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Abstract. A straightforward way of solving global optimization prob-
lems is to find all local optima of the objective function. Therefore, the
ability of detecting multiple local optima is a key feature of a practically
usable global optimization method. One of such methods is a multi-
population evolutionary strategy called the Hierarchic Memetic Strategy
(HMS). Although HMS has already proven its global optimization capa-
bilities there is an area for improvement. In this paper we show such an
enhancement resulting from the application of the Nearest-Better Clus-
tering. Results of experiments consisting both of curated benchmarks
and a real-world inverse problem show that on average the performance
is indeed improved compared to the baseline HMS and remains on par
with state-of-the-art evolutionary global optimization methods.

Keywords: evolutionary algorithm · global optimization · continuous
domain· Nearest-Better Clustering

1 Introduction

Real-world engineering applications often require solving a global optimization
problem. A vast part of them features various kinds of multimodality. Hill climber
optimization methods are naturally ill-suited to this type of task, but even single-
population stochastic methods having the theoretical asymptotic guarantee of
success tend to locate only one solution in practically available time. To tackle
this challenge, various niching techniques are used which, by reducing informa-
tion exchange or competition between groups of individuals, isolate so-called
species aimed at exploiting different optima of the objective function. Examples
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include various augmentations of Particle Swarm Optimization and Differen-
tial Evolution algorithms [26,24,16]. The Hierarchic Memetic Strategy (HMS)
[23] is another optimization algorithm aimed at the multimodal optimization.
It achieves the isolation between groups of individuals by running multiple op-
timization processes in parallel. In order to prevent several populations from
converging to the same optima, they are organized in a tree structure, where
higher-level processes decide whether and where to start lower-level processes.
This operation is called sprouting.

HMS already proved its capabilities in finding multiple optima of the objec-
tive for both benchmarks and real-world inverse problems [25,22]. The method
was also equipped with special mechanisms addressing the problem of optima
located in the flat regions of the objective landscape [21]. These are not used in
this paper. Here we present a technique based on the Nearest Better Cluster-
ing (NBC) aimed at improving the HMS sprouting. NBC is a well-established
niching technique used both in multimodal optimization, dynamic optimization
and even in Exploratory Landscape Analysis (ELA) [15]. We conjecture that
by combining the unique structure of HMS with the ability of NBC to locate
funnel structures in the target function landscape, we obtain a highly effective
multimodal optimization method. The extensive tests we present later in this
article are intended to test the new mechanism against several criteria:

– Does the application of NBC lead to better location of several target function
optima?

– Does the application of NBC improve performance in terms of the best qual-
ity solution found?

– Are the parameters of the new mechanism better at adapting to the target
problem?

2 Background

In the field of optimization, it has become customary to talk about exploration
and exploitation features of various algorithms. The exploration is tied to dis-
covering promising areas of the objective function domain where we expect to
find an optimum. These areas are called peaks, funnels or basins of attraction,
depending on the nature of problem solved or algorithm used. The exploitation
refers to locating the solution as accurately as possible in an already defined
area. For a single population of individuals that exchange knowledge between
each other, either tendency for exploration or exploitation will at some point
outweigh the other [23]. In the case of exploitation, convergence occurs and in
the case of exploration we arrive at a method similar to the pure random search.
Niche methods partition the population so that its parts running in parallel
can converge to detected optima without depriving the algorithm of its ability
to explore. This behavior is particularly beneficial in multimodal optimization
problems when we can distinguish multiple equally good global optima, but it
also has benefits for standard single-solution optimization problems [11]. To date,
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a number of niche techniques have been presented that differ in the way the di-
vision is achieved. One of these is a clustering based on the distance between
individuals, exemplified by the NBC method [15]. The main observation behind
the NBC is that the distance between an individual and its nearest neighbor
with a better fitness value will be greater for the best individual in a given basin
of attraction than for its surrounding individuals. Thus, a spanning tree where
edges connect nearest better individuals with the best solution overall at its
root is constructed. Then longer edges are removed creating subtrees represent-
ing species meant to occupy different niches.

The same observation about the inability to preserve exploration and ex-
ploitation for optimization algorithms using a single population inspired the cre-
ation of HMS. However, its answer is not the same as of typical niching meth-
ods. Instead of separating the population operating under a single algorithm
into subspecies, HMS combines multiple populations operating under different
algorithms into a hierarchical relationship [23] which operation is described in
Algorithm 1. At the base of the tree hierarchy is the root algorithm, which can
be a global optimization engine of user’s choosing, but which has to be geared
predominantly towards exploration. As a result, it would not be able to find the
best solution with a decent accuracy in practically achievable time, but instead
is responsible for detecting candidate basins of attraction. When it finds one, it
launches a new process focused on exploiting the local optimum. In general this
process is operating locally or semi-locally, thus its initial population is sampled
from a Gaussian distribution as opposed to a uniform distribution over the whole
search space which is used for the root process. Originally, the same evolutionary
algorithm with different parameters was used at all levels, but the introduction
of Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) as the algo-
rithm responsible for exploitation has significantly improved performance [22].
HMS run consists of a loop executing a fixed number of iterations for each of its
subprocesses. The subprocesses can be deactivated based on their specific stop-
ping criterion e.g. no improvement over several epochs while the global stopping
condition is checked for termination of the whole algorithm. An HMS user has
control over the number of tree levels, which algorithms will be run on them,
what will be their parameters and stopping conditions. This flexibility makes
HMS adaptable to specific real-world tasks. One example would be the usage
of multiwinner voting operators to promote a diversity of solutions for lower
level algorithms, which made it possible to identify shapes and sizes of function
niches [5]. To facilitate the use of HMS for non-expert users, an autoconfigura-
tion mechanism was introduced based on objective function features calculated
using ELA methods [7]. Although the HMS already proved to be a versatile and
efficient global optimizer, there are still clear areas for improvement. In partic-
ular, the mechanism responsible for identifying the pools of attraction used to
date could be a source of some practical problems. Its operation is very simple:
consider the best current solution from every higher-level subprocess and if it is
far enough from any centroid of lower-level population, start a new process at its
location. Although intuitive and functional, this mechanism has clear disadvan-
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Algorithm 1: High-level pseudocode of HMS
Input: Objective function f , dimensions and bounds of f , hmsTreeConfig
Output: foundOptima of f

1 root← initPopulation(hmsTreeConfig[0], ∅)
2 activePopulations← {root}
3 while global stop condition is not satisfied do
4 foreach p in activePopulations do
5 isActive← runMetaepoch(p)
6 if not isActive then
7 activePopulations.remove(p)
8 if p.engine = SEA then
9 p.best← runLocalMethod(p.best)

10 runSprout(activePopulations, hmsTreeConfig)
11 foundOptima← []
12 foreach p in all populations do
13 foundOptima.add(p.best)

tages. Firstly, the value of the far enough distance parameter is highly problem
dependent. This does not only mean that it should be scaled proportionally when
working with a larger domain. Actually, the ideal value of the parameter should
be exactly the radius of the basin of attraction so as not to allow more processes
to run in it, but also not to cover the other basins. In practice, working with
black box problems, we will certainly not set the exact value of this parameter
correctly. So we can end up with a situation where the value is too high which
makes it difficult to cover optima that are close to each other, or too low which
results in a redundant running multiple processes in the same niche. In addition,
the check approximates the radius of attraction pools to be perfectly spheri-
cal, which may not be an appropriate shape. Secondly, the best individual of a
higher-level population can stagnate in the same peak for multiple iterations.
This leads to underutilization of the information contained in the population of
individuals. Even if solutions of similar quality to the best individual are found,
they will remain ignored.

3 HMS with NBC component

In the previous sections, we have already mentioned the idea and basics of the
HMS algorithm. Apart from the new sprout mechanism, the core of the algorithm
remains the same. Currently, we considered the Simple Evolutionary Algorithm
(SEA) and CMA-ES as candidates for algorithm components. Additionally, if
SEA is used as a lower-level method, then on its deactivation we execute an
additional local optimizer. In particular, we use L-BFGS-B provided by Python
SciPy library, but it can be replaced according to user’s preference. The imple-
mentation used during experiments described in this paper can be found in [8],
whereas the continuously developed Python implementation of the HMS is avail-
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able on GitHub 3. The core functionality is based on the LEAP library [4] while
CMA-ES implementation is sourced from pycma package [10].

Our main contribution in this paper is the NBC-based sprout mechanism,
which is presented in detail in Algorithm 2. Viewed from a high level, it con-
sists of performing NBC clustering for each active population and then filtering
resultant individuals based on quality and distance to active subprocesses at
the lower level of the tree. Those distances are determined based on centroids
calculated at the start of the process (line 2). At the start of the procedure we
apply a simple elite selection mechanism introduced in line [14] which takes only
the best fraction of the population given by truncFactor (line 4). Afterward
a standard Nearest Better Clustering is performed for each subprocess popu-
lation separately. This consists of construction of a tree where individuals are
connected to their nearest better neighbor and then cutting of edges that are
nbcCut times longer than mean edge length. Root individuals of each subtree
are tested if they are far enough from active populations centroids mentioned
above. Afterward a singular best individual that passes the distance criterion is
selected per each subpopulation (line 20). The last filtering mechanism is taking
the number of best candidates that will not exceed a subprocess limit imposed
for each level (line 21). Resulting individuals serve as starting locations for new
subprocesses.

The new mechanism addresses shortcomings described at the end of Sec. 2.
Firstly, thanks to the capabilities of NBC, each parent population can identify
multiple basins of attraction per metaepoch. The main benefit of this feature
is that during consecutive metaepochs the parent population will sprout new
subprocesses in different basins of attraction even if the best individual would
not change. Secondly, we transfer the responsibility for determining the radii
of the basins of attraction from the user to the method. Instead the user can
operate on factors that influence the mechanism on the higher level. nbcCut and
farEnough listed in pseudocode 2 both influence the granularity of sprouting
process. truncFactor can shift the behavior more towards exploration or ex-
ploitation, but our experiments suggest that the 0.8 can be safely assumed as its
default value. LevelLimit remains more as an emergency hard cap as the NBC
tends to organically limit itself. The new mechanism therefore provides the user
with more parameters than the previous one. On the one hand, this may allow
the algorithm to be better tuned to the problem at hand, but in practice it is
easier to use parameter-free algorithms.

4 Experimental procedure

To answer the questions posed in the introduction, we prepared a series of com-
parisons. The first subsection below focuses on assessing the ability of the algo-
rithm to locate multiple global optima. In the next one, the aim is to see what
impact the newly applied mechanism has on the quality of the best solution
found.
3 https://github.com/agh-a2s/pyhms
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Algorithm 2: Pseudocode of NBC based HMS sprout
Input: activePopulations, hmsTreeConfig
Parameters: truncFactor, nbcCut, farEnough, levelLimit

1 sproutCandidates← []
2 centroids← calculatePopulationsCentroids(activePopulations)
3 foreach p in activePopulations do
4 tp← takeBest(p, truncFactor)
5 T ← createEmpyTree()
6 T .addNode(best individual i from tp)
7 distances← []
8 foreach c in tp\{i} do
9 nbi← findNearestBetterNeighbour(c, tp)

10 T .addNode(c)
11 T .addEdge(c, nbi)
12 distances.add(distance(c, nbi))
13 cut_dist← nbcCut ·mean(distances)
14 foreach e in T .edges() do
15 if e.distance > cut_dist then
16 Cut off e
17 c← newly created root node
18 if all distances(c, centroids) > farEnough ·mean(distances) then
19 sproutCandidates.add(c)
20 sproutCandidates← TakeOnePerDeme(sproutCandidates)
21 sproutCandidates← BestPerLevelUpToLimit(sproutCandidates, levelLimit)
22 foreach c in sproutCandidates do
23 childPopulation← initPopulation(treeConfig[level(c) + 1], c)
24 activePopulations.add({childPopulation})

4.1 Global optima coverage

We compare HMS with base sprout against new NBC sprout mechanism on a
multimodal testbed provided by the PyDDRBG multimodal optimization bench-
mark [1]. We use 10 default target functions with identifiers from 1 to 10 provided
by the library in a static variant. All of those target functions are 10-dimensional
with box constraints between -5.0 and 5.0 for every dimension. As a quality mea-
sure we provide how many of the function’s global optima were located and what
was the total evaluation budget of the algorithm. The decision whether a given
optimum has been located is made by checking whether any of the best solu-
tions found by each subprocess is at a distance no greater than the specified
niche radius for the given optimum. Besides sprout mechanism both versions
use the 2-levels HMS structure with root SEA and CMA-ES leaves with the
same hyperparameters.

In the first part of this experiment, we investigated the effect of changing
the values of the sprouting mechanism parameters on the number of global op-
tima covered and sprouted subprocesses in general. For the baseline mechanism
we had only 1 parameter to test. For NBC sprout, we can manipulate 3 pa-
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rameters: the subtree cut-off factor, the distance factor and the fraction of best
individuals included. Each of these parameters can be used to limit the number
of subprocesses sprouted and therefore, when testing the cut-off and distance
factors, we set the second parameter to the liberal value of 1.0. When testing
the truncFactor fraction value, we set the other two to 1.5. A run of each con-
figuration was repeated 10 times.

In the second part, based on the previous results, we selected a single config-
uration for both sprouting mechanisms and ran such configured HMS 50 times
for each target function to calculate the average Peak Ratio and the average
function evaluation budget. For simple sprouting we set the value of the dis-
tance parameter as 4.0 while for NBC sprouting we set the cut-off value as 1.5,
the distance factor as 1.0 and the fraction of solutions considered as 0.8.

4.2 Best solution quality

The tests we performed comparing the quality of the best found solution use
the same procedures as the work done in the earlier article [7] and include the
results achieved there for the base version of HMS. The comparison is performed
on the Black Box Optimization Benchmark (BBOB) single objective continuous
test suite [9]. To better compare sprout mechanisms, we keep the same two-
level HMS architecture for the respective BBOB function classes consisting of
SEA root with either CMA-ES or SEA leaves. We first run hyperparametric
optimization for each of the five classes of 10-dimensional functions defined in
BBOB by minimizing the sum of the quality of the solutions obtained after
9500 function evaluations for the first instances of every function in the class.
As hyperparameter optimization tool we employed SMAC3 [12] and repeated a
run 5 times for each class with a budget of 3000 evaluations in total. Details
of the SMAC3 scenario and the ranges of hyperparameters considered in the
optimization process can be found in linked repository [8]. Afterward we selected
the best performing configuration out of the resulting 5 based on 50 runs per
target function both in 10 and 20 dimensions with budget of 9500 and 19000
function evaluations respectively. We did not apply explicit parameter scaling
when using the obtained configurations for 20-dimensional problems.

Our comparison focuses on two versions of HMS with base sprouting mecha-
nisms and one based on NBC. In addition, we include the results of the BIPOP-
CMA-ES [13] and iL-SHADE [3] which proved to be the most competitive and
versatile algorithms in article [7]. In contrast to that work, we performed the
same hyperparameter optimization and configuration selection procedure as for
the HMS algorithm for a fair comparison. Although both of those algorithms are
highly adaptive and do not require many parameters, they still gained in per-
formance in the tuning process. We optimized population and archive size for
iL-SHADE and population size, σ0, population increment factor on restart and
function value change tolerance for termination for BIPOP-CMA-ES. iL-SHADE
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implementation is sourced from PyADE library 4 while BIPOP-CMA-ES imple-
mentation is provided in pycma [10].

4.3 Real-world inverse problem

In addition to comparisons to the previous article, we also decided to include in
the comparison a real-world parameter identification problem formulated as a
global optimization task. It features a significantly different domain size relative
to the problems included in the BBOB benchmark. Here we include its concise
description.

Estimating the parameters of time-delay system (TDS) models constitutes a
challenging task [6,27]. Its complexity arises mainly from the existence of infinite
number of the so-called system modes in the TDS dynamics; however, the model
is characterized via only a small set of parameters. Nevertheless, only a few
dominant modes have a decisive role [18]. Hence, the identification problem can
be formulated as searching for a parameter set yielding model dominant modes
with the minimum distance to the actual TDS dominant modes.

Processes with interconnected heating-cooling loops (HCPs) are representa-
tives of TDSs as they inherently incorporate heat and mass transfer, which causes
latencies [28]. A stable laboratory HCP was investigated, e.g., in [19,20]. Despite
its physical simplicity, the laboratory HCP has a relatively complex dynamics
due to delays in the feedback loops. We herein focus on the relation between the
input voltage to the heater PH(t) = u(t) and the outlet fluid temperature of the
radiator ϑCO(t) = y(t) expressed by the delay-differential equation [19]

y(3)(t)+ a2ÿ(t)+ a1ẏ(t)a0y(t)+ a0Dy(t− θ) = b0u(t− τ)+ b0Du(t− τ − τ0) (1)

where b0, b0D, a2, a1, a0, and a0D are non-delay model parameters, while τ0, τ ,
and θ are positive delays. The necessary stability conditions read

a2 > 0, a1 > 0, a0 + a0D > 0 (2)

The equivalent model transfer function to (1) reads

Gm(s) =
Y (s)

U(s)
=

b0 + b0De−τ0s

s3 + a2s2 + a1s+ a0 + a0De−ϑs
e−τs (3)

where Y and U are the Laplace transforms of y and u.
Among the large number of methods and techniques to determine unknown

model parameters, a specific family of identification approaches utilizing a non-
linear element in the feedback loop exists. A subset of these approaches enables
to estimate parameter values of (3) in the frequency domain [2,17]. Namely,
one can obtain a set of experimentally obtained values Ĝm(ıωj + a) for some
suitable discrete values of ωj , a ≥ 0, j = 1, 2, ..., N , where ı is the imaginary unit
satisfying ı2 = −1. Hence, the parameter optimization task related to model (3)
4 https://github.com/xKuZz/pyade
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and with respect to (2) can be formulated as searching the closest distance of
estimated Ĝm(.) to the modeled ones Gm(.) for selected ωj , a that are decisive
for dominant modes behavior. Then, the optimization problem can be expressed
as follows

p∗ = argminf(p)

f(p) =

N∑
j=1

∣∣∣Ĝm(ıωj + a)−Gm(ıωj + a)
∣∣∣2

p = [b0D, τ0, τ, a2, a1, a0, a0D, θ]

such that : [τ0, τ, θ, a2, a1, a0 + a0D] > 0

(4)

It is worth noting that problem (4) is multimodal and constrained. It i.a.
means that some results with even an excellent cost function value do not reflect
physical reality. Therefore, it is necessary to remain close to the values obtained
by physical modeling and analysis [19,20]. Using ELA we discovered that this
problem is of the same type as the BBOB class 5 problems, i.e. multimodal with
the weak global structure. For this reason, we chose the same algorithm config-
urations for this problem as for the class 5 function. We also set a budget of
9500 evaluations which is consistent with previous tests. The actual computa-
tional problem domain is specified by box constraints of [0, 500], [0, 500], [0, 1000],
[0, 2500], [0, 2500], [−250, 250], [−250, 250], [0, 1000] for respective components of
p. As its size is much larger than in the benchmark case, we scaled the distance
parameters of baseline sprouting, mutation standard deviation and σ0 linearly.
In the case of NBC sprout, we did not need to apply scaling. To tackle additional
domain constraints, we apply penalization during optimization process and at
the end consider only valid individuals for the comparison.

5 Results

This section presents the results of the experiments carried out in subsections
which correspond to their descriptions in Section 4.

5.1 Global optima coverage

The results of tests examining the effect of changing parameter values on the
coverage of function optima show a clear improvement after applying the new
NBC-based sprout mechanism. Because of limited space available, we include
the resultant graphs for 3 out of 10 target functions under examination. How-
ever, the same general trend can be observed for every target function besides
the instance 9, for which both variants perform poorly. The complete results are
included in Zenodo archive [8]. As can be seen in Figure 1 for the base sprout
mechanism, when reducing the distance parameter below some border value the
number of subprocesses increases fast, but the raise does not correspond to a
similar increase in number of covered optima. Meanwhile, for the NBC sprout,
we observe an even more drastic increase in number of created subprocesses with
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a value decrease between 2.0 and 1.5. However, this time it translates into sub-
stantially higher optima coverage. It is important to note, that the recommended
NBC cut value of 2.0 produces quite limited number of sprouted subprocesses
and also a lower optima coverage. This may be related to the nature of the Py-
DDRBG [1] benchmark, which contains problems with global optima clustered
inside a single peak or some yet to be discovered peculiarity in our application
of NBC. Although the use of the new mechanism brings clear benefits in the
number of optima covered, the way in which the amount increases rapidly in
response to small changes in the value of the parameter is not desirable. Our
preliminary tests on other test beds suggest, that this problem is not as drastic
in the case of more easily distinguishable peaks, but it remains as an area to be
addressed in the future works.

The next comparison shows the average number of covered peaks and budget
expended during that process for both sprout variants. Although both mecha-
nisms can be easily tuned to be highly exploratory or to expend the least amount
of evaluations, we had to choose configurations that maximize both of those cri-
teria. This context is relevant to the interpretation of the results in Table 1.
They show higher optima coverage for 8 out of 10 functions for the new sprout
mechanism. We can look more closely at the instance 6, which is the only one
with worse coverage achieved with the new mechanism. As we can see on Figure
1, the steep jump in coverage for this particular instance occurs for relatively
low value of parameters, which were also lower than the ones we chose for this
experiment. However, if we look at the results from the perspective of coverage
efficiency, the picture shown is even more favorable as the gain in exploration
capabilities of the algorithm does not come at the cost of sacrificing performance
in terms of evaluation budget used. On average around 1526 evaluations were
required for each optimum covered in case of the base sprout while the NBC
sprout required 1081 per optimum. This is a clear qualitative improvement in
the performance of the algorithm under these criteria.

Table 1. Comparing the efficiency of finding global optima between HMS with base
and NBC sprout with set parameters on PyDDRBG benchmark. Values are averaged
over 50 runs.

Instance HMS base sprout HMS NBC sprout
Id N optima Optima covered Evaluation budget Optima covered Evaluation budget
1 4 2.32 3091.2 2.34 2797.2
2 2 1.88 4018.4 1.96 3715.8
3 3 2.04 3515.0 2.88 5161.6
4 3 1.62 3023.4 1.86 3170.8
5 4 2.14 3700.2 3.82 4976.8
6 16 3.34 3003.0 2.74 2704.8
7 8 3.5 3785.2 4.82 4442.6
8 9 2.48 3351.6 6.38 5367.6
9 18 0.42 2944.2 0.42 3099.6
10 16 2.42 3385.2 10.6 5430.6

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_43

https://dx.doi.org/10.1007/978-3-031-63759-9_43
https://dx.doi.org/10.1007/978-3-031-63759-9_43


Enhancing a Hierarchic Evolutionary Strategy Using NBC 11

Fig. 1. Coverage difference for DDRB instance 5, 8 and 10. The first row corresponds
to base sprout mechanism while rows 2-4 represent the change of one of the parameters
in new NBC-based sprout mechanism. Results are averaged over 10 runs per value of
a specific parameter.
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5.2 Best solution quality

Comparison of solution quality is included in Table 2. In 27 out of 48 cases the
new variant of HMS with NBC sprout outperforms the previous version of the
algorithm, while in the other 16 it performs worse. As the hyperparameter tun-
ing produced different configurations with different performances on the same
functions, some fluctuations in solution quality are to be expected. However, the
number of improved results is substantially higher and also in 8 cases the im-
provement is more than tenfold. Compared to the original sprout mechanism the
gains are most visible for classes of functions that are less multimodal (f1-14).
We attribute this results to the improved filtering of unnecessary new subpro-
cesses introduced in the new sprout mechanism. At the same time, when looking
at the bigger picture of HMS in comparison to other algorithms, its purpose
remains as the method to tackle highly multimodal problems (f20-24). Although
the new mechanism certainly patched the performance on some of the previously
problematic instances, making the algorithm more universal in usage (f2,f6).

5.3 Real-world optimization problem

Results included in Table 3 show improved results for the new version of HMS
compared to the base one. Given that the real-world problem is similar in land-
scape to class 5 BBOB functions for which the new version have not performed
better, these results hint at the better adaptability of the new mechanism. In the
wider context of the HMS algorithm, we can see that the configurations trained
for BBOB problems transferred very well to a real-world problem and remain
competitive for BIPOP-CMA-ES and iL-SHADE. This is a very good sign for
the use of default HMS configurations and the overall quality of the algorithm.

6 Conclusion

In this paper we have introduced and tested a new Nearest Better Clustering
based component for the Hierarchic Memetic Strategy. The new mechanism im-
proves the algorithm’s exploration capabilities by making a better use of the
information contained in higher-order populations. At the same time, we have
shown improvement in terms of the best solution found for a wide range of
optimization problems included in the BBOB benchmark and for a real-world
problem where HMS performed on a par with state-of-the-art global optimizers.
The parameters of the new mechanism are less problem-dependent making the
determination of universal default values simpler. However, the increase in the
number of parameters and mechanisms complexity may make the new mech-
anism more difficult to use from the perspective of an unfamiliar user. Thus,
in future works we plan to combine the new functionalities with configuration
auto-selector proposed in [7]. Another promising area for improvement is the
parameter adaptation during the runtime, which seems to be a natural direction
of development for HMS, yet still remains unexplored.
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Table 2. Comparison results between HMS versions and algorithms in portfolio on
BBOB benchmark. Each column contains 50 runs average value of fitness (adjusted by
value of global optima) and its standard deviation in parentheses.

HMS HMS with NBC BIPOP-CMA-ES iL-SHADE
10 dimensions

f1 9.4e-15 (7.8e-15) 2.3e-15 (5.2e-15) 8.8e-13 (8.6e-13) 3.1e-15 (5.9e-15)
f2 7.7e-01 (1.2e+00) 1.1e-14 (2.3e-14) 8.1e-13 (6.2e-13) 8.1e-12 (7.2e-11)
f3 8.4e+00 (3.1e+00) 1.3e+01 (5.0e+00) 8.6e+00 (3.9e+00) 8.3e+00 (3.7e+00)
f4 1.4e+01 (4.7e+00) 1.8e+01 (7.4e+00) 1.1e+01 (3.6e+00) 1.1e+01 (3.9e+00)
f5 6.8e-15 (2.4e-14) 2.8e-16 (2.8e-15) 6.7e-13 (4.0e-13) 2.8e-15 (1.2e-14)
f6 7.2e-01 (3.7e+00) 4.4e-03 (3.0e-02) 2.0e-13 (1.7e-13) 1.7e-05 (4.9e-05)
f7 1.1e+00 (6.5e-01) 1.3e+01 (5.4e+00) 1.3e-02 (1.0e-01) 7.8e-02 (2.4e-01)
f8 1.2e-08 (1.1e-08) 7.5e-09 (7.8e-09) 8.0e-02 (5.6e-01) 3.1e+00 (1.5e+00)
f9 3.7e-08 (3.7e-08) 2.3e-08 (2.5e-08) 1.9e-05 (1.9e-04) 4.4e+00 (1.2e+00)
f10 1.0e+00 (6.8e+00) 2.2e-03 (2.2e-02) 8.7e-01 (3.9e+00) 7.0e-02 (1.9e-01)
f11 1.5e+00 (5.9e+00) 2.3e-01 (6.6e-01) 5.4e-01 (1.7e+00) 1.2e-02 (8.3e-02)
f12 1.8e+00 (2.6e+00) 3.0e-01 (1.1e+00) 4.2e-01 (1.4e+00) 7.8e-01 (1.1e+00)
f13 7.8e-03 (2.9e-02) 1.2e-05 (1.2e-04) 2.6e-08 (1.4e-07) 8.7e-03 (1.6e-02)
f14 1.1e-11 (9.4e-12) 1.2e-11 (8.9e-12) 3.5e-10 (2.0e-10) 2.2e-06 (3.1e-06)
f15 1.0e+01 (5.2e+00) 9.5e+00 (4.5e+00) 3.6e+00 (3.9e+00) 1.3e+01 (5.5e+00)
f16 3.0e-01 (3.7e-01) 3.2e-01 (3.5e-01) 7.4e-02 (1.5e-01) 8.7e-01 (9.6e-01)
f17 9.5e-02 (1.7e-01) 1.4e-02 (4.0e-02) 2.6e-05 (2.4e-05) 7.2e-03 (3.6e-02)
f18 6.4e-01 (1.1e+00) 1.8e-01 (3.1e-01 2.9e-03 (2.8e-02) 1.4e-01 (3.4e-01)
f19 2.1e+00 (1.4e+00) 2.4e+00 (1.6e+00) 1.2e+00 (7.3e-01) 1.8e+00 (4.6e-01)
f20 1.2e+00 (2.3e-01) 1.2e+00 (2.4e-01) 1.4e+00 (3.3e-01) 1.3e+00 (2.8e-01)
f21 1.4e+00 (1.4e+00) 1.2e+00 (1.6e+00) 3.5e+00 (4.4e+00) 4.8e+00 (7.1e+00)
f22 1.3e+00 (8.6e-01) 1.4e+00 (1.2e+00) 5.4e+00 (1.1e+01) 2.8e+00 (1.7e+00)
f23 1.0e+00 (4.4e-01) 1.2e+00 (4.1e-01) 1.3e+00 (6.3e-01) 1.5e+00 (3.6e-01)
f24 2.0e+01 (5.8e+00) 2.4e+01 (7.4e+00) 1.9e+01 (8.5e+00) 2.6e+01 (8.4e+00)

20 dimensions
f1 1.6e-14 (4.6e-15) 1.4e-14 (3.1e-15) 9.4e-13 (4.0e-13) 4.3e-08 (3.9e-07)
f2 7.4e+01 (3.4e+01) 9.3e-14 (4.0e-13) 1.0e-12 (5.1e-13) 3.2e-02 (2.5e-01)
f3 2.7e+01 (7.0e+00) 2.9e+01 (8.0e+00) 1.9e+01 (6.1e+00) 3.2e+01 (1.0e+01)
f4 3.9e+01 (1.0e+01) 4.3e+01 (1.2e+01) 2.2e+01 (4.1e+00) 4.2e+01 (1.3e+01)
f5 8.5e-14 (0.0e+00) 8.5e-14 (0.0e+00) 1.0e-12 (4.1e-13) 9.7e-14 (2.8e-14)
f6 7.8e+02 (5.4e+06) 2.5e-03 (6.9e-03) 4.7e-13 (3.1e-13) 2.1e-02 (6.5e-02)
f7 8.8e+00 (1.1e+01) 7.8e+01 (2.3e+01) 1.3e+00 (1.0e+00) 2.9e+00 (2.4e+00)
f8 2.5e-08 (2.4e-16) 2.5e-08 (1.8e-08) 3.4e-01 (1.1e+00) 1.5e+01 (1.1e+01)
f9 8.4e-08 (3.2e-15) 8.1e-08 (5.3e-08) 1.3e-01 (6.8e-01) 1.6e+01 (1.3e+00)
f10 7.2e+00 (1.8e+01) 2.6e+00 (1.0e+01) 1.2e+01 (2.6e+01) 1.9e+02 (1.9e+02)
f11 2.3e+00 (7.9e+00) 4.6e-01 (2.1e+00) 2.7e+00 (9.1e+00) 3.0e+00 (2.5e+00)
f12 2.2e-01 (8.6e-01) 4.8e-02 (1.6e-01) 1.5e-01 (1.2e+00) 1.0e+00 (2.5e+00)
f13 2.5e-01 (6.7e-01) 6.1e-02 (2.1e-01) 3.5e-02 (1.2e-01) 1.6e+00 (1.7e+00)
f14 3.9e-09 (3.1e-09) 1.1e-10 (1.0e-10) 2.9e-09 (2.1e-09) 3.2e-04 (1.9e-04)
f15 2.5e+01 (7.3e+00) 2.4e+01 (6.8e+00) 8.6e+00 (3.0e+00) 6.1e+01 (1.4e+01)
f16 5.1e-01 (4.0e-01) 1.3e+00 (3.8e+00) 7.4e-01 (3.7e+00) 3.7e+00 (2.8e+00)
f17 3.4e-02 (5.8e-02) 2.5e-02 (6.6e-02) 6.1e-05 (4.3e-04) 3.7e-01 (3.7e-01)
f18 4.6e-01 (7.2e-01) 1.9e-01 (1.7e-01) 1.6e-02 (6.7e-02) 1.7e+00 (1.7e+00)
f19 4.2e+00 (1.6e+00) 4.1e+00 (2.0e+00) 2.9e+00 (1.1e+00) 3.2e+00 (5.6e-01)
f20 1.5e+00 (1.5e-01) 1.5e+00 (2.1e-01) 1.6e+00 (2.2e-01) 1.7e+00 (2.5e-01)
f21 1.9e+00 (2.2e+00) 2.0e+00 (2.5e+00) 6.1e+00 (6.3e+00) 5.7e+00 (8.1e-01)
f22 3.3e+00 (4.4e+00) 3.4e+00 (6.3e+00) 2.1e+01 (2.1e+01) 1.3e-02 (1.8e-02)
f23 1.5e+00 (5.0e-01) 1.6e+00 (5.0e-01) 2.3e+00 (6.9e-01) 2.0e+00 (3.8e-01)
f24 6.9e+01 (1.3e+01) 7.5e+01 (1.7e+01) 5.6e+01 (3.2e+01) 7.5e+01 (1.5e+01)
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Table 3. Comparison results between HMS versions and algorithms in portfolio on
real-world problem. Each column contains 50 runs average value of fitness and its
standard deviation in brackets.

HMS HMS with NBC BIPOP-CMA-ES iL-SHADE
6.5e-04 (3.0e-04) 5.6e-04 (3.6e-04) 4.0e-03 (8.7e-19) 3.5e-04 (2.1e-04)
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