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Abstract. Augmented reality may soon revolutionize the world we live
in. The incorporation of computer simulations into augmented reality
glasses opens new perspectives for the perception of reality. In this pa-
per, we investigate the possibility of performing numerical simulations
in real time within augmented reality glasses. We present the technology
that can be successfully employed in the real-life simulations of the Par-
tial Di�erential Equations (PDE) based phenomena. We designed and
implemented a two- and three-dimensional explicit dynamics solver in
Lens Studio using Finite Di�erence Method (FDM) on the augmented
reality glasses. We performed tests on the computational cost, memory
usage, and the capability of performing real-life simulations of advection-
di�usion and wave propagation problems.

Keywords: augmented reality · �nite di�erence method · real time sim-
ulations · three-dimensional advection-di�usion equations · two-dimensional
wave equations · lens studio

1 Introduction

We consider a fast solver allowing for real-life simulations of physical phenom-
ena described by Partial Di�erential Equations (PDEs) in augmented reality
of Lens studio [1]. The solver employs the explicit dynamics and Finite Di�er-
ence Method (FDM) algorithm [6�8]. The �gures 1-2 present screenshots from
simulations that have been rendered as Lenses in the Snapchat App. However,
these lenses can also run on Snap Spectacles, which are Snap's augmented re-
ality glasses. Our goal is to develop algorithms that can perform simulations in
real-time using the SnapChat rendering engine of augmented reality glasses. The
proposed algorithm, a �nite di�erence method with an Euler time integration
step scheme, has a linear computational complexity of O(N) where N is the
number of spatial points in which we recalculate the state of the modeled phe-
nomenon. Similarly, the memory complexity of the proposed algorithm is linear
O(N) with respect to the number of spatial points processed, assuming that we
store the state of spatial points from the current (N points) and previous (N
points) time instants. Speci�cally, the proposed algorithms have been tested on
two- and three-dimensional computational problems, such as
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Fig. 1: Three-dimensional simulations of the advection-di�usion equations in aug-
mented reality.

� the phenomenon of advection-di�usion in three dimensions (spreading of
substances, e.g., smoke in the air by means of the phenomenon of di�usion
and advection modeling air movements in the room)

� the phenomenon of wave propagation in two dimensions (to illustrate the
possibility of visualizing the simulation on a virtual plane and the possibility
of observing the course of the simulation by researchers using augmented
reality glasses).

The work investigated the maximum size of the computational domain in two-
and three-dimensions in which real-time simulations could be carried out using
the fastest possible algorithm with linear complexity. The simulations performed
by ANSYS with the use of the �nite element method has been projected into the
augmented reality [2]. The �nite element method loading is based on the data
provided by the sensors detecting the surrounding structures [2], and the com-
puted results are displayed in the augmented reality. Another paper [3] projects
the previously computed �nite element method results onto real structures in
augmented reality using the Microsoft Holo Lens. In our paper, for the �rst time,
we present fast real-life computations with the �nite di�erence method using a
much lighter Snapchat Lens, allowing for integrating the lens with normal life
activities without using any external sensors or servers. There are also some
preliminary attempts to visualize the computational results of the �nite element
method computations performed o�ine on the real models using augmented
reality [4, 5].

2 Advection-di�usion problem

We start from the formulation of the advection-di�usion solver

∂c(x, y, z, t)

∂t
− εx

∂2c(x, y, z, t)

∂x2
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∂2c(x, y, z, t)

∂y2
− εz

∂2c(x, y, z, t)

∂z2

+bx
∂c(x, y, z, t)
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∂z
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(1)
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where we seek the scalar concentration �eld c(x, y, z, t); here, the vector (bx, by, bz)
is the advection vector, denoting the wind blowing in the domain, are the dif-
fusion coe�cients along the x, y, z-axis of the coordinate system. We introduce
the explicit dynamics time integration scheme, where we compute the values
of c(x, y, z, t+∆t) based on the previous time step con�guration c(x, y, z, t):

c(x, y, z, t+∆t)− c(x, y, z, t)

∆t
− εx

∂2c(x, y, z, t)

∂x2
− εy

∂2c(x, y, z, t)

∂y2

−εz
∂2c(x, y, z, t)
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+ bx

∂c(x, y, z, t)

∂x
+ by

∂c(x, y, z, t)
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=

f(x, y, z, t)

(2)

c(x, y, z, t+∆t) = c(x, y, z, t)
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(3)

We introduce the three-dimensional mesh with points (xi, yj , zk), i = 1, . . . , Nx,
j = 1, . . . , Ny, k = 1, . . . , Nz, and we write down the equations in the nodes of
the mesh

c(xi, yj , zk, t+∆t) = c(xi, yj , zk, t)

+∆tεx
∂2c(xi, yj , zk, t)

∂x2
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(4)

We approximate the �rst and the second derivatives using the central �nite
di�erences

c(xi, yj , zk, t+∆t) = c(xi, yj , zk, t)

+∆tεx
c(xi−1, yj , zk, t)− 2c(xi, yj , zk, t) + c(xi+1, yj , zk, t)

∆x2

+∆tεy
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∆z2

−∆tbx
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2∆x
−∆tby
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(5)
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Fig. 2: Another simulation of three-dimensional advection-di�usion in augmented
reality

The initial state is the zero concentration, the problem is driven by non-zero
force component at a given point of the mesh, and the problem is modeled with
free open boundary.

3 Wave equations

We start from the formulation of the wave equation solver

∂2u(x, y, t)

∂t2
− ∂

∂x

(
g(u(x, y, t)− b(x, y))

∂u(x, y, t)

∂x

)
− ∂

∂y

(
g(u(x, y, t)− b(x, y))

∂u(x, y, t)

∂y

)
= f(x, y, t)

(6)

where we seek the water level u(x, y, t). Here, g denotes the acceleration due to
gravity g = 9.81, b(x, y) is given water bed. The initial condition is the shape
of the initial wave, and the problem is modeled with free open boundary. We
introduce the explicit dynamics time integration scheme, where we compute
the values of u(x, y, t + 2∆t) based on the two previous time step con�gura-
tions u(x, y, t+∆t), u(x, y, t)

u(x, y, t+ 2∆t)− 2u(x, y, t+∆t) + u(x, y, t)

∆t2

− ∂

∂x

(
g(u(x, y, t)− b(x, y))

∂u(x, y, t)

∂x

)
− ∂

∂y

(
g(u(x, y, t)− b(x, y))

∂u(x, y, t)

∂y

)
= f(x, y, t)

(7)
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We rewrite the equation to emphasize that the new state u(x, y, t+2∆t) is given
by the update of the previous state u(x, y, t + ∆t), the estimation of the wave
velocity computed based on the last two time steps [u(x, y, t +∆t) − u(x, y, t)]
and the physics of the wave propagation phenomena (all the remaining terms)

u(x, y, t+ 2∆t) = u(x, y, t+∆t) + [u(x, y, t+∆t)− u(x, y, t)]

+∆t2
∂

∂x

(
g(u(x, y, t)− b(x, y))

∂u(x, y, t)

∂x

)
+∆t2

∂

∂y

(
g(u(x, y, t)− b(x, y))

∂u(x, y, t)

∂y

)
+∆t2f(x, y, t)

(8)

We introduce the dumping constant in front of the di�erence C(u(x, y, t+∆t)−
u(x, y, t)), to emphasize that the wave velocity is dumped due to internal forces

u(x, y, t+ 2∆t) = u(x, y, t+∆t) + C(u(x, y, t+∆t)− u(x, y, t))

+∆t2
∂

∂x

(
g(u(x, y, t)− b(x, y))

∂u(x, y, t)

∂x

)
+∆t2

∂

∂y

(
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∂u(x, y, t)

∂y

)
+∆t2f(x, y, t)

(9)

We introduce the two-dimensional mesh with points (xi, yj), i = 1, . . . , Nx,
j = 1, . . . , Ny and we write down the equations in the nodes of the mesh. We
also assume a �at water bed b(x, y, t) = 0

u(xi, yj , t+ 2∆t) = u(xi, yj , t+∆t) + C(u(xi, yj , t+∆t)− u(xi, yj , t))

+∆t2
∂

∂x

(
gu(xi, yj , t)

∂u(xi, yj , t)

∂x

)
+∆t2

∂

∂y

(
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∂u(xi, yj , t)

∂y

)
+∆t2f(x, y, t)

(10)

We expand the derivatives

u(xi, yj , t+ 2∆t) = u(xi, yj , t+∆t) + C(u(xi, yj , t+∆t)− u(xi, yj , t))

+∆t2
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g
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+

(
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∂y
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+
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+∆t2f(x, y, t)

(11)
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and we approximate the �rst and the second derivatives using the �nite di�er-
ences,

u(xi, yj , t+ 2∆t) = u(xi, yj , t+∆t) + C(u(xi, yj , t+∆t)− u(xi, yj , t))

+∆t2


(
g
(

u(xi+1,yj ,t+∆)−u(xi−1,yj ,t+∆)
2∆x

)2
)
+(

gu(xi, yj , t+∆t)
u(xi+1,yj ,t+∆)−2u(xi,yj ,t+∆t)+u(xi−1,yj ,t+∆)

∆x2

)


+∆t2


(
g
(

u(xi,yj+1,t+∆)−u(xi,yj−1,t+∆)
2∆y

)2
)
+(

gu(xi, yj , t+∆t)
u(xi,yj+1,t+∆)−2u(xi,yj ,t+∆t)+u(xi,yj−1,t+∆)

∆y2

)


+∆t2f(x, y, t)

(12)

Fig. 3: Veri�cation of the two-dimensional wave propagation simulations by
Python code

4 Implementation

The whole project for implementing 2D or 3D simulation and visualization con-
tains three �les:

� WorldMeshController.js - the script which is responsible for controlling the
simulation. It allows the de�nition of the dimensions of the computational
mesh, the number of time steps, sources, the di�usion coe�cients, and the
advection vector.

� TweenColorChange_3D.js + Tween.js - these scripts perform the animation
of the numerical results of the advection-di�usion model solved with explicit
dynamics and �nite di�erence method. They display the color values based
on the concentration parameter in the following way:

StartColorValue = { EndColorValue = {

r = 0, r = 255 * cellValue

g = 0, g = 0,

b = 255, b = 255 * (1 - cellValue)

a = 0 a = cellValue

} }
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� Spawn3D.js - scripts that generate the matrix of the concentration values
and the matrix of objects representing cells in the computational mesh. This
script re-computes the values of the scalar concentration �eld via WorldMesh-
Controller.js.

5 Numerical results

We present two illustrative examples. The �rst concerns the advection-di�usion
simulation of a point-shape concentration scalar �eld source, with the assumed
advection and the constant di�usion coe�cients. The snapshots from the simu-
lations are presented in Figures 1 and 2. The second one concerns the simulation
and visualization of the two-dimensional wave equation, executed over a �at sur-
face, with the initial states, the time step, the dumping constant, and the mesh
size of 100x100 elements. We �rst run the Python code on a laptop to verify our
simulation. The exemplary numerical results are presented in Figure 3. They can
be compared to the simulations in Lens to be visualized on a �oor in Figure 4.

Fig. 4: Another two-dimensional simulations of the wave equation on a �oor in
augmented reality.

6 Conclusions

In this paper, we proposed a fast solver for performing �nite di�erence explicit
dynamics simulations in augmented reality. For two-dimensional simulations, the
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maximum possible size of the computational grid was 100×100 spatial points. For
three-dimensional simulations, the maximum possible size of the computational
grid was 30×30×30 spatial points. Visualization of the results for the 30×30×30
grid was characterized by a low frame rate (about �ve frames per second 5
FPS). Increasing the grid size resulted in an even more signi�cant reduction in
FPS. For a better numerical simulations we will need a computationally stronger
hardware, or employ precomputed numerical results. Future work may involve
experimenting with ARKit [9], and application of explicit dynamics solvers based
on higher-order �nite element method [10�12].
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