

equations within a predetermined range, facilitating interpretation of the results [12]. 

Typically, a PINN architecture consists of multiple fully connected layers with nu-

merous neurons and incorporates non-linear activation functions between them. The 

input for a PINN comprises batches of time steps, while the output represents tensors 

that convey the network's estimations of the compartments within the SIRD model at 

each time step [13]. These estimations are constrained by the conditions derived from 

the SIRD system: 

𝑓1 =  
𝑑𝑆

𝑑𝑡
− (−𝛽𝑆𝐼), 𝑓2 =  

𝑑𝐼

𝑑𝑡
− (𝛽𝑆𝐼 − 𝛾𝐼 − 𝛿𝐼), 𝑓3 =

𝑑𝑅

𝑑𝑡
−  𝛾𝐼, 𝑓4 =

𝑑𝐷

𝑑𝑡
− 𝛿𝐼. 

Per training iteration, we compute the usual data error defined as  

𝑙𝑜𝑠𝑠𝑈 = 𝑚𝑒𝑎𝑛(𝑆 − 𝑆′)2 +  𝑚𝑒𝑎𝑛(𝐼 − 𝐼′)2 +  𝑚𝑒𝑎𝑛(𝑅 − 𝑅′)2 + 𝑚𝑒𝑎𝑛(𝐷 − 𝐷′)2 

Here, X is the actual data that the model was provided, X' is the prediction the model 

computed. We obtain the physics-informed part of the loss function, the residual error, 

per training iteration as 𝑙𝑜𝑠𝑠𝐹 = 𝑚𝑒𝑎𝑛(𝑓1)2 + 𝑚𝑒𝑎𝑛(𝑓2)2 + 𝑚𝑒𝑎𝑛(𝑓3)2 +
𝑚𝑒𝑎𝑛(𝑓4)2. The neural network's parameters can be acquired through the process of 

minimizing the mean squared error loss. This loss function incorporates a weighting 

factor denoted as μ, which falls within the range of μ ϵ [0,1] and helps balance the 

importance of accurately reproducing the data and conforming to the differential equa-

tions: 𝑙𝑜𝑠𝑠 =  𝜇𝑙𝑜𝑠𝑠𝑈 + (1 − 𝜇)𝑙𝑜𝑠𝑠𝐹 . 

 

2.3 Data 

In our research, we work with daily incidence cases and cumulative incidence data cov-

ering a period of 359 days from July 5, 2020, to June 28, 2021 [14]. To enhance the 

computational speed, we reduced the dataset using every tenth record of current and 
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cumulative incidence. Although our experiments concentrated exclusively on one par-

ticular epidemic season, the PINN described here can be easily adapted for the diverse 

epidemic seasons. 

3 Results 

3.1 Forecasting of post-peak incidence 

The prediction quality of the models was evaluated based on the root mean square error 

(RMSE), which measures the average squared difference between the predicted and 

actual values. We examined various architectures of our fully connected neural net-

work, which forms the basis of PINNs calibrated to two types of input data: daily reg-

istered cases and cumulative incidence data (Fig 1). After the first layer, the activation 

function was Rectified Linear Unit (ReLU) in both cases. We established that for cu-

mulative data, it is more advantageous to consider ReLU as the activation function, 

whereas for daily registered cases the hyperbolic tangent (tanh) is more suitable. We 

also compared our results with ARIMA predictions, with parameters (2,2,3). 

 

  

  

Fig. 1. Upper row: PINN’s (tanh) prediction of incidence (left) and cumulative infected (right). 

Lower row: PINN’s (ReLU) prediction of incidence (left) and cumulative infected (right). 

It is worth noting that the resulting incidence forecast made by ARIMA outperforms 

both versions of PINN: namely, RMSE for the prediction by ARIMA is 2541.22, 

whereas RMSE for PINN (ReLU)  is 15786.79 and RMSE for PINN (tanh) is 6516.33. 

Also, one can notice that the incomplete data for the experiments were taken in such a 

way that the peak incidence was included in the dataset, i.e., we predicted the second 

half-wave of declining incidence. It is obvious that the ARIMA forecasting made on 

incomplete data before the peak will be unable to replicate the falling of incidence and 

will show a growth to infinity instead. At the same time, our experiments showed that 
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in such conditions PINNs behave in similar fashion, despite the laws of disease inci-

dence incorporated into the loss function. In fact, the form of the prediction curve in 

PINN rather replicates the activation function than the typical incidence curve. Since 

predicting the peak incidence and the day of maximal number of the infected is of cru-

cial importance for healthcare specialists, the next series of experiments were dedicated 

to the modification of PINN algorithm to make it useful for peak forecasting.  

 

3.2 Peak prediction 

Let us consider the case when we impose an additional condition at the boundary by 

explicitly assuming a particular duration of the outbreak t*, i.e. the value of modeled 

incidence which corresponds to t* should be close to zero. Since, we don't have suffi-

cient historical data to derive the typical epidemic duration (in case of COVID-19), or, 

alternatively, the variation in this value is rather big (in case of seasonal influenza), we 

iterated the value of the desired epidemic duration over a certain range and assessed the 

forecasting error in each of the iterations. The modified formula for the loss function is 

𝑙𝑜𝑠𝑠 =  𝜇𝑙𝑜𝑠𝑠𝑈 + (1 − 𝜇)𝑙𝑜𝑠𝑠𝐹 + 𝑙𝑜𝑠𝑠𝑇 ,   where 𝑙𝑜𝑠𝑠𝑇 is the additional boundary con-

dition. Using the synthetic dataset, we compared the performance of PINNs depending 

on presence or absence of the boundary condition in the loss function. The inclusion of 

the additional boundary condition greatly enhanced the prediction quality. As a result, 

we use this modified error function for addressing prediction tasks on actual data, which 

we do below, assuming that 160 initial incidence points are used for training. We con-

sidered a range of values from 260 to 380 to search for peak predictions. We selected 

several durations for consideration (Fig. 2, left), for which we executed 10 iterations of 

the PINN with different initial seeds to account for the output variation due to the sto-

chasticity of the algorithm. This allowed us to generate a total of 10 peak predictions 

for each hypothetical length of the epidemic waves. The training process was being 

halted once the error function fell below a predetermined threshold of 0.0001. The ac-

curacy of fitting to the known incidence points (calibration error) and the difference 

between the expected and the actual incidence trajectory (prediction error) are given in 

Table 1. We show the quality of the peak prediction made according to these trajectories 

in Fig. 2, right. The maximal incidence reached during an outbreak and the day of its 

occurrence is a crucial epidemic indicator for the healthcare specialists, since it largely 

defines the maximal workload of the healthcare system in terms of the resources spent 

and hospital beds allocated. The points on the graph represent the prediction bias for 

the peak day (dt) and the ratio between the modeled and actual outbreak peak heights 

(dh). The ideal peak prediction scenario corresponds to the intersection of dt = 0 (ver-

tical dashed line) and dh = 1 (horizontal dashed line). 

 

Table 1. Median RMSE depending on the assumed outbreak duration 

t*, days 260 280 310 330 360 380 

Calibration 565.9 392.9 527.2 349.2 457.0 437.9 

Prediction 26186 20073 13651 12153 20123 18961 
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Fig. 2. Left: PINN’s prediction represented by a color-coded gradient illustrating possible sce-

narios for each sample value across ten iterations. Right: Biases of the peak prediction for the 

daily incidence data depending on the assumed wavelength 

In the ideal case, we would expect from calibration error (Table 1) to be convex as 

a function of assumed disease duration, and, moreover, to have the local minimum at 

the same value of outbreak duration t* as the function of predicted error, with both 

giving us the duration of the real outbreak (approx. 360 days). This result could be 

indeed reached on synthetic data generated by SIRD model, with the smooth and con-

cave incidence curve, however, it is not the case for the real outbreak. As we can see 

from the tables, values of median RMSE fluctuate with changing t*. The optimal values 

of RMSE are reached for t*=330 and this value also delivers us the optimal forecast 

quality, but it is not equal to 360. As it is demonstrated in Fig. 2 (right), even for the 

assumed wavelength corresponding to the lowest median RMSE (t*=330, marked with 

orange dots) the bias both in peak height and peak day might be dramatic, depending 

on the simulation run. Also, it is interesting that almost all of the predictions underesti-

mated the peak height. We consider it a peculiarity related to the regarded incidence 

dataset which cannot be attributed to the forecasting method itself. 

4 Discussion 

In this research, we described the modeling techniques for the retrospective analysis 

and forecasting of COVID-19 incidence in Saint Petersburg based on physics-informed 

neural networks. We showed that PINN has several advantages compared with SIR 

models and classical statistical approaches. Apart from SIR models, PINN can repro-

duce variation in incidence data contrary to the smooth forecasting curves provided by 

solving differential equations (which is however not very visible in our graphs due to 

data sampling and big wavelength in general). When used as a part of the forecasting 

framework with data assimilation, PINN calculates consecutive forecasts much faster 

than SIR. In general, PINN does not require complex calibration procedures, like SIR 

models, which is especially beneficial when the data reanalysis is performed on weekly 

basis.  

Compared to standard ML models, PINN can produce an adequate forecast without 

requiring too much data for training. This is essential because the field of epidemiology 

generally does not provide big datasets for training.  
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Apart from simple statistical approaches, like ARIMA, PINN can foresee and thus 

to reproduce a typical form of the disease incidence curve thanks to the physical laws 

incorporated into its loss function. This gives PINN an advantage of accurately predict-

ing the incidence before the peak of the outbreak, which cannot be done using ARIMA 

and similar methods. However, for that purpose PINN requires a modification with 

adding a boundary condition, which was described in detail in the previous section. 

Also, when predicting the disease incidence after reaching the peak, PINN loses its 

benefits and can be easily replaced by ARIMA. 

Adding assumed length of the outbreak into the loss function helped obtain more 

reasonable peak predictions and limit the calibration time by discarding options with 

unreasonable outbreak lengths. At the same time, in small training datasets different 

forecasts with dramatically different assumed wavelengths can demonstrate similar 

RMSE. However, it cannot be considered a problem of the PINN, because it is a known 

issue of forecasting on small incidence data when a plausible forecast could be only 

obtained when approaching the incidence peak [16]. 

Despite being based on ODEs, PINN does not guarantee that the conservation laws 

governing the epidemic will be complied in a model. As an example, in many cases 

PINN shows a negative number of infective persons at the second part of the outbreak 

and thus the trajectory should be artificially cut at zero. This should be taken into ac-

count when using PINN to derive disease indicators different from the predicted inci-

dence (for instance, the number of the recovered individuals). 

PINN cannot deliver plausible parameter values for the ODE on which it is based. 

While this could be true on smooth simulated data, in general case it does not work, as 

our experiments showed. Thus, apart from ODEs, PINN cannot be used to assess the 

disease parameter values. If there is a need to solve this task using ML techniques, there 

are better solutions for that, for instance, NeuroODE [17], since it does not add a sto-

chastic component to the obtained solution. 

The conclusions made during the experiments might be somewhat limited because 

only one wave of COVID-19 was used for testing. In future studies, we plan to gener-

alize the results further by justifying them on additional incidence data. 

To sum up, based on our research, we can conclude that the technique of PINN is 

indeed capable of addressing the challenges which are more often tackled by SIR mod-

els, but it also has its drawbacks, and cannot be named a universal out-of-the-box ap-

proach. The selection of the proper tool for epidemic surveillance largely depends on 

the modeling aim and it is up to the researcher to make an ultimate choice of the most 

suitable technique. 
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