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Abstract. This research investigates how collectives of doctors influence their 

diagnostic method preferences within small-world network social structures 

through participation in diverse types of medical practice-sharing activities 

across different scales. We propose an approach based on vectorization of the 

preferences for various diagnostic methods among physicians, quantifying their 

openness to these methods using the Shannon diversity index. Utilizing theoreti-

cal foundations from threshold models, influence models, and the Hegselmann-

Krause model, we designed simulation experiments for teaching activities and 

seminars to explore the dynamic changes in preference vectors and Shannon di-

versity indices among these doctors in a small-world network. We evaluated our 

approach with a real-world data set on vertigo treatment by several clinical spe-

cialists of different specialty (neurologists, otolaryngologist). Building on real 

data from this initial group, we then simulated data for a large number of doctors 

from various medical communities to examine phenomena in larger-scale sys-

tems. Hierarchical networks featuring small-world properties were developed to 

simulate “local” within-community and “global” across-community seminars, re-

flecting different intra- and inter-community scenarios. The experiments show 

different patterns of practice converging during simulation in various scales and 

scenarios. The findings of this study provide significant insights for further re-

search into practice-based knowledge sharing among healthcare professionals, 

highlighting the nuanced interplay between social network structures and profes-

sional consensus formation. 

Keywords: community behavior, complex networks, practice sharing, complex 

systems, diagnostic method preferences, hierarchical network 

1 Introduction 

Recognizing that competencies are distributed within a healthcare setting (i.e., collec-

tive competence) is vital [1]. The healthcare sector is not only largely distributed and 

fragmented but it also exhibits a high degree of diversity with strong local autonomy [2, 

3]. In the healthcare sector, various medical tasks face diverse, multi-level, large-scale, 
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and complex challenges that are intrinsically linked with the concept of "distributed" 

systems [4, 5]. 

Healthcare is usually considered as highly regulated systems with large number of 

norms such as clinical recommendations, protocols, internal and external hospital rules, 

etc. Still, due to high complexity of disease, multiple decisions are made by doctors in 

accordance to their experience or known “best practices” within certain degree of free-

dom under regulation. Here we consider "practice" as a significant pattern of clinical 

decision making. Such patterns are optimized and refined through continuous dynamic 

interaction, thereby facilitating the sharing and transfer of knowledge between different 

but related tasks [6]. In the healthcare domain, practice specifically includes diagnostic 

practice [7], emergency response practice [7], disease management practice [8], pre-

ventive medical practice [9], and rehabilitation practice [9]. Therefore, it is necessary 

to investigate the process of practice sharing within distributed healthcare environments 

with multiple doctors with different communication channels.  

In medical practice, vertigo is a common symptom but poses diagnostic and treat-

ment challenges due to its diverse etiologies and complex clinical presentations. When 

faced with patients exhibiting symptoms of vertigo, different doctors might make var-

ying clinical decisions even in the face of similar cases. This variability partly stems 

from the lack of unified clinical guidelines and recommendations, and partly from each 

physician's preferences for clinical examination and diagnostic tests. Significant differ-

ences in the adoption rates of specific diagnostic tests by doctors have been observed, 

even for similar symptoms [10, 11]. Some doctors may prefer to use balance tests like 

the Romberg's test, while others might rely more on hearing tests, such as Weber's test. 

Furthermore, for the assessment of vertigo, some physicians might frequently use the 

Headshake test, while others might more commonly employ gait analysis tests and tests 

related to respiratory responses, such as the hypercapnic response. 

Building upon this foundation, our research motivation is to deeply understand how 

groups of physicians influence and shape their diagnostic method preferences through 

the sharing of “practice” within distributed healthcare environments. Our research aims 

to identify the key factors influencing the formation of physicians' diagnostic method 

preferences and to understand how these preferences evolve in a distributed medical 

environment through patterns of practice sharing[12].  

This study not only offers a new perspective for understanding the sharing of “prac-

tice” in medical decision-making but also provides a theoretical foundation for further 

exploration of practice-based knowledge sharing among healthcare professionals. 

Through this research, we aim to offer insights into the mechanisms of knowledge shar-

ing and social interaction in medical decision-making and practice, especially in ad-

dressing diagnostic challenges. We seek to demonstrate how improving knowledge 

sharing and social interactions can enhance the quality and efficiency of medical ser-

vices. 
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2 Modelling practice sharing in complex healthcare 

system 

Here, by “practice” in healthcare we consider patterns in clinical decision making 

which appears multiple times in treatment of similar patients. The most important role 

is played by practices in situation where official regulation (by clinical recommenda-

tions, protocols, etc.) give certain degree of freedom to a doctor, or in situations where 

there is no strict protocols (e.g. in appearance of new disease, or in complex diseases). 

In turn, "practice sharing" refers to the dissemination of medical knowledge and infor-

mation related to practices within a distributed healthcare environment where good 

practices may be shared or recommended by experienced specialists (e.g. explicitly 

during dedicated meetings or implicitly during common information sharing).  

Several studies have touched upon the concept of practice sharing. However, these 

investigations often did not formally define or scientifically model the concept, leaving 

room for more rigorous research and analysis in this area. Prasidh Chhabria et al. [6] 

and Kyunghoon Hur et al. [13] actually explored practice sharing between different 

healthcare tasks. Wei Gong et al. discussed the practice sharing of various smart inten-

sive care units [14]. Corinna Maier et al. discussed the "practice sharing" of continuous 

precise drug dosage use across hospitals or research centers [15] . 

We introduce a constructive modeling approach and process for the nascent field of 

distributed medical practice sharing. Our modeling approach studies physicians, hospi-

tals, and different types of medical sharing events. The model structure is shown in 

Fig.1. 

 

Fig. 1. General approach for modelling of practice sharing 
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2.1 Quantitative Medical Practice 

The content of medical data sets is diverse [2, 16], medical practice information exists 

in datasets in various implicit forms. We suggest mining this information from the per-

spective of medical practice preferences. Specifically, we use medical Practice Prefer-

ence Vectors and Physician Shannon Diversity Index to measure medical practices. 

Given a medical dataset 𝐷 and a binary vector representation for each physician 

 𝑖 based on 𝑋 unique diagnostic items, the real Practice Preference Vector  𝑷𝒊  for phy-

sician 𝑖 is defined as a vector of proportions [𝑝𝑖1, 𝑝𝑖2,…, 𝑝𝑖𝑥  ], where each element 𝑝𝑖𝑗 

represents the proportion of times diagnostic item 𝑗 was employed by physician 𝑖 rela-

tive to their total usage of all 𝑋 diagnostic items. This formulation refines the initial 

binary encoding to quantify the diagnostic preferences of physicians, capturing the rel-

ative frequency of each diagnostic item's use. Formally, 𝑃𝑖  is obtained by: 

                                                       𝑷𝒊 = [
𝑛𝑖1

𝑁𝑖

,
𝑛𝑖2

𝑁𝑖

, … ,
𝑛𝑖𝑋

𝑁𝑖

]                                                   (1) 

Where 𝑛𝑖𝑗  is the number of times physician 𝑖 used diagnostic item 𝑗, 𝑁𝑖  is the total 

number of diagnostic items used by physician 𝑖, 𝑋 is the total number of unique diag-

nostic items in dataset 𝐷. 
Physicians' practice preferences are typically formed based on long-term experience 

and are not prone to significant changes in the short term, making longitudinal analyses 

more relevant and meaningful. The preference for specific practices is distinct from the 

dynamics and adaptability of practices themselves. Short-term analyses or assessments 

at a specific point in time fail to capture meaningful patterns or trends in physicians' 

practice preferences. Therefore, we employ the Shannon diversity index for a macro-

level quantification of physicians' overall preferences for different diagnostic methods 

over extended periods. This approach not only reflects the overall distribution of phy-

sicians' preferences but also effectively reveals the diversity and breadth of diagnostic 

practices on a larger scale. Such a macro-analytical method provides a valuable per-

spective for understanding physicians' diagnostic preferences, aligning well with the 

practical requirements of medical practice data analysis.The physician's Shannon di-

versity index H can be calculated using the following equation: 

                                                         𝐻 = − ∑ 𝑝𝑖

𝑅

𝑖=1
log(𝑝𝑖)                                                  (2) 

Where, 𝑅 is the total number of diagnostic methods,  𝑝𝑖  is the probability of the 𝑖𝑡ℎ di-

agnostic method (i.e., the frequency of use of this method relative to the total number 

of uses). 

2.2 Physician Practice Sharing Activity 

In the actual medical environment, the sharing of practices in their implicit forms 

among physicians is realized through a variety of sharing activities with different types 

and natures. These activities are divided into two main categories: educational activities 

with a presenter and seminars among physicians. The preferences in practices among 

physicians may shift after participating in these different activities. Within our 
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modeling approach, it is essential to simulate both categories of activities to explore 

how these practice-sharing endeavors in their implicit forms affect the quantified infor-

mation on medical practices we have established. We provide original simulation algo-

rithms based on different theoretical models. 

Teaching activities. We employ a hybrid application of Influence Models [17] and 

Threshold Models [18] as the theoretical basis for the implementation of "teaching ac-

tivities." Teaching activities are hosted in rotation by doctors, with the presenting doc-

tor exerting an influence (𝜙) on their "direct neighbors" within the network structure. 

Due to the potential difference in magnitudes between a doctor's Shannon diversity 

index and the total usage of diagnoses by the doctor, we need to balance their impacts. 

We employ min-max normalization: converting the values of diagnostic usage to a 

range between 0 and 1. After normalization, we can calculate the weighted average. 

The influence is calculated using the Weighted Average Method, with the formula as 

follows: 

                                                𝜙 = 𝑤𝑠 × 𝑆𝑠𝑝𝑒𝑎𝑘𝑒𝑟 + 𝑤𝑢 × 𝑈𝑛𝑜𝑟𝑚                                        (3) 

Where, 𝜙 represents the influence of the activity. 𝑆𝑠𝑝𝑒𝑎𝑘𝑒𝑟  is the Shannon diversity in-

dex of the speaker. 𝑈𝑛𝑜𝑟𝑚 is the normalized total usage of diagnoses. 𝑤𝑠 and 𝑤𝑢 are the 

weights assigned to the speaker's Shannon diversity index and the total usage of diag-

noses, respectively. 

 After determining the influence (𝜙), we update the Shannon diversity index for di-

rect neighbors of the speaker doctor, simulating knowledge exchange and adaptation 

dynamics. The update utilizes a linear adjustment, based on the relative Shannon diver-

sity indices (𝑆𝑠𝑝𝑒𝑎𝑘𝑒𝑟and 𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟), encapsulating learning responses. The unified for-

mula for both positive and negative adjustments is: 

      𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟
′ = 𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 + 𝛼 × (sign(𝑆𝑠𝑝𝑒𝑎𝑘𝑒𝑟 − 𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)) × |𝜙 − 𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟|    (4) 

For preference vectors, the update is governed by a linear adjustment towards the 

presenting doctor's preferences, encapsulated as: 

                                                   𝑷𝒏
′ = 𝑷𝒏 + 𝛼 × (𝑷𝒔 − 𝑷𝒏)                                                  (5) 

Where 𝑷𝒏
′  and 𝑷𝒏  represent the updated and current preference vectors of a neighbor 

doctor, respectively, 𝑷𝒔 is the preference vector of the presenting doctor, and 𝛼 is the 

learning rate. This formula ensures that each neighbor's preferences incrementally align 

with those of the presenter, reflecting the adaptative learning process within profes-

sional networks. 

Seminars for Practice sharing. Given the nature of seminars as spaces for professional 

dialogue and learning, the HK model [19] is particularly suitable for simulating these 

events. Based on the HK model, the Shannon index update algorithm is as follows. 

                                    𝑆𝑖
′ =

1

|𝑁𝑖| + 1
× (𝑆𝑖 + ∑ 𝑆𝑗

𝑗∈𝑁𝑖,⌈𝑆𝑗−𝑆𝑖⌉≤𝜏
)                                    (6) 

Where, 𝑆𝑖
′ represents the updated Shannon diversity index of doctor 𝑖.  𝑆𝑖 is the current 

Shannon diversity index of doctor 𝑖.   𝑁𝑖  denotes the set of neighbors of doctor 𝑖 whose 

Shannon indices differ from 𝑆𝑖  by no more than a threshold 𝜏  (opinion acceptance 

threshold). |𝑁𝑖| is the count of such neighbors. 𝜏 is defined as the boundary of the con-

fidence interval, wherein the influence between nodes is considered for adjustment only 
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if the difference in their Shannon diversity indices falls within this range. This implies 

that an individual considers the opinions (or, by analogy, diagnostic practices) of their 

peers to be sufficiently credible or relevant only when the disparity in their Shannon 

diversity indices does not exceed 𝜏. 

 Extending the Hegselmann-Krause model to preference vector updates in seminars 

involves calculating the updated preference vectors 𝑷𝒊
′ of doctors by averaging the pref-

erences of neighbors within a specific Euclidean distance (𝛿), then adjusting towards 

this average with a strength (α). The core update formula simplifies to: 

                                     𝑷𝒊
′ = 𝛼 × (

∑ 𝑝𝑗𝑗∈𝑁𝑖,𝑑(𝑷𝑖,𝑷𝑗)≤𝛿

|𝑁𝑖|
) + (1 − 𝛼) ×  𝑷𝑖                                     (7) 

𝑷𝒊  and 𝑷𝒊
′ are the current and updated preference vectors of doctor 𝑖, 𝑑(𝑷𝑖 , 𝑷𝑗) is the 

Euclidean distance between the preferences of doctors  𝑖 and 𝑗, 𝛿 is the distance thresh-

old for considering neighbors' influences, 𝑁𝑖  is the set of neighbors within 𝛿 of 𝑖, 𝛼 

controls the update intensity, blending the average neighbor preference with 𝑖′𝑠 current 

preference.  

2.3 Distributed medical network structure.  

The doctors in the hospital are a closely connected professional community for com-

munication. Reflecting this real-world characteristic, we adopt the "small-world net-

work" model to simulate the complex communication and influence propagation paths 

among doctors [20]. We construct the small-world network here using three key pa-

rameters: the number of doctors, the rewiring probability , and the mean degree (num-

ber of connections per node).  

 We consider each doctor as a node within the network, with nodes featuring three 

attributes: the doctor's name, practice preference vector, and Shannon diversity index. 

Edges represent the practice-sharing relationships among doctors. Not all doctors have 

actual sharing relations in reality. Thus, we simulate this aspect by adjusting the mean 

degree and the rewiring probability. For instance, a higher mean degree reflects close 

communication and cooperation relationships among doctors within a community. The 

rewiring probability models the opportunities for communication within the commu-

nity, even among doctors who are geographically distant or have slightly different pro-

fessional orientations.  

To visually represent the Shannon diversity index of doctors, we utilize the color of 

the nodes in the network diagram, where the similarity in colors indicates the closeness 

of the Shannon diversity indexes. 

2.4 Simulation 

The purpose of the simulation experiment is to investigate the specific impacts of two 

types of sharing activities on the practices of physicians within hospitals, with a primary 

focus on two aspects. 

1.Simulation Time. Depending on the experimental scenarios, datasets, and re-search 

objectives, it is necessary to set varying simulation durations to capture the dynamics 
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of the system. This may include simulations based on multiple specific time points, 

long-term simulations, and repetitive cyclical simulations.  

2. Simulation Scale.The size and complexity of the simulation must be tailored to 

accommodate the scope of the experimental framework and the granularity of the anal-

ysis desired. This involves determining the number of agents or entities, the extent of 

the networked environment, and the volume of data to be processed. Choices range 

from small-scale simulations focusing on detailed interactions within a confined set-

ting, to large-scale simulations that aim to replicate broader system-wide dynamics 

across multiple interconnected scenarios. 

2.5 Evaluation Analysis Methods 

The final step in the model is the evaluation and analysis of data derived from the 

simulation experiments. The main methods can be divided into 2 categories. 

1. Sensitivity Analysis: Implement global sensitivity analysis, such as the Sobol 

method, to quantitatively assess the impact of varying input parameters on simulation 

outcomes; Utilize parameter sweeps and Monte Carlo simulations to evaluate the ro-

bustness of the model against parameter variations and identify key parameters; Inte-

grate system dynamics models to assess system behavior under parameter changes and 

use this information to optimize the model. 

2. Pattern Recognition: Apply complex network analysis to identify collective be-

haviors and diffusion patterns in medical practice, such as using community detection 

algorithms to discover group structures within practice sharing;Employ time series 

analysis and event detection algorithms to track and recognize the temporal dynamics 

and trends of practice sharing. 

3 Practice sharing in vertigo treatment  

In this section, we conduct a study on diagnostic practice sharing using a dataset from 

a 2016-2020 vertigo clinic in Rostov-on-Don. This exemplifies our practice sharing 

research model, illustrating its application in studying how physician groups shape di-

agnostic preferences through small-world networked activities. 

3.1 Data set and processes 

Vertigo, particularly Benign Paroxysmal Positional Vertigo (BPPV), is a complex con-

dition characterized by a multitude of etiologies and the involvement of various medical 

specialists, including neurologists and otolaryngologists, among others. The diagnosis 

and treatment of vertigo and BPPV involve a range of methods, from specific diagnostic 

tests to repositioning maneuvers, such as the Dix-Hallpike test and Epley maneuver, 

underscoring the multifaceted approach required to manage this condition effectively 

[21]. 

The original data is composed of 10 structured .xlsx files with 40 fixed head-

ers.These headers have five main classes: patient basic information, diagnostic and 
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treatment information, medical history and status records, treatment and recommenda-

tions, and patient background information. Our dataset's mixed-format data was pro-

cessed to abstract "practice" information via tokenization, keyword extraction, and sub-

sequent lemmatization, followed by categorization to compute proportions and formu-

late both practice information data and doctor preference vectors. 

During pre-processing phase, we structure the practice information, which contains 

detailed medical diagnostic information aggregated by unique appointment card num-

bers. Each unique appointment card number represents an individual patient and is as-

sociated with 125 different diagnostic items. For each diagnostic item, the file meticu-

lously records the specific di-agnostic outcomes, provided in text format.  

We use the algorithm in Section 2.1 to obtain the preference vector of each doctor 

under the current data set. The table below, Table 1, describes the structure of the Doc-

tor Preference Vectors.  

Table 1. Structure of the Doctor Preference Vectors 

Doctor Neurologist Total usage Romberg's test Hallpike test 

 

123 items 

remaining 

Doctor A 538 0.3086 0.2472 *** 

 Doctor B. 18024 0.1353 0.1263 *** 

Doctor C 585 0.4154 0.3487 *** 

Doctor D 
1078 0.3878 0.2653 *** 

Omit 6 doctors’ names *** *** *** *** 

 

3.2 Model Identification, Validation, and Sensitivity Analysis Based on 

Actual Data 

First Experiment and parameter sensitivity analysis Based on Actual Data. The 

first experiment was conducted based on additional information provided by the dataset 

creators. From this first experiment, we obtained parameters that fit the dataset infor-

mation. 

From 2016 to 2020, there were nine "teaching activity" events and eight "seminar" 

events conducted. During this period, from 2017 to 2020, each year featured two "teach-

ing activities" and two "seminars," with 2016 hosting only one "teaching activity."  

Initially, we assigned default values to the parameters in Formulas 2 to 6 for simu-

lating 17 events within our model on actual timelines. We algorithmically extracted the 

real preference vectors of ten doctors before December 31st each year and evaluated 

their fit with the simulation by calculating the Euclidean distance to the actual vectors. 

Through parameter sweeps and Monte Carlo simulations, we fine-tuned the simulation 

to closely match the real data, setting  rewiring_prob=0.3, mean_degree=4, 𝛼 =0.05, 

𝑤𝑠=0.5, 𝑤𝑢=0.5, 𝜏 =0.2, and 𝛿 =0.5 after iterative adjustments. 
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With the given parameters, we measured yearly Euclidean distances between simu-

lated and actual preference vectors for 10 doctors, summarizing with average, median, 

and range (max and min) to evaluate our model's accuracy, as Table 2 illustrates. 

Table 2. Preference vector comparison results. 

Year Average Distance Median Distance Max Distance Min Distance 

2016 0.64 0.5 2 0 

2017 1.21 1 2 0 

2018 1.38 1.41 2 1 

2019 0.88 1 2 0 

2020 1.11 1 2.24 0 

 

We compared two preference vectors, each composed of 125 binary values correspond-

ing to 125 diagnostic items. The average value calculated in column 2 of Table 2 is 

0.88, indicating that the annual difference between simulated and actual doctor prefer-

ence vectors is less than one out of 125 items. In other words, the preference changes 

in the 125 simulated diagnostic items closely match those observed in the actual dataset. 

3.3 Simulation Scenario Expansion: Long-term, Large-scale, and 

Variant Studies 

In the experimental results based on the above parameters and actual time nodes, alt-

hough the final preference vectors of the 10 doctors are consistent with the data in the 

data set, there was no consensus among the doctors at the end of 2020. 

So based on parameters obtained from the first experiment, we extended the simula-

tion period from January 1, 2016, to December 31, 2026. "Teaching activities" were 

scheduled monthly, while "seminars" occurred weekly.  

By increasing the frequency of "practice sharing" events, we aimed to observe the 

system's dynamics over an extended simulation. The experiment revealed that after 117 

months, the Shannon diversity indices of all ten doctors converged to a single value, 

resulting in identical preference vectors for each doctor (see Fig. 2). In Fig. 2, A to J 

represent the 10 doctors in the original data set.  

Subsequently, leveraging information extracted from a real dataset comprising ten 

doctors, we employed methods such as non-uniform probability selection, random non-

repetitive sampling, normalized random allocation, and an overarching simulation 

framework to generate preference vector files for 1000 doctors from ten different med-

ical sharing communities.  

We then refined the seminar model based on the Hegselmann-Krause (HK) model 

to simulate "local seminars" within communities and "global seminars" across commu-

nities. Different reconnection probabilities and average degrees were used to mimic the 

network structures within and between communities, constructing a hierarchical small-

world network across ten communities. Higher average degrees and reconnection prob-

abilities were used in intra-community networks, reflecting the higher frequency of 
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interaction and closer collaboration among doctors within the same community (under-

stood as the same hospital, city, or group of doctors with similar professional back-

grounds). For inter-community network configurations, lower average degrees were 

adopted to represent the greater challenges and fewer direct contacts in interactions 

between doctors from different communities (or different specialties and geographical 

locations). 

 

Fig. 2. Doctor Shannon index change chart 

 

In our extended simulation running from 2016 to 2026, designed to reflect large-scale 

conditions, we convened local seminars quarterly within communities and global sem-

inars annually across communities.Over the course of 120 months, it was found that 

consensus on Shannon indices was reached for only 64.3% of the doctors, from an ini-

tial pool of 1000, signifying a divergence in practice sharing.  

These doctors coalesced into 18 distinct consensus groups based on their Shannon 

indices, with the largest group encompassing 643 physicians. The remaining 17 groups, 

although smaller in size, each achieved consensus internally. Doctors whose Shannon 

index differences were less than 0.15 by the end of the simulation were categorized into 

the same group and visually represented through color coding within the hierarchical 

network structure, as depicted in Fig. 3. This visualization illustrates not only the ma-

jority consensus but also the presence of multiple subgroups persisting with distinct 

practice-sharing patterns. 

In our large-scale system analysis, we captured the number of doctors in each group 

and the varying times taken for different groups to converge. Groups with fewer than 

ten doctors generally converged within one month; hence, we have presented only those 

groups with more than ten doctors in Fig. 4.  

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63772-8_21

https://dx.doi.org/10.1007/978-3-031-63772-8_21
https://dx.doi.org/10.1007/978-3-031-63772-8_21


 Modelling of practice sharing in complex distributed healthcare system 11 

 

 

Fig. 3. Large-scale simulation 

 

The Fig. 4 indicates that smaller groups (e.g., 10, 13, or 14 members) exhibit a faster 

median convergence time, suggesting that streamlined communication within tighter 

cohorts facilitates swifter consensus. Conversely, as group sizes expand (notably to 81, 

98, or 643 members), both the median and interquartile range of convergence times 

increase, reflecting the broader range of opinions and the complexity involved in har-

monizing these views within larger collectives. In the largest group, particularly, the 

significant spread and outliers in convergence times underscore the distinct challenges 

some doctors may encounter in aligning their practices with group consensus.Through 

experiments, we found that the convergence speed in large-scale systems has no obvi-

ous dependence on the number of communities and the number of doctors in the com-

munity. 

In exploring the impact of seminar frequency on the convergence time of practice 

sharing among physicians(in the 18 final automatically formed groups), we applied a 

grid search methodology, considering only scenarios where the global seminar fre-

quency does not exceed that of the local seminars to ensure the practical viability of the 

experimental setup.  

The boxplots reveal a slight decrease in the median convergence time with an in-

creasing frequency of local seminars, particularly when the global seminar frequency 

is set to every three months. Moreover, the shortest convergence times are observed at 

a global frequency of three months, indicating that frequent global interactions facilitate 
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quicker consensus building. The reduction in interquartile range and decreased varia-

bility reflect an increased data concentration, suggesting that a tight seminar schedule 

positively influences convergence. Overall, the charts underscore the significance of 

increasing seminar frequency in shortening the convergence time between physicians. 

This trend suggests that frequent interaction through seminars may play a critical role 

in harmonizing practices among medical professionals. Furthermore, the data implies 

that strategic planning of educational activities could be pivotal in fostering a unified 

approach to healthcare within the community (see Fig. 5.). 

 

 

Fig. 4. Group convergence dynamics by Size 

 

 

Fig. 5. Activity frequency versus convergence time 
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4 Discussion 

In the preliminary small-scale experiment involving ten doctors, we simulated "Practice 

Sharing" by incorporating real activity timing information from the dataset. The simu-

lated preference vectors closely aligned with the actual preference vectors, demonstrat-

ing the fundamental scientific validity of our modeling approach for "Practice Sharing" 

within the "Vertigo" dataset. Subsequently, we simulated the scenario of these ten doc-

tors over a decade, where all participants eventually reached a consensus in diagnostic 

practice choices.  

In the third phase of our study, we expanded the experiment to include 1000 doctors 

across ten communities. We examined the dependency of convergence time on the 

number of communities, the number of doctors within communities, and the frequency 

of activities. We found that both the number of doctors and the frequency of activities 

have a significant impact on convergence. In the model, individual physicians' learning 

is conceptualized as dynamic adjustments to their practice preference vectors. Collec-

tive learning is achieved through simulating interactions and information exchange 

among doctors, reflecting the social learning component in practice sharing. 

5 Conclusion and future work 

In this study, we have investigated the effectiveness of our model and approach in sim-

ulating the "Practice Sharing" process among doctors. Our model successfully repli-

cated the evolution of doctors' preference vectors across networks of varying sizes, re-

vealing the potential for achieving consensus within small groups and the complexities 

encountered in broader communities. This underscores the value of our approach in 

understanding and facilitating knowledge sharing and consensus formation in medical 

practice.  

In our future work,building on the extension of practice preference studies, we are 

particularly interested in delving into the micro-level fusion and switching of practices. 

In this regard, introducing a research paradigm based on Distributed Constraint Markov 

Decision Processes (DEC-MDP) through reinforcement learning is intriguing. Regard-

ing practice sharing, our focus extends to incorporating greater real-world complexity. 

We posit that interdisciplinary collaboration and information exchange can enhance the 

diversity and innovation of practices, while also acknowledging the potential for dif-

ferentiation in practice preferences. Medical policies can shape physicians' practice 

preferences through the establishment of standardized procedures, promotion of spe-

cific treatment methods, or restrictions on certain practices. The recognition by author-

itative bodies plays a significant role in the widespread adoption and acceptance of 

practices, with historical data suggesting significant shifts in physicians' practice pref-

erences before and after the release of clinical guidelines. Additionally, factors such as 

medical culture, local ambitions, and funding reflect varying dependencies on the real 

world. 
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