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Abstract. This paper addresses a kernel-based learning problem for a
network of agents locally observing a latent multidimensional, nonlinear
phenomenon in a noisy environment. We propose a learning algorithm
that requires only mild a priori knowledge about the phenomenon under
investigation and delivers a model with corresponding non-asymptotic
high probability error bounds.
Both non-asymptotic analysis of the method and numerical simulation
results are presented and discussed in the paper.
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1 Introduction

A multi-agent system is a network of autonomous entities called agents that
share information and collaborate to solve tasks usually beyond an individual
agent’s scope [11]. This broad description fits well in the recent research trends
like cloud computing [10], or Industry 4.0 [9], and allows multi-agent systems to
find applications in many other fields. In robotics, in scenarios including groups of
mobile robots or swarms of drones, it is necessary to avoid collisions or obstacles
and to navigate collaboratively [8]. We can also find numerous other examples,
like analyzing the traffic flow [6] or modelling purchasing decisions [3].

Inspired by these multidisciplinary applications, we formally discuss the gen-
eral problem of distributed learning, with a particular focus on the modelling
of nonlinearities under limited information, cf. [4]. In the considered scenario,
every agent (node) locally observes the outcome of some unknown global phe-
nomenon of interest. Although the agents aim to provide a non-local comprehen-
sive model of the phenomenon, this may be not possible for individual nodes due
to the limited range of their own observations. Thus, collaboration is necessary.
Nonetheless, we assume that the agents cannot communicate freely throughout
the entire network, but a single agent can only interact with a narrow group of
its neighbourhood nodes (cf. Fig. 1).
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One can find numerous approaches related to this problem in the literature,
among which Kalman-based filtering [2], diffusion [5], and consensus [1] tech-
niques can be distinguished; see e.g. [7] for a more extensive discussion. While
our approach is motivated by the abovementioned methods, we introduce, how-
ever, a few substantial modifications. In particular, regarding the investigated
nonlinear phenomenon, we require only limited a priori knowledge, usually in-
sufficient for many parametric estimation techniques proposed so far. We use
kernel regression for efficient non-parametric modelling and provide correspond-
ing error-bound guarantees that hold for a finite number of samples. The algo-
rithm proposed in this paper is an extension of the method introduced in [13],
suited for multivariate phenomenons.

Fig. 1: A network of distributed agents with highlighted neighbourhood of a
selected node.

2 Problem formulation

We investigate a problem of distributed learning, where a group of agents ob-
serves an unknown phenomenon in a noisy environment and aims to provide
noise-free estimations with high probability guarantees for a given region of in-
terest.

We consider a set of M agents and model their cooperation via a connected
and undirected graph G = (M, E) with M = {1, 2, . . . ,M} nodes and a set of
unweighted edges E . To reflect possible restrictions and to reduce the commu-
nication burden, we assume that two nodes i, j ∈ M can exchange information
if and only if they are directly connected, i.e., if {i, j} ∈ E . Thus, we define the
neighbourhood of a node i ∈ M as the set Ni = {j : {i, j} ∈ E}.

In the considered setup, at every time step t ∈ N , every agent k ∈ M
obtains an explanatory data point ξk,t ∈ Rp, for some fixed p ∈ N, and observes a
noisy outcome yk,t of the latent nonlinear phenomenon modelled by an unknown
nonlinear mapping m : D ⊂ Rp → Rd,

yk,t = m(ξk,t) + ηk,t, k ∈ M, t ∈ N, (1)

where ηk,t denotes an additive noise.
This paper aims to provide a distributed inference of m under mild a priori

knowledge about its structure. Hence, the following assumptions regarding the
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observed phenomenon and the additive noise have a general form. For simplicity
of notation, we will use the symbol a1:m as a short for a sequence a1, . . . , am.

Assumption 1. The latent phenomenon of interest, m : D ⊂ Rp → Rd, is a
Lipschitz continuous mapping, i.e., for a known constant 0 ≤ L <∞,

∥m(ξ) −m(ξ′)∥2 ≤ L∥ξ − ξ′∥2, ∀ ξ, ξ′ ∈ D. (2)

Assumption 2. The explanatory sequence {ξt ∈ Rp : t ∈ N} is an arbitrary
stochastic process.

Assumption 3. The disturbance {ηt ∈ Rd : t ∈ N} is a sub-Gaussian stochas-
tic process, that is, there exists some σ > 0 such that, for every γt ∈ Rd (possibly
a function of ξt), and every t ∈ N, E{exp

(
γ⊤t ηt

)
|η1:t−1, ξ1:t} ≤ exp

(
γ⊤t γtσ

2/2
)
.

The above requirements have a somewhat general character and are inspired
by the real-world properties of many technical processes. Informally, Assump-
tion 1 allows, in particular, any nonlinear function with a limited rate of increase
(or decrease), and Assumption 3 admits any bounded i.i.d. disturbances with
zero mean, independent of the explanatory data.

3 Local agents’ modelling

To construct the proposed learning technique, we begin from a single-agent per-
spective. Given a fixed time instant t and a set of local data measurements, we
define for agent k ∈ M the following kernel regression estimator:

µ̂k,t(x) :=
∑t

n=1

Kh(x, ξk,n)

κk,t(x)
yk,n =:

ψk,t(x)

κk,t(x)
,

κk,t(x) :=κk,t(x, h) =
∑t

n=1
Kh(x, ξk,n),

(3)

with Kh(x, ξ) := K(∥x− ξ∥2/h), and where K, h are the kernel function and the
bandwidth parameter, respectively. To ensure appropriate statistical properties
of µ̂k,t, we make the following assumption:

Assumption 4. The kernel K : R → R is such that 0 ≤ K(v) ≤ 1 for all v ∈ R.
Also, K(v) = 0 for all |v| > 1.

We are now about to develop the main technical result, which is the basis
for the network estimation algorithm introduced in the sequel (cf. [13]).

Lemma 1 Let Assumptions 1–4 be in force. Consider the estimator µ̂k,t ∈ Rd

and fix a bandwidth parameter h. Let x ∈ D ⊂ Rp be fixed or in general a
measurable function of ηk,1:t−1, ξk,1:t (e.g., x = ξk,t). Then, for every 0 < δ < 1,
with probability at least 1 − δ, if κk,t(x) ̸= 0,

∥µ̂k,t(x) −m(x)∥2 ≤ βk,t(x), where βk,t(x) := Lh+ 2σ
αk,t(x, δ)

κk,t(x)
, (4)

αk,t(x, δ) :=


√

log
(
δ−12d/2

)
, for κk,t(x) ≤ 1√

κk,t(x) log
(
δ−1

(
1 + κk,t(x)

)d/2)
, for κk,t(x) > 1.

(5)
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Proof. See the Appendix3. ⊓⊔

In Lemma 1, we provide error bounds for local (single-agent) estimates that hold
with probability 1− δ. The Lipschitz constant L and the noise proxy variance σ
are, however, required to be known (in practice, at least upper bounds on these
quantities are needed).

Due to the fact, that the dimensionality of the output influences the bounds,
for higher d’s, it may be worth considering techniques of MIMO system decom-
positions as e.g. [12].

4 Distributed modelling – data aggregation

Having a single-agent estimator, we are now ready to introduce a distributed
modelling procedure.

According to the considered approach, every agent k spreads its local esti-
mations by broadcasting tuples of essential data Tk,t(x) = (ψk,t(x), κk,t(x), x),
which contains locally computed numerator, denominator and the estimation
point, to its neighbourhood Nk. The acquired tuples are then stored in set Tk.
To avoid data repetition in a container of tuples, only a single tuple from a single
agent and fixed estimation point x is included in Tk, i.e., the newer (incoming)
tuples overwrite the older ones.

Algorithm 1 Data exchange and aggregation ▷ Agent k

1: input: X ▷ Estimation points
2: for t = 1, 2, . . . do
3: Get (ξk,t, yk,t) ▷ Get local measurement
4: if acquired new tuple then
5: Update Tk

6: if send local data then
7: Select x ∈ X ▷ Select an estimation point
8: Evaluate ψk,t(x), κk,t(x)
9: Tk,t(x)← (ψk,t(x), κk,t(x), x)

10: if send acquired data then
11: Select Ti(x) ∈ Tk

12: Broadcast selected tuple ▷ Send data to the neighbors

13: end

The proposed algorithm requires a few comments. We assume that all the
agents work on the same set X (i.e., x ∈ X ) and they can freely share their data.
We do not specify here when the agents should transfer their local data and
when they acquire information from their neighbourhoods. Currently, we leave
this open for the user, by setting the flags send local data and send acquired data
(in the experiments these flags were set randomly).

Following the data exchange and aggregation routine proposed in Algo-
rithm 1, every agent builds a tuple set Tk that will be used next to construct a

3 For the full proofs we refer the reader to https://arxiv.org/pdf/2404.09708.pdf
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model of m(·). For every agent k with Tk, we define an estimator that combines
all the acquired data as follows:

m̂k,t(x) =

∑M
i=1 ψi(x)∑M
i=1 κi(x)

=
Ψk,t(x)

Kk,t(x)
, ψi(x), κi(x) ∈ Ti(x) ∈ Tk. (6)

For the estimator in (6), we provide non-asymptotic error bounds in Theorem 1
below.

Theorem 1. Let Assumptions 1–4 be in force. Consider any agent k ∈ M with
data exchange and aggregation procedure as in Algorithm 1 and estimate m̂k,t.
Then, for x ∈ X and any 0 < δ < 1, with probability 1 − δ,

∥m̂k,t(x) −m(x)∥2 ≤ βk,t(x), (7)

where βk,t(x) is given by eqns. (4) and (5).

Proof. We introduce a merged index q that takes values from 1 to τ =
∑M

i=1 ti
and mappings iq and nq, that transfer a single q back to the original i and n,
respectively. Thus,

m̂k,t =

∑M
i=1

∑ti
n=1Kh(x, ξi,n)yi,n∑M

i=1

∑ti
n=1Kh(x, ξi,n)

=

∑τ
q=1Kh(x, ξiq,nq )

κτ (x)
yiq,nq

= µ̂τ (x). (8)

This can be interpreted as the local estimator of an agent, that directly acquired
all τ observations. Hence, we can apply the error bound from Lemma 1, which
completes the proof. ⊓⊔

As we have shown, Theorem 1 can be proven by reinterpreting Lemma 1 since
the final estimate combines the acquired numerators and denominators, and is,
in fact, the same as the estimate calculated from raw data transferred to a single
agent. This is however possible only if all the agents operate with the same upper
bound of the noise proxy variance σ.

5 Numerical experiments

In this section, we illustrate the main concept of the proposed approach4. To this
end, we use a network of 25 agents with randomly selected topology, as shown in
Fig. 5. In the experiments we consider a nonlinearity m : R2 → R being a mixture
of three Gaussian surfaces N ([0, 0], 0.5I), N ([1, 2], 0.55I), N ([2,−2], 0.7I). The
output noise sequences ηk,t for every agent k are sampled from a normal distri-
bution N (0, 0.05). The total region of interest D is a set [−2, 2]× [−2, 2] and the
estimation grid X is evenly spaced with a step 0.25. The explanatory data ξk,t

4 The Python code to obtain the numerical results is available at https://github.c

om/kkowalc/Kernel-based-learning-with-guarantees-for-multi-agent-appli

cations.
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is generated from a normal distribution N (µξk , σξk). Both {ξk,t} and {ηk,t} are
mutually independent. For simplicity of calculations and clarity of presentation,
the parameters µξ,k and σξ,k are selected to ensure that D ⊂ D1∪D2∪· · ·∪DM ;
otherwise, it would be necessary to propagate the bounds with the Lipschitz con-
stant for the regions where measurements could not be obtained. The required
parameters L and δ are set to 0.3 and 0.001, respectively.

Fig. 2: Random topology network with
25 nodes.

Fig. 3: Bound evolution over time for
a selected estimation point and a few
selected agents.

In Fig. 5 we present the evolution of our confidence bound over time for a
selected estimation point x = (0, 0). At the beginning the bound is high due
to the lack of reacquired tuples, but with time more tuples for the estima-
tion point are obtained. This process however, slows down with time, since the
number of agents in the network is finite, hence no new tuples are acquired
and the improvement of the bounds is a result of updating existing tuples.

Fig. 4: Comparison of the model provided by a single agent, with a global model,
that uses all the agents’ data.

As we mentioned in the previous sections, transferring all the data to a
single processing centre usually requires a significant communication cost. One
of the main goals of distributed learning is to provide a result that is close to the
centralised approach, and the proposed data exchange and aggregation algorithm
has the possibility (under a proper number of connections between the nodes) to
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achieve it. In Fig. 4. we present a side-by-side comparison of the model provided
by the single agent and the model calculated in a centralised way with the usage
of all the agents’ local data.

6 Conclusions

In this paper, we have proposed a new distributed learning algorithm, designed
for learning multivariate phenomena. Following the data exchange and aggrega-
tion procedure as described in Algorithm 1 and using a distributed estimator, a
single agent is able to model a phenomenon in regions that are far beyond its
local scope. We have formally investigated, under rather mild assumptions, the
non-asymptotic properties of the proposed method. Also, we have illustrated
the obtained theoretical results via numerical simulations, which clearly show
the advantages of the techniques described in this paper.

As future work, we plan to expand the proposed approach to a more general
setting, where we allow the agents to have different bandwidth parameter h
and noise proxy variance upper bounds σ. Also we aim to investigate network
topology properties in order to develop a technique for setting data sharing flags.

Appendeix

Proof (of Lemma 1). We begin with the observation that∥∥∥∥∥
t∑

n=1

Kh(x, ξn)

κt(x)
yn −m(x)

∥∥∥∥∥
2

≤
t∑

n=1

θn∥m(ξn) −m(x)∥2 +

∥∥∥∥∥
t∑

n=1

θnηn

∥∥∥∥∥
2

, (9)

where θn := Kh(x, ξn)/κt(x). Note that Σt
n=1θn = 1. Due to Assumption 4, if

Kh(x, ξn) > 0, then ∥x− ξn∥2/h ≤ 1. Hence, cf. Assumption 1,
∑t

n=1 θn∥m(ξn)

−m(x)∥2 ≤
∑t

n=1 θnL∥x− ξn∥2 ≤ Lh. For the last term in (9), observe that∥∥∥∑t

n=1
θnηn

∥∥∥
2

=
1

κt(x)

∥∥∥∑t

n=1
Kh(x, ξn)ηn

∥∥∥
2
. (10)

According to Lemma 2 and since Kh(x, ξn) ≤ 1 (cf. Assumption 4), the right-
hand side of Eq. (10) is upper bounded (with probability 1 − δ) by

1

κt(x)

∥∥∥∑t

n=1
Kh(x, ξn)ηn

∥∥∥
2
≤ σ

√
2 log

(
δ−1 (1 + κt(x))

d/2
)√1 + κt(x)

κt(x)
.

Observe next that, if κt(x) > 1, then
√

1 + κt(x)/κt(x) <
√

2/
√
κt(x). There-

fore, with probability 1 − δ, for κt(x) > 1,
1

κk,t(x)

∥∥∥∑t

n=1
Kh(x, ξn)ηn

∥∥∥
2
≤ 2σ

κt(x)

√
κt(x) log

(
δ−1 (1 + κt(x))

d/2
)
,

whereas for 0 < κt ≤ 1,

1

κt(x)

∥∥∥∑t

n=1
Kh(x, ξn)ηn

∥∥∥
2
≤ 2σ

κt(x)

√
log

(
δ−12d/2

)
,

which completes the proof.
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Lemma 2 Let {vt ∈ R : t ∈ N} and {ηt ∈ Rd : t ∈ N} be stochastic processes.
Assume that there exists some σ > 0 such that, for every γt ∈ Rd (possibly a
function of vt), and every t ∈ N, E[exp

(
γ⊤t ηt

)
|η1:t−1, v1:t] ≤ exp

(
γ⊤t γtσ

2/2
)
.

Define St :=
∑t

n=1 vnηn and Vt :=
∑t

n=1 v
2
n. Then, for every t ∈ N and 0 < δ <

1, with probability 1 − δ,

S⊤
t St ≤ 2σ2 log

[
(Vt + 1)d/2/δ

]
(Vt + 1).
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