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Abstract. We propose a novel multi-agent system approach to solve a
coverage problem in Wireless Sensor Networks (WSN) based on the col-
lective behavior of (ϵ,h)-Learning Automata (LAs). The coverage prob-
lem can be stated as a request to find a minimal number of sensors spend-
ing energy of their batteries to provide the requested level of coverage of
the whole monitored area. We propose a distributed self-organizing algo-
rithm based on the participation of LAs in an iterated Spatial Prisoner’s
Dilemma game. We show that agents achieve a solution corresponding to
Nash equilibrium, which provides maximization of not known for agents
a global criterion related to the requested level of the coverage with a
minimal number of sensors which turn on their batteries.

Keywords: Collective behavior, Learning automata, Network coverage
problem, Self-organization, Sensor networks, Spatial Prisoner’s Dilemma.

1 Introduction

Wireless Sensor Networks (WSN) is a fast-developing technology belonging to
a broader group of information and communication technologies [8] applied
today in the Internet of Things. They are composed of a large number of tiny
computers- communication devices called sensors deployed in some areas- that
can sense a local environment and send related information to a remote user
who can make an appropriate decision. Designing such systems is a complex
task demanding solving a number of issues on different levels related to a single
sensor node, a network of nodes, applications, etc. (see, e.g., [7]).

This paper focuses on some issues related to designing fault-tolerant WSN-
based mission-critical systems. We assume that monitoring is performed in a
remote and difficult-to-access area, and sensors are equipped with single-use
batteries that cannot be recharged. From the Quality of Service (QoS) point of
view of such WSN, two closely related important issues exist: how to perform
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effective monitoring (coverage) of an area and how to maximize an operational
lifetime. After deploying sensors, they should recognize their nearest neighbors
to communicate and start making local decisions about turning on or off their
batteries to monitor events. These decisions will directly influence the level of
area coverage, the amount of spending on sensors’ battery energy, and the net-
work’s lifetime. One can notice that the lifetime maximization problem is closely
related to the coverage problem. A group of sensors monitoring some area is usu-
ally redundant, i.e., more than one sensor covers the monitored targets, which
forms some redundancy that can be exploited. Solving the coverage problem is
crucial to solving the problem of maximization of the WSN’s lifetime. In the
paper, we will focus on the problem of the coverage.

This paper presents a novel approach to the problem of coverage, based on
self-organization with the use of (ϵ,h)- Learning Automata (LAs) [14, 10]. Sen-
sors do not have knowledge concerning a current level of WSN coverage or a total
number of sensors. They have only information concerning their neighbors. Nev-
ertheless, we expect that the system we will be able to self-optimize, i.e. to find,
in a fully distributed way, a minimal number of sensors turned on providing
a necessary value of the level of coverage. Our approach is based on a multi-
agent interpretation of the coverage problem and applies a recently proposed
[11] methodology of game–theoretic interactions between players participating
in the Spatial Prisoner’s Dilemma (SPD) game. The paper extends the work [12],
where a self-organizing system based on the application of a second-order Cel-
lular Automata (CA) has been proposed. We show that the presented approach
significantly outperforms the approach based on the application of CA.

Our approach contrasts with the others, currently used to solve the problem
of the coverage. Because the problem is known to be NP-complete [2], central-
ized algorithms are oriented either on the delivery of exact solutions for specific
cases (see, e.g. [1]) or applying metaheuristics to find approximate solutions (see,
e.g. [5]). The main drawback of centralized algorithms is that they assume the
availability of complete information about the problem and require an adequte
computing power to find a schedule of sensors’ activities. It means practically
that it can be done only on a site of the remote user, and a solution must be de-
livered to WSN before starting the operation. As a result, distributed algorithms
with only different forms of partial information about the problem have become
more and more popular (see, e.g.[3]). Computational power independence of
WSN from a remote user can provide scalability, and the entire operation of a
WSN in real-time can be achieved only by self-optimizing systems. The need
for such systems has been recognized in recent years in many industrial systems
(see, e.g., [4]).

The structure of the paper is as follows. The next section states the problem
of a coverage optimization in WSN. Section 3 presents a multi-agent approach to
distributed online solving the considered problem. The concept of (ϵ,h)-LA used
as players in the game is proposed in Section 4. Section 5 discusses relations
between concepts of a global solution and Nash equilibria. Section 6 presents
results of the experimental study, and the last section contains conclusions.
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(a) (b)

Fig. 1: WSN 5: (a) an area monitored by WSN consisting of 5
sensors with Rs = 18 m, (b) a WSN graph for Rs = 35 m.

2 Coverage Problem in Wireless Sensor Networks

We assume that an area of the size of L1×L2 m2 should be monitored by a
WSN consisting of N sensors (s1, s2, ..., si, ..., sN ) deployed over this area. More
specifically, the area is represented by M Points of Interest (PoI) which regularly
cover the area. Each sensor has a non–rechargeable battery and can monitor PoIs
in a sensing range of Rs if its battery is turned on. Fig.1a shows an example of
such an area with L1 = L2 = 100 m with M = 441 PoI (in orange), where WSN
5 consisting of N = 5 sensors with Rs = 18 m was deployed. Some sensors of
WSN are currently turned on and monitor the corresponding area.

It assumed that a QoS measure exists evaluating the quality of a WSN per-
forming monitoring. As such a measure, we accept the coverage value q defined
as the ratio of the number of PoIs covered by active sensors to the whole number
M of PoIs, i.e. q = Mobs

M . A desirable objective is to preserve the complete area
coverage, but sometimes, it may be more practical to achieve a predefined c o v e
r age rate that is just high enough. Therefore, we assume that this ratio should
not be lower than some predefined requested value qr (0 < qr ≤ 1).

The coverage problem can be stated in the following way. Find a solution
s = (s1, s2, ..., si, ..., sN ), where si = {0, 1} with a corresponding value of the
coverage q(s) and a number n_ON(s) of sensors turned on such that it fulfills
the following requirements: a) a number n_ON of sensors turned on is minimal,
b) q(s) ≥ qr, and c) q(s) has the largest possible value.

We have to deal with a combinatorial optimization problem, which can be
described by a proposed function that should be maximized:

f(q(s), n_ON(s), qr) =
{

N − n_ON(s) + q(s), if q(s) ≥ qr

q(s), if q(s) < qr.
(1)

This function assigns univocally values to solutions in such a way that a
maximal value of it corresponds to a solution (or solutions) which provides a
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maximal value of q fulfilling the requirement q ≥ qr under the minimal value of
n_ON of sensors turned on.

We want to solve the coverage problem online in real-time using only a tiny
amount of computational power and the communication possibilities of WSN
sensors. A potential solution algorithm should work in a monitored area in real-
time and react quickly to changes in values of parameters of sensors. Therefore,
we will focus in this paper on working out a variant of a distributed algorithm
to solve the coverage problem by self-optimization.

The first step in this direction is converting a WSN instance into a WSN
interaction graph. Such a graph will be used as a core of a multi-agent system
oriented on solving a coverage problem. The conversion is based on the principle
saying [12] that two nodes of a WSN graph are connected if they have at least
one common PoI within their sensing range Rs in a corresponding WSN.

Fig.1b shows an interaction graph for WSN 5 presented in Fig. 1a under
an assumption that Rs = 35. The interaction graph contains five nodes, each
corresponding to a sensor from the instance. The degree of each node corresponds
to a number of neighbors which depends on the value of Rs, and in this case,
each sensor has four neighbors.

3 Multi–agent System for Online Coverage Optimization

3.1 Agents and Their Actions

We assume that each node of a WSN interaction graph is controlled by an agent
Ai of a multi-agent system consisting of N agents. Each agent has two alternative
decisions (actions): αi = 0 (battery is turned off) and αi = 1 (battery is turned
on) and a decision unit is responsible for making a decision about turning on
and off the sensor. Different ways of coordination of agent decisions exist to
reach a common goal. In our approach, we assume that the interaction of agents
is based on a game-theoretic model, which is a variant of SPD game [11] related
to the WSN coverage optimization problem [12]. In this game-theoretic model,
we assume that all agents make discrete-time decisions regarding the activation
of their batteries using specific rules/strategies.

We assume the following set of rules is available by agent-players:

• all C : always cooperate (C) what corresponds turning on battery (αi = 1),
• all D: always defect (D) what corresponds to turning off battery (αi = 0),
• k–D: cooperate until not more than k neighbors defect, otherwise defect,
• k–C : cooperate until not more than k neighbors cooperate, otherwise defect,
• k–DC : defect until not more than k neighbors defect, otherwise cooperate.

One can notice that the first two rules do not consider player-neighbor de-
cisions. The remaining three rules of a given agent-player take into account the
decisions of player-neighbors from a previous round. Selecting a rule to turn
on/off a battery depends on an algorithm of a player decision unit. While in
our previous study [12] we were using a second order CA, in this paper, we
propose to use a new original reinforcement learning algorithm called (ϵ,h)-LA.
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3.2 Payoff Function of a Game

It is assumed that each agent-player knows the value of a requested coverage qr

and considers it as a local value qi
r = qr which must be fulfilled. He participates in

an iterated SPD-like game [12] consisted of some number of rounds (iterations)
conducted in moments of time t = 1, 2, ..., T , where T is known only for an
organizer (a remote user of WSN) of the iterated game. An agent decides whether
to turn on his battery (i.e. cooperate (C)) or turn off it (i.e. defect (D)) and obtain
a payoff that depends on his decisions (C/D) and of only his neighbors decisions.
Neighbors of a given player can be considered as a virtual player-opponent. A
value of a local coverage qi

curr is a result of a game of the i − th player with
his virtual opponent. His payoff in a game depends on whether his current qi

curr

is below or above the requested qi
r. The payoff function of a player is given in

Tab. 1.

Table 1: Payoff function of SPD-like game for coverage problem
i−th agent’s action fulfilment of qi

r

turn on battery (C)
qi−off

curr ≥ qi
r

no yes
payoffon+

i = d payoffon−
i = c

turn off battery (D)
qi

curr ≥ qi
r

no yes
payoffoff−

i = a payoffoff+
i = b

The payoff function assigns values to the i–th player in the following way:
• if he “turns off battery” then he calculates his local value of coverage

qi
curr; if this value qi

curr ≥ qi
r then he receives a payoff equal to b, otherwise a

payoff equal to a,
• if he “turns on battery” then he calculates what would be his value of

qi
curr (denoted as qi−off

curr ) if in fact he would have “turned off” his battery; if
qi−off

curr < qi
r then he receives a payoff equal to d, otherwise a payoff equal to c.

The proposed payoff function transforms the global optimization criterion
(see Eq. 1) stated in Section 2 for the coverage problem into local optimization
goals of players.

We assume that players are rational and act in such a way to maximize
their payoff defined by the payoff function. However, we are not be interested
in players’ payoffs but in the evaluation of the level of collective behavior of the
system. As a measure of the collective behavior of the system, we use an external
criterion (not known for players) - the average total payoff (ATP) ū():

ū(s1, s2, ..., si, ..., sN ) = 1
N

N∑
i=1

ui(Ai(si), Avirtual
i (si1 , si2 , ..., sir

)), (2)
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Fig. 2: Proposed (ϵ,h)-Learning Automaton.

where ui() is a payoff of an agent-player Ai in a game with a virtual player
Avirtual

i and ir is the number of neighbors of a player Ai corresponding to his
opponent, the player Avirtual

i .
Game theory predicts that players’ behavior in noncooperating games is ori-

ented towards achieving a Nash equilibrium (NE). We call a value of ATP corre-
sponding to given NE the price of this NE. The game can have many NE points
with different ATP. We call NE with the highest ATP the maximal price point
(MPP). The question is whether we can expect of such a behavior of players
that while they attempt to reach a NE at the same time ATP of the whole set
of players is maximized, i.e. MPP is reached. Such a behavior depends on many
factors, and one of them is a model of a player making decisions. In this paper,
we examine the collective behavior of players modeled by (ϵ, h)-LA.

4 (ϵ, h)-Learning Automata

LAs are reinforcement learning algorithms proposed in 1969 by Tsetlin (see,
[13]) and further extended and studied e.g. by [14, 6, 9] and many others. LAs
distinctive feature is working in random environments and their ability to adapt
in them. An idea of a Learning Automaton (LA) working in a deterministic
environment and called ϵ-automaton was presented in [14] with a comment saying
that such an idea seems to have a sense only if a deterministic environment can
be randomized. However, it was shown in [10] that the concept of ϵ-LA is useful
in game-theoretic models related to variants of PD game with deterministic
environments. In this paper we extend this idea and propose a concept of (ϵ, h)-
LA suitable for an SPD-like game model oriented on solving coverage problems
in WSN.

Fig. 2 presents the proposed (ϵ, h)-LA construction. Each LA uses a subset of
m rules (0 < m ≤ 5)) from the whole set of available 5 rules (see, subsection 3.1).
LA has a memory of a length h, where it stores pairs (rulet − ih, rewardt − ih)
from last h moments of a discrete time t − 1, t − 2, ..., t − ih, ..., t − h of its
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Fig. 3: Landscape of a global criterion function f() and external
criterion ATP for WSN 5.

operation. Each pair contains an information about a rule selected by LA at a
discrete time t − ih and corresponding rewards for executing this rule.

At time t LA selects a new rule in the following way: with a probability
1 − ϵ (0 < ϵ < 1) it selects from the memory a rule with the highest reward, or
with a probability ϵ selects randomly a rule from a set of m rules. The selected
rule is executed, i.e., the state of a corresponding sensor battery is changed by
performing an action turn ON or turn OFF. Selected rule and a corresponding
action (C or D) are sent to DE, which returns a reward for this action. Records
of the memory are shifted in such a way that the oldest record is removed, and
a new record with the latest strategy and corresponding reward is added to the
memory.

5 Nash Equilibria and Global Solutions

Our approach based on self-organization differs significantly from the classical
one. We replace the problem of global optimization (see, Eq. 1) by the problem
of reaching NE by the agent-players. The level of self-organization, which we call
a level of collective behavior, is measured by the value of ATP at NE.

ATP is closely related to two global characteristics of WSN represented by
parameters n_ON and qr, which are also not known to the players. The payoff
function presented in Table 1 was designed in such a way to express global
parameters n_ON and qr through local goals of the players. A correctly designed
game should correctly link the global optimization criterion with a value of ATP
at NE. We focus in this section on showing relations between global solutions
offered by Eq. 1 and distributed solutions corresponding to ATP (Eq. 2) at NE.

Due to the exponential increase in the number of solutions, an analysis of
relations between NE and a global optimization criterion can be performed only
for small instances of the coverage problem. Therefore, in this Section, we will
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use WSN 5 shown in Fig. 1a under the assumption that Rs = 35 m. WSN graph
of this instance is shown in Fig. 1b. For the analysis, the payoff function with
the settings: a = 0.2, b = 1.2, c = 0.6, d = 1.0 will be used, and qr = 0.8.

Fig. 3 presents landscapes of both functions: the global function f() (see, Eq.
1) and ATP (see, Eq. 2) for WSN 5. The space of solutions s of the coverage
problem consists of 32 solutions. Fig. 3 presents values of f() (in red) and ATP
(in blue) for all solutions. One can notice that both functions indicate s27 =
(1, 1, 0, 1, 1) as an optimal solution with corresponding values f(s27) = 1.94 and
ATP(s27) = 1.04, respectively. The solution shows that the number of sensors
turned ON is equal to 4, with the corresponding value of q = 0.94.

It can be shown that s27 is NE, and at the same time it is maximal price
point (MPP). It is a unique NE for WSN 5 and is marked in violet in Fig. 3.

6 Experimental Results

A number of simulation experiments have been conducted to learn the perfor-
mance of the proposed methodology. The monitored area was of the size L1 =
L2 = 100 m with M = 441 PoI. We use the game settings a = 0.2, b = 1.2, c =
0.6, d = 1.0, the request qr = 0.8 and LAs with parameters h = 8 and ϵ = 0.005.
Batteries capacity is unlimited. Each experiment lasted 1000 iterations. When
necessary, experimental results were averaged over 30-50 runs.

6.1 The Instance: WSN 5

The purpose of this set of experiments was to get some inside into the work of the
self-organizing algorithm when a small instance of the problem WSN 5 is used.
The experiments have been conducted under an assumption that Rs = 35 m.
The WSN interaction graph of the multi-agent system is presented in Fig. 1b
and a theoretical analysis of the game was presented in Section 5. Experiments
have been conducted under the assumption that the whole set of 5 rules is used.

Fig. 4 presents results of a single run of the algorithm. Fig. 4a and Fig. 4b
show changes of global parameters q and nON , respectively. One can see that
a suboptimal solution characterized by q = 0.78 and nON = 3 was reached
very quickly at the iteration 7 and finally an optimal solution characterized by
q = 0.94 and nON = 4 was found at the iteration 169. This solution was expected
from the analysis provided in Section 5. It is stable till the end of the iterated
game, because it corresponds to a unique NE in this game.

Fig. 4c shows moments of time when some agents use ϵ alternative of the LA
algorithm to select rules. The first time this alternative is used at iter=161 (see,
the line in violet) by the agent 3 but it does not result in any changes in the
system. The second time it is used at iter=169 (see, line in blue) by the agent 1
and it causes shifting a solution to the optimal one. Indeed, the agent 1 changed
his rule all D used until now into the rule all C what resulted in changing the
state of the sensor 1 from 0 to 1.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: Single run for WSN 5: (a) coverage q, (b) a number of
sensors nON , (c) moments of taking actions caused by ϵ alterna-
tive of LA, (d) local rewards of agents, (e) frequencies of rules
selected by agents, (f) structure of LA memories storing rules.

Fig. 4d shows how rewards of agents change in the game. One can see that
before moving from the suboptimal solution to the optimal one the reward of the
player 1 was equal to 0.2 (see, the line in blue), the reward of the player 3 was
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(a) (b)

Fig. 5: WSN 5: averaged value of (a) coverage q, (b) a number
nON of sensors turned on.

equal to 1.2 (see, the line in violet), and rewards of the remaining three players
were equal to 1.0. Changing by the player 1 at iter=169 the state of his battery
into 1, moved, as we already noticed, the suboptimal solution to the optimal
one, and moved his personal reward to 1.0, while rewards of remaining players
did not change. The optimal solution reached by the players is characterized
by the highest average payoff (see, the line in red) of the game (ATP) equal to
1.04 corresponding to a specific NE called MPP. We can see that the solution is
stable during the remaining rounds despite the attempts of changing the course
of the game caused mostly by the ϵ alternative of LAs.

Figs. 4e,f give some insight into the process of managing rules of LAs which
collectively influence on the global performance of the system. Fig. 4e shows
how frequencies of rules selected by agents change in time. Till iter=169 all 5
rules are used with the same frequency equal to 0.2, but later we can observe a
complex dynamics of different use of rules. Dominating rules are k–C (in orange)
and all C (in red) which are used with frequencies from the range (0,0.6) and
(0.2,0.6), respectively. The remaining three rules are used with the frequency
from the range (0,0.2).

Fig. 4f gives some insight into the contents of LAs memories. One can see
that while till the iter=169 all rules are equally distributed with the frequency
equal to around 0.2, in further iterations we can observe the process of significant
changes of LA memories structure. The rule all C becomes dominating occupying
around 40% of the total LA memory, and all D occupies only around 5%. We
can observe an increasing number of k–D rules reaching finally around 30% of
the whole population of rules, and at the same time populations of k–C and
k–DC are decreasing to around 15%.

Fig. 5 presents averaged over 50 runs results concerning of WSN 5. The
requested coverage qr is reached in the average after around 100 iterations (see,
Fig. 5a) but the process of searching a solution is accompanied by noticeable
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(a) (b)

Fig. 6: WSN 45: (a) sensors localization, (b) WSN interaction
graph for Rs = 30 m.

value of standard deviation (std). Improving the average values of q and nON

(see, Fig. 5b)) can be observed in next iterations, with decreasing value of std.

6.2 The Instance: WSN 45

To verify a general performance of the proposed approach we use in this subsec-
tion a realistic instance called WSN 45 consisting of 45 sensors with Rs = 30 m.
Fig. 6a shows a deployment of sensors in the monitored area and Fig. 6b presents
the corresponding WSN graph of the multi-agent system.

In the first set of experiments with WSN 45 we applied genetic algorithm
(GA) (not shown here) to find an optimal or a suboptimal solution, and for
this purpose the global function (see, Eq.(1)) was used. Conducted experiments
indicated that there exists a solution providing the requested coverage q ≥ qr

with nON = 4, and it is used as a reference to results presented in this subsection.
Figs 7 and 8 show averaged over 30 runs values of q and nON for different

subsets of rules. Figs 7a,b shows values of q and nON for the subset {all C, all D}
and Figs 7c,d for the whole set of 5 rules. For both versions the algorithm achieves
the requested level of qr. With the use of 2 rules goals of self-optimization are
reached in the average at the 7-th iteration providing in the average q = 0.83
(see, Fig. 7a) with the average nON around 8.9 (see, Fig. 7b). The algorithm finds
quickly a solution providing the average q = 0.94 which is maintained during the
whole game close to this value. We can notice the decreasing number of sensors
turned on, which reaches in the average nON = 7.13 in the final iterations.

The behavior of the system with the whole set of 5 rules is slightly different.
The algorithm reaches at iter=14 the requested level of the coverage q = 0.83
(Fig. 7c) with low number of nON = 6.16 (Fig. 7d) and continues to improve
the coverage until reaching q = 0.94 around iter=305 and maintains stable this
value till the final iteration achieving nON equal around 7.0. The main difference
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(a) (b)

(c) (d)

Fig. 7: WSN 45: averaged value of (a) coverage q for a subset
of 2 rules, (b) a number of sensors nON for a subset of 2 rules,
(c) q for the whole set of 5 rules, (d) nON for the whole set of 5
rules.

between both versions is that the algorithm with 2 rules requires at the beginning
slightly more sensors turned on than the algorithm with the 5 rules, but finally
both algorithms tend to reach a solution with the average nON close to around
7.00. Both versions are characterized by significantly reduced values of std.

Fig. 8 presents behavior of the system with other rules from the whole set of
rules. Figs 8a,b show changes of the average values of q and nON , respectively
for the rule k–D. One can see that this rule alone is able to provide a distributed
search of a solution. However, it is accompanied by a relatively large std of q.
At the iter=452 the average q becomes equal to 0.8 and it is accompanied by
nON = 4.33, what means that current solutions are very close to one offered
by GA. However, the solutions are not stable and they are lost. Only from the
iter=663 the values of q fulfil the requirement of qr with corresponding values
of nON = 6.93. During the last 100 iteration a solution with low std of both q
and nON is maintained with values q = 0.92 and nON = 6.10.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: WSN 45: averaged value of (a) q for rule k–D, (b) nON

for rule k–D, (c) q for k–C, (d) nON for k–C, (c) q for k–DC, (d)
nON for k–DC.

Figs 8c,d and Figs 8e,f show the behavior of the algorithm with rules k–
C and k–DC, respectively. Both versions of the algorithm have self-organizing
features. However, it is observed a relatively large number of sensors which are
turned on in the beginning of a searching process. The convergence of both
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(a) (b)

(c) (d)

Fig. 9: WSN 45 (CA approach): averaged value of (a) q for 2
rules, (b) nON for 2 rules, (c) q for 5 rules, (d) nON 5 rules.

versions in terms of a number of active sensors with batteries turned on is slow.
The algorithms are characterized by large values of std, and a phenomenon of
oscillation of values q and nON can be observed. We can see it in Figs 8d,f, where
values nON oscillate what results in large average values of nON (in blue).

6.3 The Instance: WSN 45 - Cellular Automata Approach
In [12] we proposed an approach to solve the coverage problem with the use of
second-order CA. Fig. 9 presents simulation results for WSN 45 with the use of
CA for two options: with the use of two rules (see, Figs 9a,b) and with the use
of the whole set of 5 rules (see, Figs 9c,d).

Results show that for both options we observe a relatively large std of q. We
can see also that the average values of q are mostly below the requested qr. The
option with the 2 rules is slightly better and more promising than the option
with the 5 rules. It provides much more stable values of both q and nON . The
comparison of both approaches based either on the use of LA-based agents or
CA-based agents shows unambiguously that the LA-based approach significantly
outperforms the CA-based approach.
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7 Conclusions

We have proposed a novel self-organizing algorithm which is able to solve the
problem of coverage in WSN in a fully distributed way by self-optimization. The
approach uses three components: (a) a graph model of WSN, (b) a multi-agent
system with agents corresponding to nodes of a WSN graph, and (c) agents
implemented as (ϵ,h)-LA participating in the spatial PD game.

The system is able to self-optimize, i.e. agents act in such a way to maximize
their own rewards but at the same time they reach unknown for them global
solution specified by two objectives: a coverage and the corresponding number
of sensors that are turned on. The proposed LA-based approach significantly
outperforms the approach based on using of CA-based agents.

Our future work will be oriented toward a more detailed study of the proposed
approach with use of larger set of WSN instances to consider issues of scalability
and the influence of specific model parameters on the algorithm’s performance.
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