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Abstract. The analysis of Disease-Disease Associations (DDA) and Gene-
Disease Associations (GDA) is a relevant task in bioinformatics. These
are analysed to investigate the interactions between sets of diseases and
genes as well as their similarity, e.g., to improve the phases of diagnosis,
prognosis and treatment in medicine. Generally, the extraction of infor-
mation of interest from large-scale data, usually heterogeneous and un-
structured, is performed via time-consuming processes. Therefore, several
computational approaches have been focused on their prediction through
data integration and machine learning techniques.
This paper presents a solution for Inferring DDA (IDDA) by integrat-
ing curated biomedical ontologies and medical dictionaries. It is able to
extract a set of DDA using an in-house score based on the GDA. A pre-
liminary step based on data enrichment retrieves the information about
gene and disease, and it integrates these with a set of curated biologi-
cal data ontologies and dictionaries. Specifically, IDDA extracts DDAs
based on an in-house score, which uses GDAs for its evaluations. In a pre-
liminary step, it performs data enrichment to retrieve concepts both for
diseases and genes, by integrating several curated biomedical ontologies
and medical dictionaries.

Keywords: bioinformatics · gene-disease · disease-disease · ontologies ·
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1 Background

In recent years, a large amount of genomic and biological data is analysed in
clinical research trials to evaluate novel treatments, to correlate human diseases
with genomics data, as well as for knowledge extraction [3,5, 7, 8]. For instance,
the genes involved in a disease are analysed for knowledge extraction, to un-
derstand its key factors (e.g., molecular basis and biological mechanisms), as
well as to evaluate treatments and diagnosis. Furthermore, disease profiling also
uses -omics data (e.g., genomics, transcriptomics, metabolomics) for evaluating
susceptibility, progression and manifestation.
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Data integration allows cataloguing and analysing heterogeneous and un-
structured information from different types and models, such as transcription
factor binding sites, protein interactions, Gene-Disease Associations (GDAs),
drug-target associations, medical ontologies and dictionaries, as well as literature
repositories [4]. To give a non-exhaustive, genes associated with similar disorders
show a higher likelihood of interaction, and diseases with common genes could
share similar origins or mechanisms, by extension [13]. Similarly, Disease-Disease
Associations (DDAs) represents relationships among diseases, and are useful to
investigate diagnosis, prognosis, and treatments.

Experimental methods for GDA are expensive and time-consuming [9], there-
fore, several computational methods were developed to infer GDA. Generally,
these identify concepts from medical literature, as well as by integrating pro-
tein interactions, functional annotation of signalling pathways, gene expression,
medical vocabulary, disease concepts, and other biomedical data source.

In this scenario, ontologies play a crucial role in obtaining an interdisciplinary
view from large and heterogeneous sources [6].

An ontology consists of a formal representation of relationships and proper-
ties existing among a set of concepts [2].

Usually, network-based scoring methods are applied to infer DDAs, establish-
ing relationships between two or more diseases, based on biological assumptions;
a non-exhaustive example may be: if two known disease gene sets are associated
with related diseases, they should be close to each other in the protein or gene
network.

DOSE [20] is a well-known tool for scoring similarities between diseases. It
uses Disease Ontology (DO) [15] to associate each disease with an identifier,
in order to compute semantic similarity between correlated concepts; genetic
information and diseases not mapped by DO are disregarded. DOSE can apply
both Jiang [14] and Wang [19] scores for inference.

In this paper, we present IDDA, a solution for Inferring Disease-Disease As-
sociations (IDDA) by integrating curated biomedical ontologies and medical dic-
tionaries.

2 Materials and Methods

In this section, we describe the methodology applied by our solution for integrat-
ing and processing the following sets of data: ClinVar [16], MedGen [11], DO,
Gene Ontology (GO) [1], and DisGeNet [17].

IDDA integrates the mentioned datasets, to produce its own dataset which
enables the enrichment of information related to genes and diseases.

2.1 Datasets

In this section, we propose a description for each dataset of curated biomedical
ontologies and dictionaries used by IDDA.
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ClinVar provides an archive for human medically relevant variants and phe-
notypes. The phenotypic descriptions available in ClinVar are based on the in-
formation maintained by MedGen.

MedGen is a catalogue of human disorders and phenotypes with a genetic
component, released by the National Center for Biotechnology Information.

Human disorders are also catalogued in DO, which consists of a set of terms
linked hierarchically by using interrelated subtypes.

GO describes the fundamental characteristics of genes and their products in
a species-independent manner.

A set of curated GDAs is available in DisGeNET using the UMLS Concept
Unique Identifier (UMLS-CUI) and Entrez gene unique integers (GeneID) to
identify the disease and the gene, respectively.

2.2 Gene-Disease Associations

Formally, let D be a set of diseases and G be a set of genes, such that D =
[d1, d2, ..., dn] and G = [g1, g2, ..., gm], with n and m respectively the size of D
and G.

IDDA performs the cross-referencing as the Cartesian product to build a
domain for GDA:

∀g ∈ G ∃d ∈ D : f(d, g)→ GDA

2.3 Disease-Disease Associations

Let D = [d1, d2, ..., dn] be a set of unique diseases, and G = [g1, g2, ..., gm] be a
set of unique genes, respectively with a size of n and m.

Assuming GDAs as the complete set of GDAs extracted by IDDA, and each
GDA as pair (d x, g y) with dx ∈ D, gy ∈ G, 1 <= x <= n and 1 <= y <= m.

Let denote Gd1d2 = [cg1, cg2, ..., cgk] the subset of k common genes (cg)
identified for a specific DDA.

A DDA (d1, d2) is formally identified in accordance with the following con-
ditions:

∀cgi ∈ Gd1d2 ∃(d1, cgi) ∈ GDAs, (d2, cgi) ∈ GDAs : Gd1d2 ⊆ (GDAs ∩ d1, d2)

with 1 ≤ i ≤ k, d1 ∈ D, and d2 ∈ D.

2.4 Score evaluation

IDDA calculates an own score useful to provide a weight for each association.
Similarly to DOSE, Jiang is used by IDDA as default method to calculate

the semantic similarity based on MF between genes.
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Formally, Jiang is an Information Content (IC)-based score that can be de-
fined as follows:

sim(d1, d2) = 1−min(1, IC(d1) + IC(d2)− 2 · IC(MICA))

IDDA calculates its own score for a DDA, to evaluate an associative rank. Let
DDA be the association between two diseases D1 and D2. Let G1 = g11, . . . , g1n
be a set of genes with n = |G1| related to D1, and G2 = g21, . . . , g2m be a set
of genes with m = |S| for D2 networks with m = |G2|. A DDA is evaluated
when there exist one or more common genes between D1 and D2, formally if
G1 ∩G2 ̸= {}.

IDDA measures the pairwise gene similarity by using Jaccard index [12]. The
latter computes the proportion of shared genes between G1 and G2 relative to
the total number of genes of D1 and D2, normalizing the number of common
genes in each DDA (|G1 ∩G2|).

Formally, the Jaccard index (J) between G1 and G2 is defined as:

J(G1, G2) =
|G1 ∩G2|

|G1|+ |G2| − (|G1 ∩G2|)
with 0 ≤ J(G1, G2) ≤ 1. More generally, J(G1, G2) = 1 when G1 = G2,

otherwise, J(G1, G2) = 0 when G1 ∩G2 = {}.
IDDA evaluates two main concepts that we denoted as internal and external

similarity: IS and ES, respectively.
The former concerns the average semantic similarity among the common

genes between D1 and D2, assuming DDA(D1, D2), related to DDA(D1, D2).
The latter concerns the average semantic similarity between the other genes

belonging to D1 and D2. Both of these are normalized applying the Jaccard
index (reported as J).

Formally, IS and ES are defined below, as well as the semantic similarity
cross-function (f). The latter is based on the Jiang method; it is denoted below
with jiang(A) or jiang(A,B), with A and B two generic sets of genes without
duplicates. Note that jiang(A) performs a score for each of the combinations of
A, while jiang(A,B) performs a score between all pairs of genes (Ai, Bj) with
1 ≤ i ≤ |A| and 1 ≤ j ≤ |B|.

Formally, the semantic similarity function implemented in IDDA is defined
as follows:

f(G)←−
∑|G|−1

i=1

∑|G|
j=i+1 Gij

n
with G = jiang((G1 ∪G2)⊗ (G1 ∪G2)) (duplicates are discarded).

Internal similarity (IS):

IS = f(G1 ∩G2) · J

External similarity (ES):

ES = jiang(G1− (G1 ∪G2), G2− (G1 ∩G2)) · (1− J)
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IDDA’s score:

IDDA score(D1, D2) = 1− (IS + ES)

The value related to “IDDA score” is expressed within the range [0, 1], where
0 represents a condition of no similarity while 1 represents perfect similarity (the
latter can be obtained by comparing a disease with itself, or by comparing two
concepts related to the same disease).

3 Results and Discussion

This section reports the results performed to evaluate the efficiency and the
validity of IDDA.

In preprocessing, a list of 318, 001 diseases was acquired using the ClinVar,
that was integrated with DO for extracting 102, 851 disease’s identifiers. Based
on preprocessed data, a set of 461, 633 GDAs are extracted from DisGeNET.

IDDA identified a preliminary set of 19, 957, 259 DDAs with a high redun-
dancy, that was processed producing 10, 283, 680 DDAs. The latter are reported
as associations (d1, d2, cg), with cg the number of common genes between d1 and
d2. Additionally, these are linked to DO terms to allow a comparison with other
methods that supports only DO as source for the information. Therefore, the
resulting dataset consists of 5, 705 DDA associated to a unique term in DO.

Homogeneous subgroup are isolated to identify similarity within the samples
in IDDA’s dataset; this task was performed by using K-Means [18] as clustering
algorithm. Furthermore, the elbow method [10] is applied, to determinate the
optimal no. of clusters (k). Briefly, the elbow method selects the number of
clusters to be such that adding a cluster does not significantly reduce the within-
group sum of squares.

In our experimentation, IDDA was compared with DOSE (see Section 1), to
evaluate its performance.

Note that DOSE applies the Jiang score on the DO’s graph, thus the result
is not related to the no. of genes (or other genomic information), contrarily to
IDDA. Furthermore, DOSE was used to map the IDDA results on DO graph,
by applying the Wang method on pathways related to each pair of diseases and
the Jiang method for evaluating gene similarities.

We performed One-Way ANOVA tests as statistical analysis, to check the
following hypothesis:

– differences among clusters in testing dataset are statistical significant both
for IDDA and DOSE based on Jiang score.

– for each disease exists a correlation between its IDDAand the related path-
way in DO.

Table 1 shows results for the first hypothesis. The One-Way ANOVA test
between IDDA and DOSE is statistically significant. This confirms that the
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clustering (for k = 3) produced relevant groups that are effectively able to iden-
tify subgroups for the testing dataset.

Furthermore, this test verifies that both IDDA’s score and DOSE are able to
identify the degree for a DDA. This hypothesis suggests that (i) there is also a
correlation between the two dependent variables, and (ii) IDDA’s score is able to
evaluate a DDA in according to DOSE method. Note that the two methods use
different approaches, respectively the first evaluates the gene similarity, while the
second evaluates the similarity by using DO information which do not contain
genomic data.

Sum of Squares Df Mean Square F sig.

IDDA
Between Groups 0.269 2 0.135 41.680 < 0.01
Within Groups 0.446 138 0.003
Total 0.715 140

DOSE
Between Groups 1.223 2 0.612 41.736 < 0.01
Within Groups 2.022 138 0.015
Total 3.245 140

Table 1. First hypothesis. The One-Way ANOVA test was performed between IDDA
and DOSE. It confirms that the clustering (with k = 3) has produced relevant groups
that are effectively able to identify subgroups for the testing dataset. The result is
statistically significant. Note: Df is the degrees of freedom.

The second hypothesis is evaluated by performing a Bivariate (Pearson, two-
tailed) Correlation between IDDA and DOSE, as shown in Table 2. The result
is statistically significant.

IDDA DOSE

IDDA
Pearson Correlation 1 0.483**
Sig. (2-tailed) < 0.01
N 141 141

DOSE
Pearson Correlation 0.483** 1
Sig. (2-tailed) < 0.01
N 141 141

Table 2. Second hypothesis. Bivariate correlation (Person, two-tailed) between IDDA
and DOSE scores.

Statistical analysis confirms that IDDA is able to identify a set of DDA that
can be checked by other relevant methods applied to DO.

4 Conclusion

In this paper, we proposed IDDA, a solution to infer DDAs by integrating on-
tologies, gene set enrichment analysis, and semantic similarity among GO terms.
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IDDA extracts DDAs based on an in-house score, which uses GDAs for its
evaluations. In a preliminary step, it performs data enrichment to retrieve con-
cepts both for diseases and genes, by integrating several curated biomedical
ontologies and medical dictionaries: ClinVar, MedGen, DO, DisGenet and GO.

Our experimentation has been conducted to evaluate IDDA’s score validity,
by comparing results with other relevant methods, as well as by mapping each
DDA to DO.
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