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Abstract. Since the launch of various generative AI tools, scientists
have been striving to evaluate their capabilities and contents, in the hope
of establishing trust in their generative abilities. Regulations and guide-
lines are emerging to verify generated contents and identify novel uses. we
aspire to demonstrate how ChatGPT claims are checked computation-
ally using the rigor of network models. We aim to achieve fact-checking
of the knowledge embedded in biological graphs that were contrived from
ChatGPT contents at the aggregate level. We adopted a biological net-
works approach that enables the systematic interrogation of ChatGPT’s
linked entities. We designed an ontology-driven fact-checking algorithm
that compares biological graphs constructed from approximately 200,000
PubMed abstracts with counterparts constructed from a dataset gener-
ated using the ChatGPT-3.5 Turbo model. In 10-samples of 250 ran-
domly selected records a ChatGPT dataset of 1000 “simulated” articles
, the fact-checking link accuracy ranged from 70% to 86%. This study
demonstrated high accuracy of aggregate disease-gene links relationships
found in ChatGPT-generated texts.

Keywords: ChatGPT, fact-checking, generative AI, biological graphs,
biological ontology, network medicine

1 Introduction

The rise of new generative AI technologies holds both potential and concerns.
Particularly, the emergence of ChatGPT [1] caused scientists to raise various
concerns related to the capabilities and the inauthentic contents of such tools.
Van Dis et al. identified five key priorities aimed at educating the general public
about the potential of ChatGPT and formulating an effective response to this
transformative AI tool. Among the five guidelines, fact-checking and human ver-
ification of ChatGPT contents were highlighted [2]. Inspired by such guidelines,

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63772-8_12

https://dx.doi.org/10.1007/978-3-031-63772-8_12
https://dx.doi.org/10.1007/978-3-031-63772-8_12


2 Ahmed Abdeen Hamed et al.

here we present our work on computational fact-checking of biological networks
we constructed from ChatGPT-generated content. The utilization of biological
ontology (i.e., Disease Ontology, Gene Ontology, Gene Ontology Annotations)
give credibility to the biological terms that make up the nodes of the graphs.
Using biological entities from ontology to extract and construct biological graphs
from the biomedical literature offers trustworthy ground truth. Using network
models and algorithms offer the rigor needed to perform fact-checking at the
aggregate level. This study assumes a closed-world assumption [3–6], which sets
the fact-checking scope within the knowledge embedded in the literature dataset
and not beyond.

Knowledge graphs have been instrumental in advancing fact-checking method-
ologies, enabling structured and nuanced analyses of claims and assertions. For
example, Tchechmedjiev et al. introduced ClaimsKG, a comprehensive knowl-
edge graph that houses fact-checked claims, allowing informed queries on truth
values and related aspects [7]. Vedula and Parthasarathy’s work stood out by
introducing FACE-KEG, a knowledge graph tailored to expound whether a state-
ment is true or false, addressing the transparency gap in fact-checking [8]. Lin
et al. made strides with ontology-based subgraph patterns, constructing graph
fact-checking rules that integrate intricate patterns, capturing both topological
and ontological constraints [9–11]. Notably, Ciampaglia et al. laid a foundation
for fact-checking by leveraging knowledge graphs to scrutinize claims, drawing
from reliable sources like Wikipedia [12].

Wang et al. harnessed entity category information, using prototype-based
learning to enhance verification accuracy and reasoning capabilities in knowledge
graph-based fact-checking, marking a significant advancement in this domain
[13]. Khandelwal et al.’s approach encompassed structured and unstructured
data from knowledge graphs to address the challenge of evaluating facts amidst
growing data and misinformation [14]. Orthlieb et al.’s attention-based path
ranking model exhibited promise in automating fact-checking through knowl-
edge graphs, emphasizing interpretability and competitive results [15]. Another
notable contribution came from Shi, who introduced ProjE, a neural network
model that improved the completion of knowledge graphs and the accuracy of
fact-checking [16].

Recent advancements further underpin the significance of knowledge graphs
in fact-checking. The approach of Wang et al. leveraged category hierarchy and
attribute relationships, showcasing the potential of knowledge structure in fact
verification [17]. Amidst the COVID-19 outbreak, Mengoni’s extended knowl-
edge graph enabled enhanced claim validation through leveraging existing fact-
checking reports [18]. Kim introduced weighted logical rules mining and evi-
dential path identification in knowledge graphs, enhancing computational fact-
checking [19, 20]. Zhu et al. designed a knowledge-enhanced fact-checking sys-
tem, tapping into both unstructured document knowledge bases and structured
graphs to robustly identify misinformation [21].
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2 Methods

In this section, we present a comprehensive methodology for constructing a re-
liable knowledge framework to assess the quality of content generated using
ChatGPT. Our approach is centered around the utilization of biological graphs
as rigorous models that offer quantitative analysis of objective outcomes. Graphs
as a tool is also being investigated for the advancement of Large Language Mod-
els (LLMs) [22] and ChatGPT technologies [23].

The proposed approach consists of six key steps which as a whole contribute
to verification of the authenticity and accuracy of AI-generated biomedical text:
(1) ChatGPT prompt-engineering and simulated-articles generation, (2) partial-
match ontology term chunking to increase the recall of term matching, (3) on-
tology feature extraction, where partial terms are used as the means to feature
identification in the literature and ChatGPT text, (4) proximity-based biological
graphs construction for capturing the strongest links among the biological terms,
(5) biological graph topological analysis, by analyzing the structural properties
of each type and comparing them accordingly, and (6) algorithmic fact-checking
to assert the facts.

2.1 Prompt-Engineering ChatGPT for Simulated-Articles
Generation

Using the ChatGPT APIs, we engineered a prompt that has two roles: (1) the
system role which is to command the ChatGPT engine to generate biomedical
abstracts and (2) a user role which is to command ChatGPT explicitly to perform
the task shown in Algorithm 1, repeating it as needed until a dataset of the
desired size is produced.

Algorithm 1 ChatGPT Prompt Engineering for Article Generation

Require: The number n of simulated articles.
Require: The number w of words in each article.
1: Generate a list of n simulated PubMed-style abstracts.
2: For each abstract containing three fields: GPT-ID, Title, and Abstract, make

it w words.
3: Make the GPT-ID random, containing at most five letters and numbers.
4: Return the abstracts in a valid JSON format as an array of JSON records.
5: Investigate the biology of human disease-gene associations.
6: Provide details related to diseases, genes, cells, organisms, and any FDA-

approved drugs, and state any relationships.

2.2 Feature Extraction and Biological Graph Construction

Ontology terms are inherently detailed and lengthy. In biomedical literature,
these long names are frequently abbreviated for convenience. For instance, the
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term “female breast cancer” is often referred to as “breast cancer” in the text.
Importantly, we maintained a connection between these bigrams and their cor-
responding original term IDs in the ontology, while also tracking their positions.
Constructing the knowledge graphs required the following steps: (1) feature ex-
traction using the diseases and gene ontology and (2) establishing the links
among the terms extracted. The process of ontology feature extraction from
text records is as follow: (1) it takes as in put a collection of abstract texts and
an ontology containing terms, (2) reads each textual record in the collection to
identifies mentions of ontology terms (and related bigrams) within the text, (3)
checks if the term appears in the text. If the term is a single word, the algorithm
records the position of the match, the term itself, and other relevant information.
For terms with more than one word, the algorithm generates bigrams (pairs of
adjacent words) and checks for their presence in the text. If found, it records
the position, term, bigram, and additional information. The process terminates
by producing a set of matches for each record, indicating where ontology terms
and bigrams were found within the text. Concretely, we constructed two differ-
ent undirected but weighted graphs of disease and genes nodes. The first type
one was constructed publication-driven from the mentions of disease and genes
occurring in a dataset of biomedical abstracts extracted from PubMed Central
[24]. A disease and a gene are connected if they occur in the same abstract. Then
the link is weighted with the distance among the terms. Both gene and diseases
names are ontology terms from the Human Disease Ontology (DOID) [25, 26],
and the Gene Ontology and Annotation (GOA) [27–29].

2.3 Fact-Checking ChatGPT Biological Graphs

The purpose of this step is to investigate the authenticity of contents gathered
from ChatGPT and other generative AI models, and to test whether such con-
tents may bridge the disease–genes gap in our understanding. In this regard, we
propose a computational approach that captures how much true knowledge is
stated in ChatGPT graphs and also identifies what may be considered noise or
novelties. The idea is to compare the various link types (disease-gene, gene-gene,
disease-disease) and determine how much they overlap with those in the ground
truth literature graph. This offers fact checking at an aggregate level without
having to verify the link semantics. Specifically, from 10 graphs constructed ear-
lier, we implemented a process that systematically computes the number of edges
in a ChatGPT-generated graph that coincide with edges in the corresponding
graph derived from literature abstracts. While being in the search space, the
algorithm also tracks the link to discern each type and evaluates the balance in
the facts founds. It extracts all links before it also processes one link at a time,
and checks it against the ground-truth graph constructed from the literature.

3 Results

We used various network metrics that compare the ChatGPT graphs with litera-
ture Graphs objectively. Table 1 encapsulates the essential metrics pertaining to
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each type of the knowledge graphs (i.e., literature and ChatGPT counterparts).

Table 1: The statistical result of comparing 10 GPT graphs with 10 literature
graphs generated from the same number of records.

Source Metric G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

GPT No of Nodes 70 80 80 86 80 74 66 75 75 79
PubMed 137 63 100 104 116 118 101 113 95 154
GPT No. of Edges 110 138 113 141 120 116 108 116 124 139
PubMed 297 124 165 214 251 240 207 366 147 393
GPT N/E Ratio 0.64 0.58 0.71 0.61 0.67 0.64 0.61 0.65 0.60 0.57
PubMed 0.46 0.51 0.61 0.49 0.46 0.49 0.49 0.31 0.65 0.39

GPT No. of Diseases 54 64 65 67 60 57 54 60 59 61
PubMed 117 54 87 88 97 101 79 97 75 131
GPT No. of Genes 16 16 15 19 20 17 12 15 16 18
PubMed 20 9 13 16 19 17 22 16 20 23

GPT Gene-Gene Link No. 46 67 59 64 51 48 54 56 56 62
PubMed 229 86 120 151 196 192 148 311 94 316
GPT Disease-Gene Link No. 54 50 45 58 50 47 47 48 49 58
PubMed 57 34 40 55 45 36 44 43 42 61
GPT Disease-Disease Link No. 10 19 9 19 19 20 6 11 19 19
PubMed 11 4 5 5 10 10 14 10 11 16

Each consecutive two rows embody a distinct scenario for a given statistic,
while the columns reference the dataset selected randomly by a given seed. The
”No. of Nodes” 2-row denotes the count of all nodes, which symbolize diseases,
genes. The “No. of Edges” 2-row unit quantifies the interconnections between
nodes, reflecting relationships (e.g., disease - gene) or interactions (protein -
protein). The “N/E Ratio” 2-row unit computes the balance between nodes and
edges, potentially demonstrating the network complexity of each graph. The
“No. of Diseases” 2-row enumerates disease-related nodes, while “No. of Genes”
2-row unit does the same for genes. The “No. of Disease-Gene Links” 2-row
unit indicates associations between diseases and genes. “No. of Disease-Disease
Links” underscores connections between different diseases. Lastly, “Number of
Gene-Gene Links” 2-row unit unveils interactions among gene nodes. Collec-
tively, this table provides an intricate glimpse into the network’s composition,
connectivity, and relationships within the biological and medical framework, fos-
tering a deeper understanding of its underlying dynamics of each type. Figures
1a and 1a demonstrate the comparisons of nodes and edges between ChatGPT
and literature, respectively.
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(a) Nodes No. (b) Edges No.

Fig. 1: shows two subfigures: (a) on the left, the Number of Nodes, and (b) on the
right the Number of Edges comparisons of 10 chatGPT graphs against literature,
respectively.

4 Discussion

The discussion of our study results revolves around several key observations and
findings that shed light on the comparison and potential utility of the constructed
knowledge graphs. Our approach involved the comparison of two distinct types of
graphs, both constructed from randomly selected datasets. This sampling strat-
egy ensured an unbiased and fair basis for comparison between the two sources.
In terms of topological analysis, it was our expectation to observe a less number
of nodes and edges exhibited in ChatGPT. It was also our expectations to ob-
serve that the network generated from literature to be rich and complex, which
was demonstrated by lower ratios of nodes to edges. However, we also observed
an anomalous behavior among the 10 graph. Particularly, G9 has surpassed its
literature counterpart in the ratio of number of nodes to edges. Such an obser-
vation indicate complexity of certain ChatGPT graphs which warrant further
pursuing.

One of the main pursuits of this work was to perform an unbiased fact-
checking and verification of a truth graph constructed constructed using on-
tologies for their credible terminology, and biomedical literature of publications
that are funded by the National Institute of Health to ensure high quality and
credibility of work. We ensure that the fact-checking process is bounded by a
closed-world assumption to make our work possible. The outcome of the process
yielded promising results: the precision of link overlaps ranged from [70% to
86%] which is significantly high given the close-world assumption. This finding
gives a certain measure of confidence to cautiously consider investigating data
generated by ChatGPT using careful prompt-engineering.

Conclusion and Future Direction

As we continue to refine our work, the next steps involve further investigation
of the proximity distance among biomedical terms and test if they hold in other
domain and research areas. The study of disease-gene can be further instanti-
ated in precise complex disease such as Alzheimer’s and comorbidities where
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little is known. Such investigations may necessitate the introduction of new on-
tologies (e.g., Gene ontology, Drug, Chemical Entity, and drug target ontologies)
among many others. In turn, this opens the door to prompt-engineer ChatGPT
to answer specific questions regarding the repurposeability of a drug. Another
interesting direction is to entirely retrain the engines of ChatGPT using the
confirmed-true knowledge and use its massive reasoning capabilities to answers
questions about certain biological pathways to investigate a certain biological
targets, or a disease that maybe caused by a certain clusters of genes.
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