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Abstract. We propose a new graphical model to describe the comorbid-
ity of allergic diseases. We present our model in two versions. First, we
introduce a generative model that re�ects the variables' causal relation-
ships. Then, we propose an approximation of the generative model by
a misspeci�ed model, which is computationally more e�cient and easily
interpretable. In both versions of our model, we consider typical aller-
gic disease symptoms and covariates. We consider two directed acyclic
graphs (DAGs). The �rst one describes information about the coexis-
tence of certain allergic diseases (binary variables). The second graph
describes the relationships between particular symptoms and the occur-
rence of these diseases. In the generative model, the edges lead from
diseases to symptoms, corresponding to causal relations. In the misspec-
i�ed model, we reverse the direction of edges: they lead from symptoms
to diseases. The proposed model is evaluated on a cross-sectional mul-
ticentre study in Poland (www.ecap.pl). An assessment of the stability
of the proposed model is obtained using the bootstrap and jackknife
techniques. Our results show that the misspeci�ed model is a good ap-
proximation of the generative model and helps predict the incidence of
allergic diseases.

Keywords: Network Model · Bayesian Network · Logistic Regression ·

Allergy Diseases.

1 Introduction

Modelling dependence between di�erent binary variables is an essential statisti-
cal task with many applications in medicine, life sciences, economics, and sociol-
ogy. The basic statistical tools used in such situations are the autologistic (AL)
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model [2] and graphical network modelling [15], [1], [4]. General information on
graphical models for discrete data can be found in [13] and [12]. The classical
AL model [2] has been applied in epidemiology, marketing, agriculture, ecology,
forestry, geography, and image analysis [6], [5], [17], [7], [11]. The most com-
mon approach to estimation of the model parameters is the pseudo-likelihood
[3] method. Zalewska et al. [21] recommended a heuristic estimation method. Re-
cently, Shin et al. [17] invented and applied an AL network model for a disease
progression study using pseudo-likelihood to estimate the model parameters.

Our paper proposes a new graphical model that is related to but di�erent
from the AL model. We aim to describe the interdependence of allergic diseases
in contrast to most studies that do not consider dependences between allergies
[9], [20], [8].

We present our model in two versions. First, we introduce a generative model
that re�ects the variables' causal relationships. Then, we propose an approxima-
tion of the generative model by a misspeci�ed model, which is computationally
more e�cient and easily interpretable. We focus on the misspeci�ed version,
which we consider more practical. In both versions of our model, we consider
typical allergic disease symptoms, family history of allergic disease, and con-
trol variables as covariates. We consider two directed acyclic graphs (DAGs),
both based on experts' knowledge. The �rst one describes information about
the coexistence of certain allergic diseases (binary variables). The second graph
describes the relationships between particular symptoms and the occurrence of
these diseases. In the generative model, the edges lead from diseases to symp-
toms, corresponding to causal relations. In the misspeci�ed model, we reverse the
direction of edges: they lead from symptoms to diseases. This trick signi�cantly
reduces computational costs. Our model was naturally divided into separate lo-
gistic models for individual allergy diseases. Each logistic regression is estimated
by the standard generalized linear model (GLM) procedure. Our general ap-
proach is very �exible and can be applied to any dependence model for binary
variables. We comapre predictions based on two versions of our model. We ar-
gue that the misspeci�ed model is a good approximation for the more logically
consistent but computationally expensive generative model. The paper is orga-
nized as follows. Section 2 introduces the proposed methodology. In Section 3,
we apply this methodology to construct a new model of comorbidity of allergic
diseases, based on a big epidemiological data set (ECAP) [16]. At the end of this
section, we present an evaluation of the proposed model. Section 4 and 5 contain
discussion and conclusions. All computations are carried out with the R package
(www.r-project.org). Below we provide a graphical user guide illustrating our
methodology.

Expert Knowlege // Graphical Model // Estimation

��

Dataoo

Prediction

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63772-8_9

https://dx.doi.org/10.1007/978-3-031-63772-8_9
https://dx.doi.org/10.1007/978-3-031-63772-8_9


Network Model 3

2 Hierarchical Logistic Network Models

2.1 Genarative model

Our proposed model contains four groups of variables. In the �rst group, we
consider a random vector Y = (Y1, . . . , Yp)

T with binary components. Each of
these variables determines presence or absence of a given allergic disease for a pa-
tient. In our application we describe p allergic diseases. Taking into account the
known co-occurrence of diseases, the relationships between them are described
by a directed graph with the adjacency matrix A = (aki) as follows: aki = 1 if
Yi is a�ected by Yk and otherwise aki = 0.

In the second group, we have a random vector of symptoms of our dis-
eases S = (S1, . . . , Sm)T . The remaining two groups consist of common factors
F = (F1, . . . , Fl)

T , which can a�ect all considered diseases (for example genetic
features) and a vector of additional covariates X = (X1, . . . , Xr)

T such as gen-
der, age, residence of a patient, etc. Symptoms Si can be continuous or discrete
random variables. It is usually known which symptoms are characteristic for each
disease. This knowledge can be represented by a directed graph with adjacency
matrix B = (bkj) such that: bkj = 1 if Yk causes Sj and otherwise bkj = 0.

The full generative model includes diseases Y, symptoms S, common factors
F and additional covariates X. This graph has edges among Y,S variables given
by matrices A,B, and all edges leading from F,X variables to all components
of Y,S. We assume that the graph corresponding to the adjacency matrix A is
acyclic. Consequently, the whole graph is a directed acyclic graph (DAG). The
conditional probability distribution of Y,S is given by

P (Y = y,S = s|F = f ,X = x) =

p∏
i=1

P (Yi = yi|Ypa(Yi),F = f ,X = x)

×
m∏
j=1

P (Sj = sj |Ypa(Sj),F = f ,X = x),

(1)

where Ypa(Yi) = {Yk : Yk → Yi} is a set of diseases which a�ect the occurrence
of disease Yi,Ypa(Sj) = {Yk : Yk → Sj} is a set of diseases which cause symptom
Sj . We assume the following parametric form of conditional distributions:

log
P (Yi = 1|Ypa(Yi),F = f ,X = x)

P (Yi = 0|Ypa(Yi),F = f ,X = x)
= ω0i +

p∑
k=1

akiωkiYk + xTαi + fTβi, (2)

log
P (Sj = 1|Ypa(Sj),F = f ,X = x)

P (Sj = 0|Ypa(Sj),F = f ,X = x)
= γ0j +

p∑
k=1

bkjγkjYk + xT δj + fT εj . (3)

We thus have the following model parameters: ω0i ∈ R,ωki ∈ R,αi ∈ Rr, βi ∈
Rl, γ0j ∈ R, γkj ∈ R, δj ∈ Rr, εj ∈ Rl. Since the conditional probability (1)
consists of the product of p+m probabilities, the parameters of each factor can
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be estimated separately by a standard logistic regression procedure. To improve
prediction accuracy we also applied weighted logistic regression. However, the
results obtained by both methods were almost identical (Supplement [19]: C3-
C4).

2.2 Misspeci�ed model

Unfortunately, the model presented in the previous subsection is computation-
ally demanding, and its parameters are di�cult to interpret. We propose using
another, misspeci�ed model that does not re�ect causal relations between vari-
ables but is computationally more accessible for a big network and has param-
eters with simple, intuitive meaning. We change the direction of edges joining
symptoms and diseases. Entries of adjacency matrix B will now be interpreted
as follows: bij = 1 indicates the presence of arrow Yi ← Sj . We assume that
the remaining edges of the graph are the same as in the generative model. In
the misspeci�ed model, equation (1) is replaced by equation (4), and equations
(2)-(3) are replaced by equation (5) as follows:

P (Y = y|S,F,X) =

p∏
i=1

P (Yi = yi|Ypa(Yi),Spa(Yi),F,X), (4)

where Spa(Yi) = {Sj : Yi ← Sj} is a set of symptoms related to occurrence
of disease Yi. Similarly as in generative model, we assume a log-linear form of
conditional distributions. To simplify notation, we use the same symbols for the
parameters for both models.

log
P (Yi = 1|Ypa(Yi),Spa(Yi),F = f ,X = x)

P (Yi = 0|Ypa(Yi),Spa(Yi),F = f ,X = x)
= ω0i +

p∑
k=1

akiωkiYk

+

m∑
j=1

bijγijSj + xTαi + fTβi.

(5)

3 Application to Modelling Allergic Diseases

In this section we apply the proposed approach to investigate the prevalence
of allergic diseases and their interdependences. Our model is based on a big
epidemiological study in Poland (ECAP) [16]. More details can be found in the
Supplement [18]-Section A.

3.1 The structure of the model

The �rst group of variables consists of 5 selected allergic diseases Y1, Y2, Y3, Y4, Y5.
The left panel of Figure 1 illustrates the dependences between them, based on the
literature and on discussions with medical doctors [10], [14]. The second group
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Fig. 1. The Graphs with adjacency matrices A,B

of variables consists of typical symptoms of those diseases: S1, S2, S3. Addition-
ally we consider history of allergy diseases in the family: F1, F2, F3, F4, F5. The
right panel of Figure 1 shows dependences between allergic diseases and their
symptoms. The direction of arrows in Figure 1 lead from symptoms to diseases
which corresponds to the misspeci�ed model. In the last group of variables, we
consider control covariates: X1, X2, X3, X4 (they decsribe age, gender, residence
of patients). More detailed description of all the variables can be found in the
Supplement [18]-Section B).

3.2 Generative and misspeci�ed models of allergy diseases

We recall the generative model in which diseases cause symptoms. Taking into
account the structure of the graph with adjacency matrices A,B, we see that,
conditionally on covariates F and X, the conditional distribution of Y given
symptoms S has the form

P (Y1|Y2, Y3, Y4)P (Y2|Y4)P (Y3|Y4)P (Y4|Y5)P (Y5)P (S1|Y1)P (S2|Y2, Y3)P (S3|Y4).

(We omitted F and X in this formula).
Now we turn to the misspeci�ed model. Conditionally on covariates F and

X, the joint probability P (Y,S) is determined as:

P (Y|S) = P (Y1|Y2, Y3, Y4, S1)P (Y2|Y4, S2)P (Y3|Y4, S2)P (Y4|Y5, S3)P (Y5).

We now formulate speci�c equations restricting attention to the misspeci�ed
model only. We assume the logistic form of the conditional probabilities (formulas
(4)-(5)). We estimate each of them separately using standard R function 'glm'.
The subsequent equations concern the logits for asthma Y1, intermittent allergic
rhinitis Y2, chronic allergic rhinitis Y3, allergic dermatitis Y4. The equations are:

logit1 = ω01 +
∑4

j=1 αj1Xj +
∑5

j=1 βj1Fj + γ11S1 +
∑4

j=2 ωj1Yj .

logit2 = ω02 +
∑4

j=1 αj2Xj +
∑5

j=1 βj2Fj + γ22S2 + ω42Y4.

logit3 = ω03 +
∑4

j=1 αj3Xj +
∑5

j=1 βj3Fj + γ32S2 + ω43Y4.

logit4 = ω04 +
∑4

j=1 αj4Xj +
∑5

j=1 βj4Fj + γ43S3 + ω54Y5.
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3.3 Comparision of two versions of our model

We compute the 'diagnostic' probabilities of diseases given symptoms for the gen-
erative and the misspeci�ed model. It is worth noting that in the case of a large
network, it would not be possible to calculate P (Y|S,F,X) or P (Yi|S,F,X)
exactly in the generative model. In this situation, the misspeci�ed model has an
advantage over the generative model. The two models can be compared in the
case of a small network as that considered here.

We consider �ve scenarios (di�erent values of of covariates X,F, symptoms S
and coexistent deseases Yi). Let p1 = P (Y1 = 1|Y2 = 0, Y3 = 0, Y4 = 0, S1), q1 =
P (Y1 = 1|Y2 = 1, Y3 = 1, Y4 = 1, S1), p2 = P (Y2 = 1|Y4 = 0, S2), q2 = P (Y2 =
1|Y4 = 1, S2), p3 = P (Y3 = 1|Y4 = 0, S2), q3 = P (Y3 = 1|Y4 = 1, S2), p4 =
P (Y4 = 1|Y5 = 0, S3), q4 = P (Y4 = 1|Y5 = 1, S3). The results for the �rst two
scenarios are presented in Tables 1 (all 5 scenarios are given in the Supplement
[18]-Section C). The di�erence between the two models obtained is negligible.

Table 1. Comparison between the generative model and misspeci�ed model

Scenario Model p1 p2 p3 p4 q1 q2 q3 q4
1 generative 0.021 0.081 0.077 0.024 0.597 0.104 0.134 0.024

misspeci�ed 0.023 0.085 0.080 0.015 0.566 0.097 0.125 0.044
2 generative 0.103 0.282 0.322 0.208 0.886 0.326 0.461 0.524

misspeci�ed 0.088 0.270 0.307 0.081 0.842 0.299 0.421 0.216

3.4 Estimation of parameters and evaluation of the model

We report the estimated coe�cents of logistic regression, their standard errors,
the odds ratios with con�dence intervals (CI) in the Supplement [18]-Section C.
The accuracy of estimators and robustness of our model is evaluated using the
bootstrap and jackknife techniques. The dataset is divided into a learning and
testing sample to assess if the proposed model is adequate. The ROC curve and
average AUC on the testing sample are determined from 20 repetitions. Table 2
shows the AUC values for the averaged AUC values for bootstrap and jackknife.
The ROC curves (Fig1-Fig16) are collected in the Supplement [18]-Section D as
well as interpretation of the results from the medical point of view. Our results
show good stability of the model.

Table 2. AUC for each logit

logiti i = 1 i = 2 i = 3 i = 4

bootstrap 0.8470 0.6986 0.7201 0.7931
jackknife 0.8165 0.6857 0.7215 0.7921
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4 Discussion

Previous studies of multimorbidity in allergy [9], [20], [8], [14], [10] were based
on �tting of single logistic models that did not take into account the correlations
between the studied diseases. Our graphical model uses two DAGs to describe
such dependences. The proposed model can be used in studies of associations of
other diseases and, in general, in the study of correlations in complex systems.

5 Conclusions

Both versions of our model (generative and misspeci�ed) produced similar re-
sults. The latter is computationally more e�cient and easily interpretable. Eval-
uation of the model using bootstrap and jackknife techniques yielded average
AUCs ranging from 0.67 to 0.84 (Table 2), indicating relatively high stability of
the results. Both bootstrap and jackknife methods could be used to construct
con�dence intervals for the model parameters and classifacation metrics. Our
model can help predict the incidence of allergic diseases and will allow for a bet-
ter understanding of the complex co-occurrence of these diseases. It also sheds
light on the impact of such covariates as gender, age, family history, etc. on
allergic diseases. The proposed model can be easily extended by adding other
potential factors in�uencing the occurrence of the diseases. Due to the nature
of our task, we considered the low-dimensional case where the number of ob-
servations n is greater than the number of features p. Naturally, the proposed
approach can be generalized to the high-dimensional case p > n by adding the
Lasso [19] or Ridge penalty for log-likelihood for each logit model separately.
This will be the topic of further research.

Disclosure of Interests. The authors have no competing interests to declare that
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