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Abstract. Multivariate time series anomaly detection is a crucial prob-
lem in many industrial and research applications. Timely detection of
anomalies allows, for instance, to prevent defects in manufacturing pro-
cesses and failures in cyberphysical systems. Deep learning methods are
preferred among others for their accuracy and robustness for the analysis
of complex multivariate data. However, a key aspect is being able to
extract predictions in a timely manner, to accommodate real-time re-
quirements in different applications. In the case of deep learning models,
model reduction is extremely important to achieve optimal results in
real-time systems with limited time and memory constraints. In this
paper, we address this issue by proposing a compression method for deep
autoencoders that involves three key factors. First, pruning reduces the
number of weights, while preventing catastrophic drops in accuracy by
means of a fast search process that identifies high sparsity levels. Second,
linear and non-linear quantization reduces model complexity by reducing
the number of bits for every single weight. The combined contribution of
these three aspects allow the model size to be reduced, by removing a
subset of the weights (pruning), and decreasing their bit-width (quanti-
zation). As a result, the compressed model is faster and easier to adopt
in highly constrained hardware environments. Experiments performed
on popular multivariate anomaly detection benchmarks, show that our
method is capable of achieving significant model compression ratio (be-
tween 80% and 95%) without a significant reduction in the anomaly
detection performance.
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1 Introduction

Multivariate time series anomaly detection is a very popular machine learning
problem in many industry sectors. Therefore, many research works have been
proposed in this field [9,2,4] Recent works highlight that the best results in
terms of detection accuracy are achieved with deep autoencoders [4] based on
convolutional layers. Other models with satisfactory results are autoencoders
based on graph neural networks [3,13] and recurrent layers [9,7]. It is worth
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noting that their effectiveness depends heavily on the specific characteristics
of the dataset they are assessed on. Neuroevolution provides a valuable way
to address this issue, with the potential to extract optimized models for any
given dataset. A notable example is the AD-NEv framework [11], which supports
multiple layer types: CNN-based, LSTM based and GNN-based. One potential
burden of deep autoencoder models is that each additional layer or channel
inside the layer slows down the training and inference process, which negatively
affects their efficiency in real-time or embedded systems. In fact, any delay in
their inference can have a significant impact on the operation of the reliability
of these systems. To this end, compression algorithms can significantly help in
reducing the number of CPU cycles required to process input data. The second
advantage of their adoption is the memory footprint reduction they provide. This
aspect is extremely important in cases where models are exploited in dedicated
hardware e.g. IoT, edge, etc. Many works focus on compression for deep learning
[8,1,14],particularly for image-based data and natural language processing. The
most efficient techniques are pruning [8,14,6] and quantization [8,1]. The pruning
process presented in these works can be divided into structured pruning and
unstructured pruning. The quantisation can be linear or non-linear. These works
show that many deep learning models may present redundant weights which can
be removed without any significant drop in detection accuracy. Additionally, given
the robustness of these models to noise in input data, weights can be quantized
to a lower bit format, further decreasing the memory footprint. However, studies
focusing on reducing the complexity of deep learning models are still limited
in the anomaly detection field. To the best of our knowledge, there is no work
devoted to compressing models on multivariate anomaly detection benchmarks.
To this end, in this paper we propose a compression workflow based on pruning
and quantization. We adopt convolutional and graph autoencoders which have
shown to be the most robust model architectures in anomaly detection tasks.
In our work, pruning is incorporated in the training process, while linear and
non-linear quantization based on nearest neighbour rounding is run on pruned
and pre-trained models. Our experiments leveraging state-of-the-art base model
architectures [4] show that compression techniques like pruning and quantization
can significantly reduce the complexity of deep model architectures in multivariate
anomaly detection tasks.

2 Method

In this section, we describe our proposed compression method for anomaly
detection autoencoder models. Autoencoders learn a compressed representation,
i.e., latent space Z of raw input data X in an unsupervised manner. Autoencoders
are made of two parts: the encoder E, which transforms (encodes) the original
input to the latent space, and the decoder D, which transforms (decodes) the
latent space Z to the original feature space:

Z = EΘ(X) = eθL(eθL−1
...(eθ0(X))) (1)
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2. METHOD 3

AEΘ(X) = DΘ(Z) = dθ′
0
(dθ′

1
...(dθ′

L
(Z))) (2)

The objective of the training is the minimization of the reconstruction loss,
which corresponds to the difference between the decoder’s output and the original
input data.

2.1 Pruning

The goal of the first stage is to carry out a pruning process, which allows the
retention of the most relevant parameters, thus saving computational resources
involved for model inference. The general idea is to identify a subset of weights
that yield a similar anomaly detection performance to the full model. By doing
so, it is possible to discard the remaining weights and reduce the model size,
which facilitates its provisioning in resource-limited environments such as edge
and IoT. To achieve this goal, in this stage we devise pruning algorithms that
involve: i) identification of a separate sparsity level for each layer, and ii) pruning
with model retraining, to foster a more effective identification of the sparsity
levels [10].

The representation of the pruned model AEp
Θ is a tuple AEp

Θ = (AEΘ,M),
where AEΘ is the original model composed by convolutional, fully-connected or
LSTM layers eθi and dθi , arranged in the specified order. The weights for each
layer are represented by the Θ tensor consisting of parameters from the encoder
and decoder:

Θ = {θ0, θ1, ..., θL, θ′L, ..., θ′1, θ′0} (3)

The mask tensor M contains ′0′ and ′1′ entries, which denote, for a given
layer, weights that are either pruned or retained, respectively:

M = {Meθ0
,Meθ1

, . . . ,MeθL
,MdθL

, . . . ,Mdθ1
,Mdθ0

}. (4)

We note that, in our work, a sparsity level υi for a layer i is defined as the
ratio between the number of utilized weights and the total number of weights at
that layer:

υi =

∑
j Mi,j

|Mi|
, υws =

L∑
j=0

|θj | · υj
|Θ|

+

L∑
j=0

|θ′j | · υj
|Θ|

. (5)

The weighted sparsity υws is computed as a sum of two ratios which define
the local sparsity for the encoder and decoder counterparts of the model.

We can find a threshold ϵi which ensures to retain the proper of weights
(having a value greater than x) according to the sparsity υi.

ϵi = x , where
|abs(θi) > x|

|θi|
= υi. (6)
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We leverage ϵi to identify the strongest weights which should be retained for
a given layer. It defines mask Mi which is assigned to a specific layer and each
entry Mi,j can be regarded as binary value:

Mi,j =

{
0 if abs(θi,j) < ϵi

1 if abs(θi,j) > ϵi
(7)

Algorithm 1 Pruning - main algorithm
Require: AE, PS , VMIN , VMAX , N , Nit, O, B, PS

1: Λ ← PS copies of AE, K ← ∅
2: for i = 0 to PS do
3: M ← ∅
4: for l = 0 to 2 · L do
5: minl, maxl ← VMIN [l], VMAX [l]
6: meanl, stdl ← minl + maxl−minl

2
, meanl + maxl−minl

6

7: υl ← bound(sample(N (meanl, stdl)), minl, maxl)
8: ϵl ← compute threshold based on υl (see Equation 6)
9: Ml ← generate mask based on ϵl (see Equation 7)

10: M ← M ∪ Ml

11: end for
12: for epoch = 0 to Nit do
13: for b = 0 to B do
14: Θ ← train batch b with O
15: for l = 0 to 2 · L do
16: θl = θl ⊙ Ml // Prune weights for layer l according to mask
17: end for
18: end for
19: end for
20: Λ ← Λ ∪ (AEΘ, M , O)
21: K ← K ∪ (F1 + α · υws)
22: end for
23: i ← argmax(K)
24: for epoch = 0 to N do
25: for b = 0 to B do
26: Θi ← train batch b with Oi

27: for l = 0 to 2 · L do
28: θl = θl ⊙ Ml // Prune weights for layer l according to mask
29: end for
30: end for
31: end for

Algorithm 1 starts with the initialization of the model population, and it sets
up the empty list for pruned model quality metrics (line 1 and 2). Then, in a
loop, the models are pruned following a retraining process (lines 2–22). At the
beginning of the loop, the algorithm goes through the autoencoder layers (see
internal loop: lines 4–10) and sets up the initial sparsity levels for each encoder
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and decoder layer. The sparsity levels are generated by normal distribution using
specified mean and standard deviation (line 7). These parameters are computed
based on predefined sparsity boundaries given as input parameters (line 6). Once
the sparsity is computed, the algorithm uses Equation 7 to define ϵl value for
each layer (line 8). Afterwards, the layer mask is set (line 9). The next internal
loop is responsible for short training with predefined Nit epochs (lines from 12 to
19). The batch training is performed After each batch, the chosen layer weights
are set to zero using element-wise multiplication with the layer mask (line 16).
Then, the evaluation of the shortly pruned model is performed. The achieved
F1 metric is added to the list (line 21). At the end, in lines from 24 to 31, the
model with the best efficiency from the population is taken to the final long-term
training stage with N epochs (note: the model is taken with its mask tensor,
N»Nit).

2.2 Quantization

The quantization process allows our models to be processed further, reducing
their complexity. Quantization is a viable process to reduce a complete floating
point representation of values to a format with fewer bits. In this paper, we
present two types of quantization: linear and non-linear.

Linear quantization can be thought of as a mapping function from a floating-
point value x ∈ S to a fixed-point q ∈ Q through a function fQ : S → Q:

q = fQ(x) = µ+ σ · round(σ−1 · (x− µ)), (8)

where µ = 0 and σ = 2−frac_bits, σ is a scaling factor (shift up or down). Integer
bit-width can be defined as:

int_bits = ceil(log2(max
x∈S

|x|)). (9)

The second type of quantization we present in this paper is the non-linear
method inspired by [12]. At first, we cluster weights in each layer leveraging
the k-Means algorithm according to the desired number of clusters ω. Then, we
assign an identifier of the cluster to each weight in a layer, selecting the closest
cluster to the original value. The next step quantizes cluster centroids to ψ, which
defines the bit-width format. Finally, we create a codebook, which contains a
mapping between each original weight w and it corresponding quantized cluster’s
centroid wq. A similar approach has been adopted in [12] and showcased effective
compression capabilities in the context of NLP models and GPU-based DL models
acceleration, respectively.

3 Results and discussion

The research questions posed by our paper are the following:
RQ1. How efficient dynamic pruning can be in anomaly detection auto-

encoder architectures?
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RQ2. How effectively can deep state-of-the-art anomaly detection models be
reduced by means of quantization?

RQ3. What is the efficiency of linear and non-linear quantization on a
pretrained autoencoder?

In our experiments, we consider state-of-the-art architectures in recent bench-
marks for anomaly detection [11,5], i.e. convolutional autoencoders (CNN AE)
and graph-based autoencoders (GDN). We adopt popular benchmark datasets:
SWAT, WADI-2019, MSL, SMAP. The CNN AE for SWAT and WADI-2019
consist of 6 layers, for SMAP and WADI they have 12 layers. All our experiments
were executed on a workstation equipped with Nvidia Tesla V100-SXM2-32GB
GPUs using PyTorch framework. The VMIN and VMAX parameters were set to
0.2 and 0.8, respectively. The population size PS was set to 16. In the pruning
experiments these models were trained from scratch by Algorithm 1. The linear
and nonlinear quantization were run on pretrained models. In all quantization
experiments the output neuron activations are in 16-bit format. The baseline
results achieved by CNN AE are the best among all models tested on the analyzed
datasets [11]. The GDN achieves the second result in the case of the WADI-2019
and SWAT [11]. The CNN AE achieves following point-wise F1: WADI-62.0,
SWAT-82.0, MSL-77.0, SMAP-57.0. The GDN gives F1: WADI-57.0, SWAT-81.0,
MSL-30.0, SMAP-33.0.

Results in Table 1 show the performance of models following the pruning
stage of our proposed compression workflow with different Sparsity levels. We
observe that with a sparsity level of 0.2 the anomaly detection performance drops
slightly in SWAT: from 82.0 to 81.45 (CNN AE) and from 81.0 to 80.51 (GDN).
The performance drop is more significant for WADI-2019: from 62.0 to 56.28
(CNN AE) and from 57.0 to 53.5 (GDN). These results show that is difficult
to reduce significant number of weights for both models on WADI-2019. The
drop for Sparity level 0.2 can be acceptable for SWAT (about 0.5). The higher
Sparsity level increases the drop further for both datasets. In case of SMAP and
MSL when Sparsity increases to 0.75, the performance is still at the same level
as in baseline models (for both CNN AE and GDN). These surprising results can
be motivated as pruning can, in some cases, provide a noise reduction capability
in the presence of noisy data in multivariate time series datasets, resulting in a
more robust model. Overall, our experimental result show that pruning can be
an effective strategy to compress deep autoencoder models for anomaly detection,
especially for MSL and SMAP datasets (RQ1).

Results in Table 2 show the performance of models following the quantization
stage of our proposed compression workflow with different bit width configurations.
Overall, our experimental results show that 16-bit and 8-bit quantization can
be quite effective in reducing the complexity of deep autoencoder models used
for anomaly detection tasks (RQ2). In case of 5-bit and 4-bit quantization there
is significant drop on WADI-2019 and SWAT. Both models CNN AE and GDN
are robust for 4-bit quantization and give the F1-score at the same level as the
baseline counterparts. It can be observed that for nonlinear 16-bit and 8-bit there
is no drop in accuracy for both models and datasets (RQ2). The drop in case of
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Table 1. Model performance in terms of F1-Score with proposed pruning workflow and
different sparsity levels applied to each layer.

Sparsity=0.2 Sparsity=0.75
CNN AE GDN CNN AE GDN

81.45 (SWAT) 80.51 (SWAT) 57.01 (MSL) 30.2 (MSL)
56.28 (WADI) 53.5 (WADI) 77.02 (SMAP) 32.9 (SMAP)

Table 2. Experimental results (F1-score) with linear (left|) and non-linear (|right)
quantization and different bit-width configurations.

16-bit 8-bit
Datasets CNN AE GDN CNN AE GDN
SWAT 81.90 | 80.36 80.80 | 80.70 81.98 | 80.27 80.70 | 80.75
WADI 62.13 | 57.56 56.90 | 55.01 62.06 | 59.11 56.80 | 55.50
SMAP 77.15 | 77.02 32.85 | 32.95 77.05 | 76.81 32.82 | 32.92
MSL 57.21 | 56.97 29.95 | 29.91 57.14 | 56.98 29.91 | 29.92

5-bit 4-bit
Datasets CNN AE GDN CNN AE GDN
SWAT 80.70 | 78.45 79.80 | 79.54 16.44 | 16.35 23.51 | 21.43
WADI 54.52 | 17.87 55.52 | 31.52 48.20 | 10.89 45.51 | 24.45
SMAP 76.09 | 76.21 32.65 | 32.71 75.61 | 75.89 32.49 | 32.63
MSL 56.45 | 56.15 29.69 | 29.67 56.09 | 56.91 29.55 | 29.63

4-bit quantization is acceptable only for MSL and SMAP. The research results
presented in [12] show that sparse 1D convolutional layers can be speed up on
GPU using sparse convolution. The sparsity above 70% guarantees that sparse
convolution outperforms standard CuDnn implementation. Additionally, it shows
that GPU can make usage from reduced precision format. These two aspects
allows to improve models time efficiency on GPU (RQ3).

4 Conclusions and future works

In this paper we proposed a compression workflow leveraging pruning and quan-
tization stages. While pruning is incorporated in the training process, linear and
non-linear quantization is performed on pruned and pre-trained models. Our ex-
periments leveraging state-of-the-art convolutional and graph autoencoder model
architectures revealed the trade-off between model compression and anomaly
detection performance that pruning and quantization techniques can achieve
in benchmark multivariate anomaly detection settings. Among key findings, we
observed that pruning can be quite effective with MSL and SMAP datasets, and
16-bit and 8-bit quantization only impacted in a small drop in terms of F1 score.
Additionally, the 4-bit quantization gives the same accuracy levels as in floating
point mode. On the other hand, pruning was not effective with the WADI dataset.
The presented results show that anomaly detection autoencoders can be reduced
from 80% (8-bit quantization and 20% sparsity level, WADI-2019 and SWAT)
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to about 95% (4-bit quantization and 75% sparsity level, MSL and SMAP).
Future work will focus on more advanced quantization techniques based on model
retraining, which could decrease the drop in F1-Score for lower bit-widths.
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