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Abstract. The study of the relationship between brain neuron activity and be-
havioral responses of humans and other animals is an area of interest, although 
it has received relatively little attention from scientific biology and medical 
research centers. In this paper, we consider the problem of determining a mouse 
position in a circular track based on its neural activity data, and investigate the 
use of machine learning for solving this problem. The study is conducted in two 
parts: a classification task, where the model predicts which sector of the track 
the mouse is in at a particular time, and a regression task, where it predicts ex-
act coordinates for each time step. We propose a neural network-based solution 
for both tasks, based on a graph of brain neuron activity. Accuracy results were 
obtained: 89% for classification and 93% for regression. 
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1. Introduction 

The mechanisms underlying brain function and human and animal behavior comprise 
one of the most significant areas of research within modern science. Complexity, 
variability, and motivation are the most vital characteristics of the behavioral patterns 
of living organisms [1]. In this study, we explore the possibility of predicting an or-
ganism behavior based on neural impulses using machine learning (ML) tools. The 
experiment involves a mouse placed on a circular track and freely moving within it. 
Brain neuron impulses were recorded using a head-mounted NVista HD miniscope 
[2], which could detect calcium signals from neurons. Cell images were captured us-
ing a set of genetically engineered calcium indicators [3,4]. The mouse with the 
miniscope was placed on a track that had been previously cleaned of foreign odors. 
There are four marks along the mutually perpendicular diameters of the track, which 
allow the animal to draw any conclusions about its current position. At each point in 
time during the experiment, the coordinates of the mouse position are recorded. The 
video recording frequency is 20 frames per second, and its total duration is 15 min-
utes and 39 seconds. Data for the experiment was obtained in article [5]. 
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The main scientific interest in this problem is the ability to determine the 
coordinates of a mouse location based on impulses from brain neurons using a graph 
of neural connections and ML methods. The potential of artificial intelligence to 
analyze and replicate the intelligence of living biological beings offers many 
opportunities for biological and medical research. This ability forms the basis for our 
work. In the course of our research, we answer the following questions: 

1. Is it possible to construct such an artificial neural network architecture that allows 
tracking the mouse coordinates with acceptable accuracy based on calcium 
activity in mouse hippocampal neurons? 

2. How well can models be trained using existing data of movement trajectories and 
neural activity during movements? 

3. Which of the two mathematical formulations of the ML task is more suitable for 
solving this problem? 

The article is organized as follows: Section 2 reviews background and related 
work; Section 3 and Section 4 describes the process of solving this problem through 
classification and regression, respectively. Section 5 concludes the article. 

2. Background and Related Work 

Despite widespread interest in this problem in the fields of biology and medicine, 
very little research has been published on this subject. 

In [6], authors described an ML method for analyzing the behavior of mice kept in 
groups up to four individuals for several days in a controlled environment in real 
time. It was described how this method can be used to study the effects of mutations 
in genes linked to autism on mouse behavior. In [7], ML techniques were used to 
distinguish between different mouse conditions based on brain activity and camera 
data. The aim of the study is to develop a learning approach that could accurately 
reflect classification results and transfer those results to other mouse conditions. 

The work [8] demonstrated that continuous behavioral data can be analyzed using 
approaches similar to natural language processing. This data supports further research 
into detecting complex pathophysiological alterations accompanied by changes in the 
behavioral profile. 

The work [9] explored the solution to determining the movement of a mouse based 
on data from brain neurons activity using a statistical approach without prior 
knowledge. The authors hypothesized that, when combined with innovative 
techniques for estimating coordinates, a created Bayesian model could extract data 
about complex behavior [10,11]. In [12], the authors solved this problem by 
reconstructing time series of brain cell activity and identifying fields that constitute 
cognitive maps. The data was used in the form of a three-dimensional graph of 
cellular connections, based on an algorithm for reconstructing the dynamic graph of 
calcium event distribution, with two dimensions being the number of cells in the 
studied part of the brain and the third being the number of studied time points [13]. 
The reconstruction of these graphs was done using calcium events from neurons 
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detected using the algorithm described in [5], which was also used in our work to 
obtain the data. 

3. Classification of mouse position on a circular track 

In our study, we classify the mouse position on a circular track by dividing it into sec-
tors. We solve this problem by determining whether a given mouse position belongs 
to a particular class (sector) of the track. The object of this task is the coordinates of 
the mouse position angle at different points in time, and the class is a specific sector 
of the track that the mouse travels along. The set of vertices in the graph is the num-
ber of brain cells, which is 562, and the set of edges represents the connections be-
tween these cells. The total number of graphs in our dataset is 18 775, corresponding 
to the number of measurements taken at different times. The response is the angle  
of the mouse at each time point (see Fig. 3). 

We use a convolutional neural network (CNN) to solve the classification problem 
of determining the sector of the mouse position on a circular track. The sum of the 
squared differences between the output signals from the network and their required 
values is used as a measure of how well the network performs (MSE, mean squared 
error): 

, 	 	   (1) 

where  is a number of classes,  is a real angle of the mouse position, and  is 
a predicted angle. CNN is used to solve classification problem, based on an example 
from article [14]. CNN has a structure shown in Fig. 1a. The first 75% of data in time 
is taken for training, and the remaining 25% is taken for testing. For some points in 
time, a visualization of the neuron connections is created to obtain a clearer picture of 
what is happening (see Fig. 2). To generalize results, we use a function that calculates 
the error as the ratio of difference in real and predicted values to circumference (RGE, 
resulting generalized error): 

,	 	 (2) 

where  is a radius of the track,  is a real angle of the mouse position,  is a 
predicted angle (all angles are taken in radians). 

To compare results obtained in two different cases, classification results are 
converted to regression results by finding median value for each class: 

,	         (3) 
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where  is a number of classes,  is a real number of the sector,  is a 
predicted number. Here and below, all errors are given for the test set. 

Fig. 1. Layer-by-layer structure of CNN (a) and GNN (b). 

Fig. 2. Images of brain graphs at two moments of time (5 sec and 25 sec from the start). Cells 
with the same color are activated at the position with that color on the scale (in degrees). 

We started by trying to locate the mouse by dividing the circle into two parts and 
identifying the halves. Here, we could achieve an RGE of 18%. Next, we attempted to 
predict the quarter in which the mouse is located, with an RGE of about 19%. For 
dividing into eight parts, the RGE was 22%; for dividing into twelve parts, it was 
25%. Since the mouse size is approximately 8.3% of the circumference, solving the 
classification problem makes sense if the number of classes does not exceed 12 (see 
Fig. 3). Additionally, removing intervals where the mouse moves less than 8.3% of 
the way around the circle reduced the RGE to 14%. It was suggested that if all 
intervals with constant positions are removed from the dataset and CNN is trained on 
this new dataset, a smaller error could be achieved. We also considered that the 

n Yi Y predict
i
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network architecture was too simplistic for training on such a complex task. 
Therefore, we decided to increase the number of hidden layers and modify the 
activation functions accordingly. Additionally, the experimental results indicated that 
the main challenges in the model performance stemmed from the class boundaries. To 
address this, we changed the problem formulation from classification to regression, as 
we hypothesized that this would reduce the overall error rate of the solution by 
eliminating class boundaries themselves. In order to test whether this approach could 
improve the results achieved for classification, we formulated a regression task. 

Fig. 3. The case of dividing a track into 12 sectors. The sector measure is , and the length of 
a mouse is . Colored dots indicate the physical markers for self-identification of mouse. 

Fig. 4. Error plot for regression (a) and classification (b). The vertical axis represents RGE in 
percentage terms, the horizontal axis represents time from the start in minutes. The largest er-

rors are shown in red; the intervals where the mouse moves less than 8.3% of the circumference 
are shown in yellow. 

4. Regression of mouse position on a circular track 

For our study, regression involves determining the exact angle of the mouse position 
at each point in time. The set of brain neuron impulses at each time point is consid-
ered to be a set of features. The change in the mouse location on the track is the de-

30∘
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pendent variable. The angle of the mouse coordinate at each moment in time is the 
output. We chose the mean absolute error (MAE) as an error metric: 

, 	 (4) 

where  is a number of predicted values,  is a real mouse position angle,  is 
a predicted angle [14]. The structure of a graph neural network (GNN) used to solve a 
regression problem is shown in Fig. 1b. MSE (1) and MAE (4) are used as loss func-
tions. The error obtained using MAE is smaller than the error using MSE. After that, 
GNN is used for classification and produces better results than CNN. 

Fig. 5. Average coordinate in a sliding window of 5 seconds (100 frames wide) (a) and the 
coordinates at each time point (b). The vertical axis represents mouse position angle, horizontal 

axis represents time from the beginning in minutes. Actual coordinates are green; predicted 
coordinates are blue on a, are red on b. 

The plot of error changes on test data is shown in Fig. 4a. As can be seen from this 
plot, the maximum regression RGE does not exceed 12%, which is a better result than 
for classification. In addition, by looking at areas of constant mouse position, we 
concluded that error peaks occur exactly at moments when the mouse stops or starts 
moving. During all other time intervals, RGE does not exceed 7%. Based on results 
from solving regression task, plot of predicted mouse coordinate was drawn in Fig. 
5b. As expected, because of absence of dividing the track into sectors errors at 
boundaries disappeared, but because of unpredictable behavior during constant 
coordinates intervals, maximum RGE equals to 7%. For comparative analysis, 
dynamic of RGE changes for classification task was also plotted. Plot of classification 
error changes is shown in Fig. 4b. Here we show that the maximum RGE for 
classification is greater than for regression, being approximately 15% (which is better 
than previously obtained). Additionally, it is clear that error reaches this maximum not 
only at constant positions, but also between them. This occurs at the boundaries 
between classes when mouse moves from one class to another. Therefore, for 
classification, the maximum RGE is 11% and for regression 7%. By changing the 
problem formulation from classification to regression, accuracy increases by 4%. A 
plot shows the mouse movement curve based on original data and predicted data in 
regression (see Fig. 5b). The predicted coordinate generally follows the real 
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coordinate dynamics, but has larger fluctuations at intervals with small changes in real 
coordinates. For more detailed conclusions, a trajectory of the average coordinate was 
plotted in a sliding window of 100 frames (5 seconds). This plot is presented in Fig. 
5a. The moving average is calculated using an interval , where  is the 
window size, and  is the averaged data argument. The maximum RGE here is 8%. We 
conclude that in a window of this width, the predicted trajectory closely follows the 
actual one. 

Based on all the results obtained, Table 1 was compiled showing the values of 
maximum RGE for two ML problem formulations on two network types (see Fig. 1) 
using the train and test datasets. 

Table 1. Generalizing table of the RGE errors for two formulations of problems when solving 
them using two methods for constructing a neural network with train and test data. 

5. Conclusions 

As a result of the experiments, GNN was found to solve a classification task with an 
RGE (2) of 11% and a regression task with an RGE (2) of 7%, respectively. Thus, it 
would be advisable to formulate and solve this problem in terms of regression analy-
sis. Given that the problem addressed in this work has not been widely studied, it is 
impossible to determine with certainty the minimum error that could be achieved with 
this data. Additionally, it remains uncertain whether we have all the necessary infor-
mation available to construct a high-quality neural network. It is now essential to in-
terpret these findings from a neurobiological standpoint and develop a strategy for 
improvement. This approach should be based on real biological processes, and its 
results should be applied to a larger number of mice in order to test whether the pat-
terns observed in one mouse apply to others. Does the network trained on the first day 
of the experiment produce the desired level of accuracy when re-run on the second 
and third days? What patterns exist between the graphs of neuron activity on different 
days? We plan to investigate  these questions as part of our future research. 
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Classification Regression

CNN (Fig. 1a) GNN (Fig. 1bt) CNN (Fig. 1a) GNN (Fig. 1b)

Train 13 % 8 % 9 % 4 %

Test 22 % 15 % 13 % 7 %
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Data and Code Availability. All data, code and launch scripts used for the article is provided 
as part of the replication package. It is available at https://github.com/nastyalabs/mouseBrain. 
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