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Abstract. This research presents an efficient computational method for retrofit-
ting of buildings by employing an active learning-based ensemble machine 
learning (AL-Ensemble ML) approach developed in OpenSees, Python and 
MATLAB. The results of the study shows that the AL-Ensemble ML model 
provides the most accurate estimations of interstory drift (ID) and residual in-
terstory drift (RID) for steel structures using a dataset of 2-, to 9-story steel 
structures considering four soil type effects. To prepare the dataset, 3584 in-
cremental dynamic analysis (IDA) were performed on 64 structures. The re-
search employs 6-, and 8-story structures to validate the AL-Ensemble ML 
model's effectiveness, showing it achieves the highest accuracy among conven-
tional ML models, with an R2 of 98.4%. Specifically, it accurately predicts the 
RID of floor levels in a 6-story structure with an accuracy exceeding 96.6%. 
Additionally, the programming code identifies the specific damaged floor level 
in a building, facilitating targeted local retrofitting instead of retrofitting the en-
tire structure promising a reduction in retrofitting costs while enhancing predic-
tion accuracy. 

Keywords: Computational Method, Active Learning, Ensemble Machine-
Learning Model, Retrofitting Structures, Mainshock-Aftershock Sequence. 

1 Introduction 

The utilization of dissipation devices, such as viscous dampers, buckling-resisting 
braces (BRBs), and shape memory alloys (SMAs), constitutes an advanced and stra-
tegic approach in structural engineering and seismic retrofitting. Each of these dissi-
pation devices serves a unique purpose in enhancing the resilience and performance 
of structures under dynamic loads, and avoiding intensive damages particularly in 
seismic-prone regions [1-3]. Viscous dampers are strategically placed within a struc-
ture or between structures to enhance its overall seismic performance and resilience 
[4-6], while knee braces and BRBs are implemented as bracing system [7]. By dissi-
pating energy through controlled yielding or ductile behavior, BRBs contribute to the 
structure's resilience against seismic forces [8-10]. In addition, using infill walls also 
can be a reachable alternative for retrofitting of buildings [11, 12]. When incorporated 
into structural elements, SMAs contribute to damping vibrations and reducing the 
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overall impact of seismic forces, enhancing the structure's performance and minimiz-
ing damage. Moreover, using SMA bolts can enhance the connections behavior and 
prevents large residual interstory drift (RID) that is crucial in the decision-making 
process for retrofitting procedures [13, 14]. Enhancing the safety and resilience of 
buildings in seismic challenges, this study aims to propose a novel retrofitting 
scheme. 
Machine learning (ML) computational algorithms are widely used by researchers to 
provide prediction models on engineering problems such as seismic response and 
performance assessment [15-17], seismic risk assessment [18-20], and predicting 
concrete material strength [21] for steel and reinforced concrete (RC) structures. 
Meanwhile, there is still a gap for predicting the interstory drift (ID) and RID of floor 
levels of buildings for retrofitting purpose. Instead of relying on a single ML algo-
rithm, ensemble methods combine predictions from several base models to make 
more robust and reliable predictions [22]. By iteratively selecting the most relevant 
data points for labeling, active learning can often achieve higher accuracy with fewer 
labeled instances compared to traditional supervised learning approaches. In addition, 
active learning allows retrofitting decisions to be based on the most informative data, 
optimizing the allocation of resources by strategically selecting dissipation devices 
that will benefit the most from retrofitting efforts. 
This study aims to provide an active learning-based ensemble ML computational 
model to estimate the seismic response of ID and RID, which play a crucial role on 
illustrating the seismic behavior of building. Having these responses can help civil 
engineers to decide on retrofitting of building with recognizing the weak floor level 
and introduce it for retrofitting scheme. Moreover, by changing the structural mem-
bers of the weak floor, it is possible to check the reliability of the retrofitted structure. 
This procedure can cut the complex modeling, time-consuming analysis, and need for 
a professional expert for modeling process. Since the structural conditions and seis-
mic responses can vary widely among different buildings, active learning enables 
ensemble ML models to adaptively learn from the most relevant retrofitting cases 
(i.e., training dataset), allowing for the formulation of retrofitting strategies tailored to 
specific characteristics and vulnerabilities of each structure. Therefore, active learning 
can be a guidance to ensemble ML models to identify and prioritize the critical pa-
rameters influencing the effectiveness of retrofitting measures. Active learning helps 
reduce this uncertainty by iteratively refining the ensemble model based on the most 
relevant and informative data, leading to more robust retrofitting decisions that align 
with actual structural performance. Since the retrofitting of building after mainshock 
and before aftershock can be a challenging for its complex modeling of damaged 
building, the proposed method can be a useful strategy. It is noteworthy that using this 
procedure can widely reduce time of seismic evaluations and retrofitting of buildings. 

2 Structural modeling 

For providing a dataset, buildings having 2-, to 9-story elevations have been designed 
according to ASCE 7-16 [23] (see also [15] for details of designing process) consider-
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ing four soil types (i.e., B, C, D, and E). It should be noted that to improve the model-
ing quality of the structure, IMK hinges have been used for beams [4], fiber section 
has been used for columns [5], and P-∆ effect has been considered in models using a 
leaning column [24, 25] modeled in OpenSees [26] software. The modeling procedure 
and dataset used in this research has been provided by Kazemi et al. [15] and 3584 
incremental dynamic analysis (IDA) were done on selected 64 structures based on the 
Sa(T1) (i.e., intensity measure) and ID and RID (i.e., demanding thresholds) [27, 28]. 
In addition, the dataset has been improved by adding the floor labels of structures to 
have the ID of each floors as output of ML model. Moreover, the dataset has been 
changed to include the sections of beams and columns of each floor levels into ac-
count. Therefore, it will be possible to estimate the ID or RID of each floor level of 
structure; and then, check the sections of structural elements related to that floor level. 
This ability provides information regarding the weak floor level that can be useful for 
retrofitting purpose. Fig. 1 presents the IDA curves and median of IDA curves of the 
6-, and 8-story structures subjected to pulse-like records. 
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Fig. 1. IDA curves and median of IDA curves of the 6-, and 8-story structures subjected to 
pulse-like records. 

3 Computational method 

Literature review show that many studies used dissipation devices such as viscous 
dampers, knee braces, BRBs, and SMAs to improve the seismic behavior of building 
under seismic excitations. Meanwhile, they used dissipation devices as structural 
member in all floor levels rather than implementing on the floor level with high pos-
sibility of weakness. Therefore, as alternative retrofitting scheme, this study proposes 
dissipation devices to be implemented on the weak floor level to control the ID and 
RID, which this floor has been selected by active learning-based ensemble ML model. 
Fig. 2 illustrates the computational method based on active learning ensemble ML 
model for retrofitting of buildings. As it is presented, after modeling of structure in 
stage 1, the mainshock will be performed and ID and RID of the structure will be 
calculated in stage 2. According to the floor level with highest ID and RID, the de-
signer can decide to use aforementioned dissipation devices as retrofitting scheme in 
stage 3. This process will be time-consuming since the modeling and performing the 
analysis need more complex modeling. To overcome this shortening, the active learn-
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ing ensemble ML model can use the structural characteristics to estimate the ID and 
RID of structure and corresponding floor level. 
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Fig. 2. Computational method based on active learning ensemble ML model for retrofitting of 
buildings. 
It should be noted that modeling local damages of structural members and a damaged 
building is not an easy task due to differences in strength of each elements and differ-
ent damage limitations. Therefore, total structural evaluations can ease the way of 
retrofitting by reducing modeling process and structure can be retrofitted before after-
shock. To automate the procedure, a Tcl code has been developed in OpenSees [26] to 
model structure and provide a mainshock-aftershock analysis [29], then, the proce-
dure has been controlled by MATLAB software to achieve results of analysis and 
prepare the dataset of each structures. Python programming code has been developed 
for labeling of dataset and performing active learning process on ensemble ML mod-
el. The results of ID and RID for floor levels have been illustrated on text file and can 
be used as source of retrofitting scheme. Although this study explores the procedure 
for steel structures, the procedure can be used for RC structures by providing related 
dataset. 

4 Retrofitting of building with ML method 

The application of active learning in ensemble ML models is a systematic and strate-
gic approach to optimizing model performance through iterative data selection and 
labeling. A pool of unlabeled data serves as the starting point. The ensemble actively 
selects instances from this pool for labeling based on their perceived potential to im-
prove model performance. Various active learning query strategies guide the ensem-
ble ML model in selecting instances for labeling. Common strategies include uncer-
tainty sampling, query by committee, expected model change, and other metrics that 
quantify the model's confidence or uncertainty in its predictions. 
The active learning process unfolds iteratively, and then, in each iteration, the ensem-
ble model makes predictions on the unlabeled instances, selects a subset based on the 
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chosen query strategy, and queries a user for labels. After each iteration, the predic-
tions of the individual base models are aggregated to form a collective prediction. 
Ensemble techniques such as bagging, boosting, or stacking may be employed to 
combine the strengths of the diverse models within the ensemble. In this research, the 
gradient boosting machine (GBM), extreme gradient boosting (XGBoost), and extra 
trees regressor (ETR) were used for ensemble ML model [15-20]. The results of esti-
mating the maximum ID in floor levels of the 6-story structure are compared for indi-
vidual ML algorithms and active learning-based ensemble ML model (AL-Ensemble 
ML) composed from those three ML algorithms presented in Fig. 3.  
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Fig. 3. Scatter results of the 6-story structure assuming soil D considering the conventional and 
AL-Ensemble ML models. 

It can be seen that the conventional ML models has less ability to estimate the maxi-
mum ID of 6-story structure by large dispersion on x=y line. For instance, the 
XGBoost model achieved the accuracy of 93.2% and the result show that it has good 
ability to estimate the ID less than 0.04. Although using ensemble modeling can wide-
ly improve the performance of estimation model, active learning can enhance it fur-
ther. The result confirm that AL-Ensemble ML is the best prediction model with ac-
curacy of 98.4%. For brevity, only result of the 6-story structure has been plotted, 
while similar results has been achieved. Since the AL-Ensemble ML model has the 
best prediction among other models, it has been used to estimate RID of the 6-story 
structure and the results has been presented in Fig. 4. It is clear that having accuracy 
more than 96.6% allows the AL-Ensemble ML model to estimate the RID of floor 
levels of the 6-story structure that can be used for retrofitting scheme. According to 
results, maximum RID has been determined in the first and second floor levels of the 
6-, and 8-story structures and these floors are introduced for retrofitting with viscous 
dampers. By adding dissipations devices, the RID of the structures has been compared 
to non-retrofitted structures in Fig. 5. It can be concluded that the precise predictions 
made by AL-Ensemble ML model helped to find those weak floor levels and reduce 
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maximum RID of structures and the cost of retrofitting accordingly. Therefore, the 
procedure can be a useful tool for retrofitting structures under seismic sequences. 
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Fig. 4. Scatter RID prediction results of the 6-story structure assuming soil D considering the 
conventional and AL-Ensemble ML models. 

0.0% 0.2% 0.4% 0.6% 0.8% 1.0%
1

2

3

4

5

6

6-Story Structure
 Actual
 AL-Ensemble ML
 Retrofitted Structure

F
lo

or
 L

ev
el

RID

0.0% 0.2% 0.4% 0.6% 0.8% 1.0%
1

2

3

4

5

6

7

8

 Actual
 AL-Ensemble ML
 Retrofitted Structure

8-Story Structure

F
lo

or
 L

ev
el

RID  
Fig. 5. Retrofitting first and second floor levels of the 6-, and 8-story structures according to 
prediction results of AL-Ensemble ML model. 

5 Conclusions  

This study introduces an efficient computational approach aimed at retrofitting of 
buildings affected by seismic mainshock-aftershock sequences using active learning-
based ensemble ML method. The proposed method is versatile, capable of retrofitting 
both steel and reinforced concrete structures while accommodating various intensity 
measures and engineering requirements. It allows for the application of diverse retro-
fitting devices, including viscous dampers and BRBs. Results confirm that the AL-
Ensemble ML model has the best estimations of ID and RID of steel structures that 
can be used for retrofitting of structures by implementing dissipation devices at floor 
levels with highest values of RID and ID. The proposed procedure introduces a novel 
ML-based retrofitting scheme that can reduce the computational time, cost of retrofit-
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ting, and improve the accuracy of predictions that are useful for preliminary assess-
ment of structures. For this purpose, the 6-, and 8-story structures have been used. 
AL-Ensemble ML model had the highest accuracy among conventional ML models 
with R2=98.4%, and predicting the RID of floor levels of 6-story structure by accura-
cy more than 96.6%. Furthermore, the programming code identifies the specific dam-
aged floor level of a building, enabling targeted local retrofitting rather than the retro-
fitting of the entire structure. 
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