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Abstract. This study introduces an innovative memetic algorithm for
optimizing the consensus of well-adapted techniques for the inference
of gene regulation networks. Building on the methodology of a previ-
ous proposal (GENECI), this research adds a local search phase that
incorporates prior knowledge about gene interactions, thereby enhanc-
ing the optimization process under the influence of domain expert. The
algorithm focuses on the evaluation of candidate solutions through a
detailed evolutionary process, where known gene interactions guide the
evolution of such solutions (individuals). This approach was subjected to
rigorous testing using benchmarks from editions 3 and 4 of the DREAM
challenges and the yeast network of IRMA, demonstrating a significant
improvement in accuracy compared to previous related approaches. The
results highlight the effectiveness of the algorithm, even when only 5%
of the known interactions are used as a reference. This advancement rep-
resents a significant step in the inference of gene regulation networks,
providing a more precise and adaptable tool for genomic research.

Keywords: Memetic Algorithm · Gene Regulatory Networks · Opti-
mization · Bioinformatics

1 Introduction

In the field of computational biology, the inference of gene regulatory networks
(GRNs) has become an indispensable mean to comprehend the mechanisms gov-
erning gene expression and their implications in various areas of biomedical re-
search. These networks, which are crucial for understanding biological processes
at the molecular level, provide a valuable perspective in the study of diseases
[14, 30] and in the development of genetic therapies [29, 36].

However, despite significant advances in this field, the accurate inference of
GRNs remains a considerable challenge [15, 23, 34, 42]. There are two main diffi-
culties. The first is the inherent complexity of biological systems [28]. The second
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is the limitations related to the quantity and quality of empirically validated data
[6], which are also difficult to properly incorporate into existing methodologies
to improve the accuracy of the results. There is a clear need to take advantage
of the knowledge that the medical expert and the literature can bring to the
partial construction of networks through a priori known interactions.

In response to these challenges, this research proposes an advanced method-
ology that extends the previous work carried out in GENECI [33]. GENECI has
proven effective in addressing the complexity and diversity of networks through
the clever consensus of various techniques. Building upon this solid foundation
that addresses the first challenge, an additional stage has been integrated to
tackle the second drawback, focusing on maximizing the use of known informa-
tion. This has been approached by designing an adapted additional local search
phase, which incorporates prior knowledge about genetic interactions to guide
the optimization process, thus allowing for greater precision in the inference of
GRNs, through the injection of domain experts’ knowledge.

In this domain, it is common for experts to have partial knowledge or hy-
potheses about specific genetic interactions. This research focuses on the impor-
tance of integrating such knowledge into the inference of GRNs. The experimen-
tation in this work is based on the idea of refining and testing the proposal on
generic benchmarks with the intention of subsequently validating its application
in real-world problems where the complete solution is unknown. This has been
conducted by means of a well-grounded set of benchmarks, including DREAM
challenges [26] (specifically their 3rd and 4th editions) and the yeast network of
IRMA [4]. Results have shown that the application of this approach introduces
significant improvements in the inference of GRNs even when a minimal amount
of information is used.

This article is organized as follows. The state of the art in this field is pre-
sented in Section 2, followed by a detailed description of the approach and
methodology in Section 3. Subsequently, the experimentation of this study is
presented in Section 4. Conclusions and future lines of work are discussed in
Section 5.

2 Related Work

The inference of gene regulatory networks from expression data is a well-studied
challenge in computational biology. The literature has explored multiple ap-
proaches, including probabilistic graphical models [35], ordinary differential equa-
tions (ODEs) [11, 16, 37], and machine learning techniques such as neural net-
works [10, 12, 20, 39]. Integrative methods combining different omics data types
have also been explored [41], along with causality-based approaches [8] and works
related to mutual information [38]. The diversity of approaches has led to a
wide range of computational techniques aimed at inferring GRNs. Among them,
notable for their accuracy and popularity in the literature are ARACNE [25],
C3NET [1], CLR [7], GENIE3 [17], and GRNBOOST2 [27].

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63772-8_1

https://dx.doi.org/10.1007/978-3-031-63772-8_1
https://dx.doi.org/10.1007/978-3-031-63772-8_1


Medical knowledge-based memetic algorithm for GRN inference 3

In the field of genetic regulatory network inference, seeking a consensus
among the results of multiple techniques has been a prominent trend. The
DREAM challenge [26] was a significant turning point, demonstrating that com-
bining results from various techniques produces more accurate solutions than
individual methods alone [24]. This revelation spurred the exploration of diverse
approaches to achieve consensus, such as the analysis of topological features [19],
graph mining [18], and evolutionary algorithms [9, 31].

Recent advances reveal novel strategies for achieving consensus among in-
ference techniques, although they still lack a robust methodology tailored to
real-world biological networks. EnGRaiN [2] approaches consensus from a math-
ematical perspective without considering the biological context, while GReNa-
DIne [32] considers a limited number of techniques with a simple consensus
procedure. The challenge of building a weighted and optimal consensus from a
set of techniques, taking into account the biological nature of the problem, was
addressed in GENECI [33], with results demonstrating a significant improvement
in the accuracy of inferred networks.

In the biomedical field, the adoption of memetic algorithms has gained sig-
nificant traction, demonstrating their versatility and effectiveness in several ap-
plications [3, 5, 13, 21, 22, 40]. These algorithms, which combine intensive local
search with global evolutionary strategies, have been successfully applied to
solve complex problems in this domain. For instance, in [13] the optimization of
PPI (Protein-Protein Interactions) network alignment considers both topologi-
cal structure and sequence similarities, surpassing existing methods in accuracy.
Additionally, in protein structure prediction, memetic algorithms have been de-
signed using knowledge from databases to guide the search towards similar native
structures, showing promising results comparable to reference prediction meth-
ods [5, 21]. In the field of cancer diagnosis, the application of memetic algorithms
has demonstrated to enhance the selection of relevant genes by combining local
and global search techniques to identify discriminant genes with precision [3].

Finally, the memetic approach has also reached the focus of this work, the
reconstruction of GRNs. In [22], an innovative approach is proposed to learn
parameters of Recurrent Neural Networks (RNN) and develop an LASSO (Least
Absolute Shrinkage and Selection Operator) based framework for the effective
reconstruction of GRNs. This method demonstrates superior ability to handle
the complexity and sparsity of relationships in real GRNs, outperforming other
RNN learning algorithms in large-scale network reconstruction. More recently, in
[40], a memetic algorithm is proposed for inferring sparse GRNs using Maximum
Entropy Probability Models (MEPMs). This approach addresses the problem
from a multi-objective optimization perspective, considering maximum entropy
and MEPM constraints as separate objectives.

Given the statistical rigor demonstrated by the GENECI proposal in its
results and considering the validity that the memetic approach has shown in
biomedical domain problems, it is more than justified to introduce this approach
to address the specific problem of reaching a consensus among several inference
techniques for the reconstruction of GRNs.
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Fig. 1. Succession of phases within the evolutionary process. Individuals are crossed
through simulated binary crossover and subsequently subjected to polynomial muta-
tion. Following this, the local search begins where several variations of the individual
(encoding a given solution) are compared to select the one whose consensus network is
closest to the known interactions. Finally, the individuals are repaired to resume their
representation in the form of a weight vector.

3 Proposed Approach

In this article, a memetic algorithm is proposed to optimize the consensus of
different techniques for the inference of gene regulation networks. This is based
on our previous proposal where an evolutionary process drives this optimization
based on the quality and topological characteristics of the networks [33]. This
tool has been complemented with a local search phase to guide the optimization
process, thanks to prior knowledge of certain gene interactions in the network.
This additional phase is located and exemplified in Fig. 1. For a more technical
analysis, the pseudocode is set out in Algorithm 1.

The set of candidates subjected to local search is iteratively explored in a loop
spanning the length of the individual (line 3 in Algorithm 1). This set comprises
the individual provided by the previous phase without any modification (case
i = −1 in Algorithm 1) and each of the variations resulting from granting an
additional vote to each technique (case i ̸= −1 in Algorithm 1). In other words,
the first variation will correspond to adding an additional vote of confidence
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Algorithm 1 Main code of the local search phase
Input Individual sol, Known interactions involved in distance calculation ref .
Output Improved individual resSol.
1: resSol← copyOf (sol)
2: minDistance← inf
3: for i in (−1, len (sol)) do
4: tmpSol← copyOf (sol)
5: if i ̸= −1 then
6: tmpSol[i] += sum (sol) /len (sol)

7: RepairSolution (tmpSol)
8: net← GetNetwork(tmpSol)
9: distance← Distance (net, ref)

10: if distance < minDistance then
11: minDistance← distance
12: resSol← tmpSol

13: return resSol

to the first technique, quantified as the value of one vote in the case that the
system is not weighted (case i = 0 and line 6 in Algorithm 1). The exact formula
for calculating the new value of the technique in the vector is explained and
exemplified in Fig. 1.

After generating the candidates, they are repaired and the consensus network
derived from each of them is constructed (lines 7 and 8 in Algorithm 1). Finally,
the distance of their confidence levels from the known interactions in the network
is measured (line 9 in Algorithm 1). The known interactions will usually be
assigned a confidence level equal to 1 in the comparison file. However, if the
medical researcher wishes to assign a certain probability to their knowledge,
any other value between 0 and 1 is accepted. This means that knowledge of a
non-existent interaction could also be reflected, but this case is less common.

If the distance is less than the recorded minimum, the current one becomes
the new minimum and the best solution is replaced by the current one (lines
10-12 in Algorithm 1). At the end of the loop, the solution with the smallest
distance to the reference is returned (line 13 in Algorithm 1).

The distance is calculated as a simple summation of the absolute value differ-
ences between the value of the known interactions (usually 1) and the confidence
levels assigned by the consensus network for these interactions. However, the pos-
sibility that the set of known interactions is a poorly distributed sample that
always favors the same technique during the consensus, has been considered. To
mitigate this possibility, an additional parameter has been added that defines the
interactions that participate in the calculation of the distance on each iteration.

This parameter is exemplified in Fig. 2 by covering its three possible values,
namely: the option all is contemplated, in which all the known interactions
participate in all local searches; the option some in which a randomly chosen
subset of them participates on each occasion; and finally the option one in which
only one of the known interactions chosen randomly is used on each local search.
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Fig. 2. Examples of interactions involved in the distance calculation in different execu-
tions based on the proportion of the gold standard extracted as a set of “known by the
expert” interactions (rows) and the type of distance (columns). The case of extracting
5%, 10%, and 15% of the gold standard for the distance types all, some, and one re-
spectively, is shown. As can be observed, all executions take the same reference in the
case of all, while for some and one, there is a certain random component that causes
differences on each local search.

This local search phase aims at breaking the limitations imposed by GENECI
in its aggregate term Quality, where techniques whose confidence levels are quite
consistent with the remaining ones are somewhat rewarded. Although the con-
sistency of confidence values can increase the reliability of a technique, this
strategy sometimes lets certain peculiar interactions that are only inferred by a
small subset of techniques slip away. The local search allows for the utilization
of prior information to the inference of the network to identify these cases and
redirect the evolution of the individuals. It is evident that both strategies are
interdependent and must coexist in the evolutionary process, as exceeding the
use of previously known information could provoke overfitting.

4 Experimentation

The experimentation addressed in this study employs the academic benchmarks
provided by the DREAM challenges [26] (specifically their 3rd and 4th editions)
and the yeast network of IRMA [4]. DREAM challenges focused on subnetworks
associated with Escherichia coli (E. coli) and Saccharomyces cerevisiae (yeast)
organisms, and includes networks with sizes ranging from 10 to 100 genes. IRMA
network comprises 5 genes (CBF1, GAL4, SWI5, GAL80, and ASH1) and en-
compasses 6 regulatory interactions. These interactions lead to the creation of
both “switch on” and “switch off” versions of the network, achieved by cultivating
cells in either galactose or glucose conditions, respectively. All these networks
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were also part of the experimentation of GENECI and constitute a total of 27
inference cases. The known interactions of these networks that will guide the
evolutionary process have been defined from their gold standards (known solu-
tions information). Specifically, 5% of these references have been extracted for
each execution.

The accuracy of the results will be calculated using the AUROC and AUPR
metrics, which were set by the DREAM challenges themselves for their compe-
tition and make it possible to compare these results with other studies in the
literature. Other metrics such as F1-Score and MCC are not considered, as the
use of the chosen benchmark standards is deemed sufficient to cover this study.

This section presents the parameter configuration of the proposed method
and the subsequent rigorous comparison with regard to GENECI.

4.1 Parameter settings

Given that this proposal partially follows the evolutionary process of GENECI,
which is in fact common in standard EA settings, it has been decided to keep as
much as possible the parameter setting that was configured in the experimen-
tation of its corresponding article, hence allowing a fair comparison. Therefore,
the default settings of simulated binary crossover (with a probability of 0.9),
polynomial mutation (with a probability of 1/n, where n is the number of tech-
niques to be consolidated), and repair based on vector standardization have been
established. However, for the additional phase proposed in this work, it remains
to determine the probability with which the local search is carried out (which is
independent of the crossover and mutation probability) and the way the infor-
mation from the known interactions is used for the calculation of the distance.

To find the most suitable values for these two parameters, all possible com-
binations between their values have been considered. For the probability of the
local search, the candidate values 0.1, 0.25, 0.4, and 0.55, have been defined. And
for the type of distance, the already discussed options of all, some, and one.

Each combination of parameters has been tested with 15 independent execu-
tions for each network considered in this study. Afterwards, the performance of
each solution was calculated using the AUROC and AUPR metrics with regard
to the gold standards. For each network and combination of parameters, the me-
dian of their precision values was extracted, which finally allowed the calculation
of a Friedman statistical ranking with Holm’s non-parametric tests.

The results are shown in Table 1 for the AUPR metric and in Table 2 for the
AUROC metric. It can be seen how the winning combination for both cases is
the one that always takes into account all the known interactions in the distance
calculation and with a higher probability of local search. That is, the combination
that employs to a greater extent the external information provided. However,
rigorous statistical significance cannot be attributed to this victory since only in
one case does it meet the established threshold of p < 0.05.

A point to consider regarding the lack of statistical significance is that aca-
demic problems have a relatively small network size, sometimes around 10 nodes.
This causes the difference between taking all or only a subset of interactions for
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Table 1. Friedman mean rank with Holm’s adjusted p values (0.05) for AUPR. Several
distance (D) and local search probability (P) configurations are compared based on
the AUPR metric. For this purpose, 15 independent runs of each configuration were
performed and the median of them (Median) was rescued. After running Friedman’s
statistical ranking (second column), the winner (highlighted in bold with ∗) is taken as a
reference to measure statistical significance against the rest using Holm’s nonparametric
tests (third column).

AUPR
Algorithm Friedman′sRank Holm′sAdj − p

*Median D-all P-0.55 4.88889 -
Median D-one P-0.25 5.90741 0.725979
Median D-one P-0.1 5.96296 0.725979
Median D-all P-0.25 6.03704 0.725979
Median D-some P-0.4 6.24074 0.673303
Median D-all P-0.4 6.53704 0.465230

Median D-some P-0.1 6.62963 0.456477
Median D-one P-0.55 6.75926 0.396552

Median D-some P-0.25 6.90741 0.341178
Median D-one P-0.4 6.92593 0.341178

Median D-some P-0.55 7.00000 0.314504
Median D-all P-0.1 8.20370 0.008033

Table 2. Friedman mean rank with Holm’s adjusted p values (0.05) for AUROC. The
procedure and nomenclature are identical to those in Table 1.

AUROC
Algorithm Friedman′sRank Holm′sAdj − p

*Median D-all P-0.55 5.53704 -
Median D-some P-0.1 6.24074 1.99405
Median D-one P-0.25 6.42593 1.99405
Median D-one P-0.4 6.42593 1.99405
Median D-all P-0.25 6.46296 1.99405
Median D-one P-0.55 6.46296 1.99405
Median D-one P-0.1 6.59259 1.99405
Median D-all P-0.1 6.61111 1.99405
Median D-all P-0.4 6.74074 1.99405

Median D-some P-0.4 6.77778 1.99405
Median D-some P-0.25 6.79630 1.99405
Median D-some P-0.55 6.92593 1.72664

distance calculation to rely on a couple of interactions, which does not allow for
a significant statistical conclusion. However, there is an observable trend towards
providing more accurate solutions when the available information is maximized
simultaneously through probability and the method of distance calculation.
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Regarding the other combinations, another factor that cannot be measured
and may have affected the results should be taken into account, granting better
precision to combinations with less use of information and worsening the results
of others that made greater use of it. In each execution, to form the set of
known interactions, a random 5% of the network’s gold standard was extracted.
Although the number of reference interactions was the same in all executions,
their informational value is not necessarily equivalent. That is, the knowledge
about the existence of certain interactions may be more valuable than that of
others. This is an unpredictable and inevitable fact, since eliminating randomness
and establishing fixed reference relationships could bias the results even more.

In the context of the academic networks employed in this study, it is logical to
consider extending the winning combination and adding a higher probability of
local search to further improve precision levels. However, it should be noted that
in such academic problems, the temporal expression levels are simulated from
a predefined set of interactions, which ultimately represents the gold standard
of the problem. This means that whenever known interactions are added from
this gold standard, information from the optimal solution is being shared. This
is not the case with real-world networks, and even less so with networks that are
intended to be inferred (e.g. in vivo experiments that are not performed yet).
In other words, in the cases for which this proposal is intended, the information
provided could form part of a good solution known to the domain expert, i.e. a
set of interactions that effectively provides a logical explanation of what happens
to the gene expression levels during the experiment. However, this may not be
the only possible explanation, and there may be other similar alternatives that
fit the scenario better. If such information is consistently favored with high prob-
ability, it could disturb the direction in which the population evolves during the
algorithm execution. Nevertheless, keeping these interactions in mind regularly
can bring the population closer to a high-potential zone without condemning the
evolution to a possible local minimum.

Given that the optimal solution for these real-world networks intended to be
inferred is unknown, the deviation that can be caused by overusing local search
could be critical. Therefore, in this case, the most intelligent stance is caution
rather than blindly parameterizing in full this proposal based on simulated prob-
lems without this broader perspective.

Furthermore, even in academic data where the information injected into the
local search is part of the optimal solution to the problem, there is a certain risk
that a poorly distributed sample of known interactions may end up diverting
the evolution of individuals. The deterioration that these cases can cause to the
accuracy of the results increases with the probability of local search. Therefore,
once again, setting certain limits is a good practice to maintain a balance that
ensures the proposal’s security.

Therefore, despite the lack of rigorous statistical significance, the combination
of distance all and probability 0.55 is chosen as the winner, as it has obtained
the first position in the ranking for both precision metrics.
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Fig. 3. Comparison of the AUROC and AUPR performance metrics for the GENECI
(in blue) and MEMETIC-GENECI (in orange) algorithmic proposals on each of the
networks belonging to the third edition of the dream challenges (horizontal axis). For
identification, the challenge prefix (D3) is followed by the size of the network (10, 50
or 100) and finally the initial of the organism on which it is based (Y: Yeast, E: E.
coli). The bars indicate the medians of the AUPR values and the lines with markers
represent the medians of the AUROC values for each network. The AUPR and AUROC
values are displayed on separate vertical axes due to their different measurement scales,
reserving the left axis for AUPR and the right axis for AUROC.

4.2 Comparison with GENECI

After configuring the parameters of the memetic algorithm, this section quan-
tifies the improvement achieved by this proposal after adding the additional
phase of local search. To this end, the precision results presented in the original
GENECI article [33] are compared with those obtained by the best parameter
combination seen in the previous section. Specifically, for each network and pre-
cision metric, the median of GENECI’s executions is compared with the median
of the executions of the current proposal. This comparison has been decided to
be represented visually for editions 3 and 4 of the DREAM challenges (see Figs.
3 and 4 respectively) and presented quantitatively in Table 3 for the IRMA yeast
network.

In Fig. 3, it can be observed that the median accuracies of the solutions from
the approach in this work surpass, in most cases, the accuracies provided by the
original version of GENECI. Upon closer examination, it is noticed that there
is a certain relationship between the size of the networks and the stability of
this improvement. That is, for larger networks, the enhancement provided by
the additional phase of this approach is more robust and decisive. However, in
the case of small networks, more varied differences are observed between the
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Fig. 4. Comparison of the AUROC and AUPR performance metrics for the GENECI
(in blue) and MEMETIC-GENECI (in orange) algorithmic proposals on each of the
networks belonging to the fourth edition of the dream challenges (horizontal axis). The
nomenclature and interpretation of the graph are identical to those in Fig. 3.

two algorithms, with ties or even a slight lead of the original version appearing
in certain cases. This, in a way, validates the choice of the application domain
selected for this proposal which, despite being tested on simulated networks, is
intended for inferring real-world networks with significantly larger sizes.

Regarding the instability observed for small-sized networks, it is worth men-
tioning that these cases have a higher probability of obtaining a poorly dis-
tributed sample, as the samples have very few interactions and therefore a good
representation is not achieved in any case. Therefore, the instability observed
in these cases confirms what was previously mentioned in the parameterization,
as even with the introduction of correct interactions, a bad sample can divert
the proper evolution of the population. However, thanks to the caution and
balance achieved in the parameterization, the impact of these exceptional and
indetectable cases a priori is quite moderate on the accuracy of the solutions. It
is possible to guide and influence the evolution of individuals without completely
damaging their convergence.

In Fig. 4, the precision levels of both proposals for networks from DREAM 4
are compared. In this plot, the connection between the size of the networks and
the stability of the improvement provided by the local search phase is once again
confirmed. Additionally, in this subset of networks, the correlation between both
metrics is observed in greater detail. That is, both metrics seem to simultane-
ously show the same degree of improvement in most cases. This adds a certain
reliability to the proposal of this work.
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Table 3. Accuracy values for IRMA networks. In this table, a gene network is contem-
plated for each pair of columns, where in each row the AUPR and AUROC values are
provided for each algorithm.

Técnica
IRMA_switch-off IRMA_switch-on
AUROC AUPR AUROC AUPR

Median GENECI 0.8611 0.7865 0.8889 0.75
Median MEMETIC-GENECI 0.8611 0.7865 0.8939 0.7549

Finally, in Table 3, the precision levels for the yeast network of IRMA are pre-
sented. In this case, given that it is such a small network with such a high initial
precision level, the margin for improvement is minimal. Additionally, the infor-
mation available in the set of known interactions is extremely limited, around
1 interaction (the minimum allowed). Nevertheless, a subtle improvement has
been achieved in the "switch-on" version, maintaining exactly identical values
for the "switch-off" instance. The fact that identical values are obtained is due
to the small size of the network, causing precision values to be quite staggered.

After analyzing all the sets of networks, it can be checked how the memetic
proposal surpasses GENECI in the majority of cases. To provide greater rigor
to this comparison, the Wilcoxon test has been calculated, which has provided
a p-value of 2.468690e-03 for AUROC and 1.592934e-05 for AUPR. That is, the
improvement in the precision of the results is statistically significant.

The ability to achieve statistically significant improvements with such a re-
stricted sample of known interactions (5% of the gold standard) highlights the
algorithm’s efficacy in integrating and maximizing the informational value of a
limited data set. This is especially crucial in the field of computational biology,
where the complete and accurate availability of data can be a constant challenge.

It is worthy to note that thanks to the precautions taken during parameter-
ization, this proposal has demonstrated robustness and reliability. During the
experimentation, the subset of interactions designated to form the reference in
the local search phase was chosen randomly. This random choice has led to the
emergence of poorly distributed samples that could disturb the optimization of
the population. However, it has been shown that the impact on the deterioration
of accuracy has been minimal in these exceptional cases.

Furthermore, it is also important to comment that this proposal has managed
to improve results in a set of extensively worked and studied benchmarking net-
works, whose margin for improvement was initially very limited. The algorithm’s
ability to find and exploit areas for improvement in these networks indicates its
potential to inject the knowledge provided by the expert and maximize its use
to discover novel insights in the data.
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5 Conclusions and Future Work

This work presents a novel memetic algorithm for the inference of gene regulatory
networks (GRNs), that incorporates a local search phase to leverage prior knowl-
edge of gene interactions. This model was applied to a set of networks widely
used as benchmarks in the field, which consists of several DREAM challenge net-
works and the IRMA yeast network. Finally, a 5% of the known interactions of
the gold standards were extracted to feed the local search phase of the algorithm,
which modifies the individuals to approximate their consensus networks to the
known interactions. Results demonstrate a statistically significant improvement
in the inference accuracy compared with the previous GENECI model.

The significance of these findings lies in the algorithm’s ability to effectively
utilize minimal prior knowledge to guide the evolution of gene regulatory net-
work inferences, offering a more precise and adaptable tool for genomic research.
This advancement is particularly relevant in the context of computational biol-
ogy, where the accurate inference of GRNs is crucial for understanding complex
biological processes and diseases at the molecular level.

Looking ahead, one promising direction involves dissecting the aggregate
terms of the consensus optimization model into multiple objectives, which could
enable a more nuanced optimisation process that better captures the complexity
of biological networks. In addition, it is essential to evaluate both the original
and improved algorithms against a broader academic benchmark. Such extended
testing could facilitate more substantial progress towards applications in real-
world networks, where the complexities and scale of the data present unique
challenges and opportunities for advancing the field of bioinformatics.
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