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Abstract. Using a minimal but sufficient closed-loop encapsulation and
the theoretical framework of classical control, we implement and test the
mathematical model of the baroregulation due to Mauro Ursino [24]. We
present and compare data from a local relative sensitivity analysis and
an input parameter orthogonality analysis from a regulated and then an
equivalent unregulated cardiovascular model with a single ventricle and
“CRC” Windkessel representation of the systemic circulation. We con-
clude: (i) a basic model of the closed-loop control is intrinsically stable;
(ii) regulation generally (but not completely) suppresses the sensitivity
of output responses on mechanical input parameters; (iii) with the sole
exception of the regulation set-point, the mechanical input parameters
are more influential on system outputs than the regulation input param-
eters. This work is the initial step for further analysis of more complex
and computationally expensive models of the cardiovascular system, with
baroreflex control, with possible applications in space-flight medicine or
research on exercise intolerance.
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1 Introduction

The cardiovascular (CV) system is not an independent entity. Its function re-
lies on external stimuli like posture shifts, exercise state and oxygen levels [2].
Blood pressure regulation is achieved by several long and short time-scale control
mechanisms. The most important is the baroreflex [6]. A model incorporating
a physiologically reasonable description within the framework of control theory,
of the coupling with the CV system is critical to digital twin development. Such
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a model would support a range of emerging applications - CV system response
to gravitational acceleration, haemorrhage and arrhythmia (where experimental
observation is challenging), to name a few.

The baroreflex is a short-term (seconds to minutes response) neurological
mechanism, regulating blood pressure by adapting the CV system response, most
importantly the heart period, ventricular contractility, venous tone, and systemic
resistance [6]. We describe baroregulation within the framework of control theory
[9], as a negative feedback problem. The feedback and feedforward elements
form a single-input, multiple-output sub–system (Figure 1). Sensors (i.e., the
baroreceptors) in the aortic arch and carotid sinus transduce mechanical strains
to electrical signals which are transmitted via afferent nerves to the central
nervous system. There, information is processed and a response signal is directed
to local effectors, via sympathetic (“fight-or-flight”) and parasympathetic (“rest-
and-digest”) nerves.

Several models of the baroreflex exist [7, 8, 17, 24]. The Ursino model [24]
represents the control system with succinct mathematical descriptions of par-
ticular neurological physiology. Ottesen et al. [17] present similar solutions - a
simple, computationally inexpensive model with pressure changes as inputs for
baroreflex function; also a more complex model with wider applications detailing
down to nervous activity. Heldt et al. [7, 8] developed a more empirical approach,
based on DeBoer’s earlier work [4] and making limited appeal to control theory
concepts.

A model, a set of clinical hypotheses and an appropriate methodology should
co-evolve. An initially parsimonious base model is advanced by increased com-
plexity in some aspect of its function, motivated by a need to test particular
hypothesis relating to, e.g. treatments, involving this function. A relevant ex-
ample is the work of Gee et al. [5], where the authors evolve Ursino’s model
[24], with Park et al.’s modifications [18], extending the model to describe the
intrinsic cardiac nervous system, aiming to study respiratory sinus arrhythmia.

To understand baroreflex operation, an appropriate model of flow and bio-
mechanics (termed a mechanical model) must be coupled with the regulation
model and suitable test scenarios devised. Long scenario timescales and high
computational costs militate for a reduction in dimensionality. Mechanical model
complexity can be systematically reduced to one-dimensional (1D) formulations
[13], e.g. to describe pulse-wave propagation phenomena, or further, to zero-
dimensional (0D) formulations (also called lumped-parameter models) [22] which
was the approach used in this work. A 0D formulation (Figure 2) was chosen
because of the specificity and provenance of the baroreflex model available and
used in this work [24], which provides lumped parameters values- no counter-
part parameterisation is currently available (to our knowledge) in models with
higher dimensionality. Because of this reduction, some output information was
lost (e.g. arterial cross-sectional pressures and detailed flow patterns), but in
this application such data are not essential. Advantages and weaknesses of the
0D method are described in [22].
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Personalised medicine is focused on considered, substantive resource man-
agement [1, 25]. Personalisation is perhaps the central problem in the field, in
which a model is calibrated to provide a digital representation of a specific pa-
tient. This task increases in difficulty with an increase in the number of input
parameters and so it is desirable to minimise this number, under the constraint
that key behaviours must emerge from the model. The mathematical tool that
facilitates the study of the impact of changes in model inputs on model out-
puts - and the interaction between them - is sensitivity analysis (SA), for which
there is an extensive literature in the context of medical applications [15, 16,
21]. Information from SA may be supplemented with orthogonality analysis [15].
By analysis of the significance and orthogonality of inputs, one can systemati-
cally identify a minimal subset of parameters, to be used in the personalisation
task [16]; the simplified model is then said to have been reduced. The result of a
model reduction depends of course upon one’s initial model.

We aim to assess the unmodified baroregulation model of Ursino [24] within:
(i) a minimal but physiologically sufficient, closed-loop encapsulation and (ii)
the framework of classical control theory. To achieve this, we perform local rel-
ative sensitivity analysis (LSA) using “one-at-the-time” (OAT) formulation and
orthogonality analysis both of a regulated and an equivalent unregulated, model.
The latter is defined as one with parameters Rsys, ELVmax and τ0 set to the val-
ues emerging from the periodic state of that regulated model. This comparison
quantifies any shift in the relative influence of model input factors on a chosen
subset of discrete, derived outputs. See Figure 3. Interactions between parame-
ters and higher-order effects are not considered in LSA- they are the subject of
global sensitivity analysis (GSA) and future work. LSA was performed because
of its simplicity, low computational cost and as a preliminary method in our
investigations of regulated models, preceding a GSA. We return to this point
in our Conclusions. While we are aware that LSA overlooks non-linear model
properties, we assume, here, that in the periodic state (a physiological state of
rest), the non-linear nature of the model will play only a negligible part, based
upon findings with unregulated, purely mechanical models [19].

2 Methods

Here we describe our model formulation with emphasis on the baroreflex, we
outline closed–loop simulations using the model and describe methods to perform
a local relative sensitivity analysis and orthogonality analysis.

2.1 Baroreflex model

Ursino’s formulation [24] transparently represents key physiological functions.
Formally, our baroreflex model is a set-point controlled closed-loop regulator.
It is presented in the block diagram form in Figure 1. The Laplace transfer
functions shown re-cast Ursino’s ordinary differential equation formulation. The
associated mechanical model has a single ventricle representation (see Figure 2)
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for which the formulation is reported elsewhere [3], [21]. These two sub-models
were combined in ODE or state-space form [9] as follows:

d

dt
P (t; θ) = f (P ; θ) .

Above, P (t; θ) is a vector of compartmental pressure time series (or pressure
surrogates [24], in the case of the control sub-system), θ is an input parameter
vector and t is time. The ODE or state-space formulation of the cardiovascular
model is mathematically described by Saxton et al., [21] and our baroreflex sub-
model by Ursino [24].

A single mechanical model output of aortic pressure (a surrogate for Ursino’s
carotid sinus pressure), provides the input for the baroreceptor block and is com-
pared to a pre–defined pressure set-point to evolve an error signal with units of
pressure, a proxy for nervous electrical pulsation. The overall regulation algo-
rithm drives central nervous system (CNS) and autonomic nervous system (ANS)
regulatory responses, designed to minimise this error. This process has defined
effector dynamics expressed here in the form of Laplace transfer functions. Note,
signals from the effectors are superposed with a constant, base value of each sys-
tem factors in the effectors’ evolution. This imparts an effective integral action
to the control, as recognised by Heldt [8]. In fact, it may be shown to conform
with integral action control such as that posited by Heldt et al.[8], complicated
somewhat because of a presence of time delays with electro-physiological and bio-
chemical origins. Our regulated CV model, described in section 2.2, was applied
in a rest state (i.e. without any representation of a physiological perturbation).
Regulation was applied from t = 0 and:

1. no cycle–averaging or smoothing was necessary for stable results,
2. beat-to-beat sampling of cardiac control parameters after Heldt et al. [7] is

required for a physiologically feasible and mathematically stable solution.
Specifically, stable results are impossible when evolving regulation HR effec-
tors for heart period continuously, as it is easy to show that period within
a beat can cause reduction of the value τ - which should increase monotoni-
cally. We update heart period and maximal ventricular elastance only at the
beginning of a beat; systemic resistance was adjusted at every time step.

Input parameter values and associated sources (references) are summarised in
Table 1.

2.2 Cardiovascular circulation model

To expose the operation of heart regulation, we choose to use the simplest feasible
mechanical model, capable of exposing regulation phenomena. This simplicity
allows one to uncover the structure and key details of the sensitivities’ of the
baroreflex model, which is our main interest. Specifically, we use a 0D single
ventricle model, with a Shi double cosine elastance function [12], coupled to
a passive “CRC” Windkessel model, representing the systemic circulation; the
latter is shown in electrical analogue form in Figure 2.
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Fig. 1. Block diagram of our closed-loop baroreflex control mechanism [24]. The corre-
sponding regulated mechanical model is represented in Figure 2. For the baroreceptors,
the input is the carotid sinus pressure, PCS , and the output is a surrogate pressure P̃CS

with units of spike-rate. The regulation set point, defined by Ursino as the pressure at
the central point of the sigmoid describing carotid sinus pressure [24], is Pn (far left).
Variables fcs(t) (carotid sinus frequency), fes(t) (efferent sympathetic frequency) and
fev(t) (efferent vagal frequency) have units of spikes per second. The delay blocks can
be commuted with the signal compression blocks and represent the cumulative effect
of ANS and CNS processing. Solid colour blocks locate the control functions to affer-
ent, efferent or organ nervous activity. Afferent processing is described by a first-order
ODE with 2 time constants -a first order Laplace transfer function (LTF)- followed by
a sigmoidal functional compression to describe the conversion spike rate. In the effer-
ent arc, depending on the unit of spiking activity, the efferent frequency is calculated
for the sympathetic (vagal) arc using an exponential (sigmoid) functional block. In
the effectors (blue and red regions of the diagram) processing involves logarithmisa-
tion and multiplication by a particular gain factor and first-order LTF. Sympathetic
and parasympathetic effector processing modulates the base values of the mechanical
system input parameters: systemic resistance, ventricular contractility, venous compli-
ance, sympathetic heart period and the vagal heart period. The change of the heart
period is the effect of summation of the sympathetic and parasympathetic influence.
Of course, blocks in the effector part can also be commuted.

Fig. 2. Our single ventricle, mechanical model in electrical analogue form. The elas-
tance of the left ventricle, Elv, is a Shi-double cosine model [12], which relates chamber
pressure and volume. The valves are assumed to have Ohmic behaviour, under both
forward and reverse bias, with the regurgitating resistance set very large. Our notation
for the resistances (haemodynamic dissipation) and capacitances (vessel compliance)
etc. and their numerical values are declared in Table 1.
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Table 1. Parameter values of the unregulated CV system. Adapted from [21]. For the
corresponding regulation and Windkessel parameters, see Table 3 of reference [24].

Parameters Symbols Values Units Sources
Mean circulatory filling pressure mcfp 8.000 mmHg Zucker et al. [26]
Heart period τ0 0.580 s Ursino [24]
Initial left ventricular volume VLV 160 ml Kawel-Boehm et al. [11]
Minimal left-ventricular elastance ELV min 0.060 mmHg

ml
Simaan et al. [23]

Maximal left-ventricular elastance ELV max 2.000 mmHg
ml

Simaan et al. [23]
Time of systolic phase peak τS1LV 0.300 s Bjørdalsbakke et al. [3]
Time of systolic phase end τS2LV 0.450 s -
Aortic valve resistance rav 0.033 mmHg·s

ml
Bjørdalsbakke et al. [3]

Mitral valve resistance rmv 0.060 mmHg·s
ml

Bjørdalsbakke et al. [3]
Arterial compliance Cart 1.130 ml

mmHg
Bjørdalsbakke et al. [3]

Systemic resistance Rsys 1.663 mmHg·s
ml

Kamoi et al. [10]
Venous compliance Cven 11.000 ml

mmHg
Bjørdalsbakke et al. [3]
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Fig. 3. Time series simulation data: a) pressure time series; b) applied heart period
changes, shown as a time series (the quantised form of this regulation effector is ap-
parent); c) systemic vascular resistance (SVR) evolution time series (the continuous
form of the SVR regulation is clear); d) maximum left ventricular elastance (chamber
contractility) changes in time. Initially, as the system equilibriates, some fluctuations
of regulated values are apparent; as the system enters a periodic state, significantly
smaller changes of regulation parameters occur.
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2.3 Sensitivity and Orthogonality Analysis

We perform LSA of the unregulated and the equivalent closed-loop regulated CV
models to determine the relative influence of input parameters on the chosen de-
rived outputs and to investigate the impact of regulation on system sensitivities,
and input parameter orthogonality to determine which inputs influence outputs
in a similar way.

Local Relative Sensitivity Analysis Although LSA represents a quasi–
linearisation of input parameter effects about an operating point, a low com-
putational cost means that LSA remains a canonical first step in understanding
our model’s input parameter effects to: (i) verify correct interaction between the
CV and regulation models and (ii) identify the non-influential input parameters.
Relative sensitivity matrices were calculated using a central difference method
(equation 1), perturbing inputs one at a time, about a reference state θ0:

si,j = 2

(
Xj(t

∗; θ+)−Xj(t
∗; θ−)

Xj(t∗; θ
+) +Xj(t∗; θ

−)

)(
θi
∆θi

)
. (1)

Above, t∗ represents a discrete sample time, Xj(t
∗; θ+) the j-th output with

θi → (θi + 0.5∆θi) and Xj(t
∗; θ−) the j-th output with θi → (θi − 0.5∆θi).

In the simulation, there were 36 inputs required to describe both the CV and
baroreflex models. See Table 1 for elastance and valve factors and Table 3 of
Ursino [24] for the following regulation and Windkessel parameters. Perturbed
parameters were: Rsys, Cart, Cven, τ0, rav, rmv, τS1LV , τS2LV , ELVmax , ELVmin ,
Pn, ka, fmin, fmax, τz, τp, fes,∞, fes,0, fes,min, kes, fev,0, fev,∞, fcs,0, kev, GT,v,
τT,v, DT,v, GT,s, τT,s, DT,s, GEmax,lv

, τEmax,lv
, DEmax,lv

, GR,sp, τR,sp, DR,sp. The
heart period, compliance and systemic resistance of the base mechanical model
were chosen so that the emergent, regulated state was a plausible representation
of a normal individual (heart period = 0.58). For the LSA presented below,
the above factors were varied by ±5 % and ±10 % from the reference values.
Two cases are considered: the periodic steady-state with and without regulation.
For parity, the unregulated model’s parameterisation was chosen so that, as
far as possible, the regulated and unregulated periodic states are matched. In
the regulated model, we analysed the influence of 36 inputs on the following
10 outputs: minimal and maximal values of: left ventricular pressure, arterial
pressure, venous pressure and left ventricular volume, and heart period and
cardiac output. In the unregulated model, heart period is excluded from the
outputs and the following 10 inputs were considered Rsys, Cart, Cven, τ0, rav,
rmv, τS1LV , τS2LV , ELVmax

and ELVmin
.

Orthogonality Analysis A LSA helps to identify from the full input param-
eter list an optimal subset of inputs for use in model personalisation. Different
optima exist. For example, one might select, using the criterion of influence, those
model input parameters which, when changed, move the outputs the most. How-
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ever, two input parameters which, when changed, displace all output metrics in
a parallel direction cannot act together to increase the dimensionality of the out-
put space explored- the personalisation subspace. To identify such redundancy
between the action of inputs we define a convenient metric of the orthogonality
between two input parameters, which is based upon the sensitivity vectors

Ŝi = (si,1, si,2, .., si,N0
) , i ∈ [1, 36],

defined for each input parameter. Above, N0 =9 (10) for the unregulated (reg-
ulated) system. This metric measures the displacement action about the base
state, due to input i, across all outputs by comparing sensitivity vectors Ŝi and
Ŝi′ . Measure dii′ is an inner product measure for the orthogonality between any
two input parameters θi and θi′

di′i = sin

[
cos−1

(
ŜT
i′ · Ŝi

||Ŝi′ ||||Ŝi||

)]
, i, i′ = 1, .., n, di′i ∈ [0, 1], (2)

Above, ||.|| denotes the Euclidean norm and the sin function simply ensures that
di′i ∈ [0, 1]. Following the work of Olsen et al. [14], the Fisher information matrix

F = s · sT ,

encapsulates the collective properties of influence and orthogonality of the sen-
sitivity vectors, Ŝ. Above, s is the 36×10 matrix with elements sij , see equation
(1). By seeking both sensitive and orthogonal inputs, one can obtain an optimally
effective set of inputs for model personalisation.

3 Results

The system was solved numerically using the MATLAB (The MathWorks, Inc.,
Natick, Massachusetts, USA) ode15s implicit Euler solver recommended for stiff
differential equations (variable-order, variable-step method). The relative and
absolute solver tolerance was 1e−7 and maximum step size was 0.01. An output
function, called at each iteration, was implemented to accumulate and interpolate
the emerging solution history inside the solver, to facilitate regulation delays. All
regulation input parameter values were taken from Ursino [24]. The mechanical
model parameters are declared in Table 1.

3.1 Local sensitivity analysis

The results of the LSA of the unregulated model are presented in Figure 4.
To facilitate comparison, the unregulated system heart period, contractility and
SVR were chosen to produce outputs close to the regulated equivalent (τ0 = 0.58,
ELVmax = 2.48, Rsys = 2.386). Two heatmaps are presented for ±5% and ±10%
perturbation of the model inputs. Despite the highly non-linear character of the
model, these results show a similar pattern. In case of the cardiac output, the
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most influential parameter in both cases is the heart period, but it is not highly
influential on the other outputs. The least influential parameters are venous
compliance and aortic valve resistance; mitral valve resistance is more important
(than aortic) which may point to the significance of diastolic filling. The arterial
compliance is much more significant than venous compliance.

The LSA results for the CV system with regulation are presented in Fig-
ure 5. As in the case of the un-regulated model, two heatmaps are presented,
corresponding to a ±5% and ±10% perturbation of the model inputs. Again,
despite the highly non-linear character of the model, these results show a similar
pattern. In general, mechanical model inputs are more influential than regula-
tion model inputs. Applying regulation does not significantly change the relative
importance of the CV parameters. Unsurprisingly, the impact of the heart pe-
riod on the cardiac output is more visible than in the unregulated system and
the most influential control model factor is the set-point, (Pn). There is higher
sensitivity on parameters bounding neural activity (fmin, fmax, fes,0, fes,min,
fev,0, fev,∞) compared with rate parameters (ka, kes, kev). Cardiac output is
dominated by elastance parameters (ELVmin, ELVmax) and the heart period.
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Fig. 4. Heatmaps of the local relative sensitivities of the unregulated base mechanical
model, in figure 2, with parameters perturbed by a) ±5%; b) ±10%. The unregulated
model was parameterised to generate outputs close to the regulated equivalent in fig-
ure 5. The chosen model outputs were for these tabulations, maximum and minimum
pressures (left ventricular: PLV , arterial: PA and venous: PV ), maximum and minimum
left ventricular volume (VLV ) and cardiac output (CO).
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Fig. 5. Heatmap of the local relative sensitivities of the closed-loop, regulated model
defined in figures 1 and 2, with parameters perturbed by ±5% and ±10%. The chosen
model outputs were for these tabulations, maximum and minimum pressures (left ven-
tricular: PLV , arterial: PA and venous: PV ), maximum and minimum left ventricular
volume (VLV ), cardiac output (CO) and heart period τHR.
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3.2 Orthogonality Analysis

The orthogonality analysis results presented here are for the regulated model,
Saxton et al. have previously reported an orthogonality analysis of the unreg-
ulated model [21]. Sensitivity vector orthogonality is presented as a heatmap
of the Fisher information matrix (Figure 6). Interestingly, there appears to be
more variation between the Fisher matrices in figure 6 than between the parent
LSA plots, in Figure 5. Some persistent structure is notable– e.g. the block di-
agonal, corresponding to the union of afferent and efferent parameters (confined
between Pn and kev). In this region all factors have similar mutual orthogonal-
ity with some smaller islands being observed, corresponding to afferent activity
between Pn and τp, sympathetic activity between fes,∞ and kes and vagal ac-
tivity between fev,0 and fev,0. Inside these islands, linear independence is very
low. Between vagal and sympathetic parameters, the orthogonality is approxi-
mately 0.6.

The most interesting results are observed for the gains corresponding to regu-
lated quantities– it can be seen that each regulated parameter has similar impact
on the output as the corresponding gain. Again it can be seen that vagal activity
dominates (with similar impact on outputs to afferent and vagal neural parame-
ters). Heart parameters (between rav and ELVmin) do not have a common effect
when compared with control parameters. The eigenspace of F contains valuable
information but in the interest of a compact account, we chose to consider an in-
tuitive re-interpretation of the orthogonality data, by examining the distribution
of orthogonality, in the form of a histogram of the di,j , i ≤ j (upper triangular
matrix elements of F) (Figure 7). The interpretation of this figure is considered
further in the Discussion section.

Fig. 6. Heatmaps of the orthogonality (Fisher information) in the closed-loop, reg-
ulated model defined in figures 1 and 2, with parameters perturbed by a) ±5%; b)
±10%.
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Fig. 7. The distribution of the orthogonality in the closed-loop regulated model defined
in figures 1 and 2, with parameters perturbed by a) ±5% ; b) ±10%. These are the
distributions of the di,j , i ≤ j, i.e., the elements of Fisher information, F.

4 Discussion

The LSA of the baroreflex model of Ursino [24] performed here is, to our knowl-
edge, the first on a closed-loop model. Our model is a faithful representation of
the Ursino model and does not implement averaging of the regulatory signal over
a cardiac cycle. We also present the corresponding LSA of a shadow, unregulated
system, to provide context.

The overall distribution of the LSA heatmap is similar for both regulated
and unregulated models and for results for input perturbations at ±5% and
±10%. This consistency supports the tentative conclusion that our results in
Figures 4 and 5 are truly characteristic of the system. However, the changes in
the numerical values of the relative sensitivities between Figures 4 and 5 suggest
non-linear interactions and the need for a global sensitivity analysis.

The purpose of the present LSA and orthogonality analysis is to expose the
effect of regulation in a tractable way, by comparing the LSA of equivalent
regulated and unregulated models in Figures 4 and 5. Clearly, mechanical CV
model inputs are more generally influential than regulation factors, with the
exception of the system set-point. Equally surprising is the persistence of the
pattern in mechanical model sensitivities, as we pass from the unregulated to the
regulated system. On the other hand, comparing Figures 4 and 5, the regulation
is seen to suppress relative sensitivity of mechanical input factors - at least for the
studied outputs. Notable exceptions include the influence of initial heart period
on cardiac output (which might be anticipated) and the influence of arterial
compliance on LV pressure.

The qualitative trends and connections from LSA provide tentative verifica-
tion of Ursino’s algorithm, combined with a single ventricle model of the systemic
circulation. The response studied here represents an individual at rest, without
additional loading applied to the CV system. One expects vagal activity to dom-
inate cardiac output and this is apparent in e.g. the influence of the vagal gain
GT,v there. Put another way, the influence of vagal control on heart period,
τHR, and hence cardiac output, is significantly greater than the corresponding
sympathetic control.
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In Figure 7, the spread of sensitivity vector orthogonality indices di,j is more
uniform than in the non-regulated equivalent system reported in [21]. It is un-
likely that this is due to any shift between mechanical factors, rather the distri-
bution shifts are likely due to the inclusion, in the statistics, of a large number
of new regulation input factors.

5 Conclusions and further work

We have successfully implemented and tested, within closed-loop operation, the
baroreflex regulation model proposed by Ursino [24] without any algorithmic
extensions e.g. control signal cardiac cycle averaging, reporting LSA and or-
thogonality results. We are able to conclude, on the basis of our results, that
explicit averaging of control signals is not a necessary component of a baroreflex
model. Extension of this approach to compare these results with cycle-averaging
of control signals, as discussed by other authors is of interest and will be consid-
ered in future work, particularly to explore the influence of cycle averaging on
(i) system response and stability and (ii) computational time.

The coupled CV mechanical model used in this work is intentionally simple.
Extension to include a four chamber cardiac model, the pulmonary circulation
and venous tone regulation is tractable using the current approach.

A crucial feature of the physiological baroreflex is the phenomena of neuronal
adaptation, which was also also neglected here. The time-varying sensitivity of
neurons will be included in future work to examine how this influences system
sensitivity values.

LSA, combined with orthogonality analysis, provides the first tranche of in-
formation for model personalisation which is a fundamental requirement for all
useful digital twins. It is essential, in even moderately complicated models, where
a reduction of model inputs (a so-called model reduction) is necessary to bring
about the decrease of computational cost necessary for a plausible global sen-
sitivity analysis (GSA); put another way LSA is the accepted prelude to the
much more costly, variance-based GSA [20], which captures non-linear interac-
tions between inputs, and characterises only the model (in contradistinction to
the model and its operating point), which we currently have in hand.
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