
Solving Sparse Linear Systems on Large
Unstructured Grids with Graph Neural Networks:

Application to solve the Poisson’s equation in
Hall-Effect Thrusters simulations

Gabriel Vigot1, Bénédicte Cuenot1, Olivier Vermorel1

1Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique
42 av. Gaspard Coriolis, Toulouse, 31100, France

vigot@cerfacs.fr, cuenot@cerfacs.fr, vermorel@cerfacs.fr

Abstract. The following work presents a new method to solve Poisson’s
equation and, more generally, sparse linear systems using graph neural
networks. We propose a supervised approach to solve the discretized
representation of Poisson’s equation at every time step of a simulation.
This new method will be applied to plasma physics simulations for Hall-
Effect Thruster’s modeling, where the electric potential gradient must
be computed to get the electric field necessary to model the plasma’s
behavior. Solving Poisson’s equation using classical iterative methods
represents a major part of the computational costs in this setting. This
is even more critical for unstructured meshes, increasing the problem’s
complexity. To accelerate the computational process, we propose a graph
neural network to give an initial guess of Poisson’s equation solution.
The new method introduced in this article has been designed to handle
any meshing structure, including structured and unstructured grids and
sparse linear systems. Once trained, the neural network would be used
inside a numerical simulation in inference to give an initial guess of the
solution for each simulation time step for all right-hand sides of the linear
system and all previous time step solutions. In most industrial cases,
Hall-Effect thrusters’ modeling requires a large unstructured mesh that
one single processor cannot hold regarding memory capacity. We then
propose a partitioning strategy to tackle the challenge of solving linear
systems on large unstructured grids when they cannot be on a single
processor.

Keywords: Plasma Physics · Partial differential equations · Graph Neu-
ral Networks · Sparse Linear systems · Partitioning

1 Introduction

Sparse linear systems may arise when discretizing Partial Differential Equations
(PDEs) for numerical simulations. For elliptic problems like Laplace, Poisson,
or Helmholtz equations, these problems are even more important when they
need to be solved on a large unstructured mesh. Besides, the mesh itself could

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

2 G. Vigot et al.

be partitioned into multiple subgraphs and distributed in parallel over multiple
processors to compute the solution of the discretized PDEs. The linear sys-
tem, when ill-conditioned, becomes harder to solve with a low convergence rate.
Decades of research have been led to reduce the computational cost of solving a
sparse linear system with efficiency with preconditioning techniques (Chen et al.
[9]), or multi-level approach (Saad et al. [8]). Since the introduction of Physics
Informed Neural Networks by Raissi et al. [7], multiple efforts have been made
to help different kinds of solvers, find the solution to elliptic problems, applied to
unstructured data that could be modeled as graph neural networks (Pfaff et al.
[6], Sanchez-Gonzalez, Godwin et al. [13]). Other groups have focused more of
their attention on solving sparse linear systems using neural network operators
(Jiang et al. [2]), whether with a supervised approach or an unsupervised ap-
proach (Stanziola et al. [18]). While some other groups dedicated their research
to finding the right preconditioning matrix to help the iterative solvers converge
faster (Li et al. [17], Sappl et al. [14], or Luz et al. [1]).
We propose a model to find the update ∆Φt of the solution Φt = Φt−1 +∆Φt

for each time step t of a simulation. In the end, we would like to demonstrate
the ability of a neural network to solve elliptic PDEs discretized as sparse lin-
ear systems AΦt = bt where A represents the Laplacian operator and bt the
right-hand side of Poisson’s equation at a given time step t. In the context of
industrial applications, we extend this work to a large unstructured mesh where
the memory size of the graph is too large to fit onto a single graphics processing
unit (GPU). The final goal is to have a graph neural network capable of predict-
ing an initial guess Φt for each time step t of a simulation based on the solution
of the previous time step Φt−1 and the right-hand side of the linear system bt.
The neural neural should also be able to understand the dynamics of the data
represented in the graph, even if it is partitioned.
The following will first present the model and the neural network architecture.
Then, two applications will be shown in the context of plasma simulations for
Hall-effect Thruster design: the first one is a 2D simulation with triangular mesh,
and the second one is a plasma discharge in 3D with irregular tetrahedral mesh,
and the whole partitioned in multiple subgraphs.

2 Hybrid Model

The main objective of the method is to conciliate the solving speed of a linear
system and the precision that the model has to reach at the end of each time
step of a simulation. A particular focus is given to solving Poisson’s equation,
which is one fundamental step in plasma physics modeling. The expectations are
that the neural network will be able to find a good approximation of the solution
update for each time step of a simulation. During its training phase, the neural
network is trained using a solution of Poisson’s equation at a given simulation
time step. Ultimately, the neural network should provide an initial guess of Pois-
son’s equation that is close to the physical solutions given in its training phase.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

Sparse linear systems with GNNs 3

The computational cost would decrease because a neural network’s inference
phase is less computationally expensive than a traditional iterative solver.

2.1 Poisson’s equation

Several discretization methods exist in numerical simulation to represent Pois-
son’s equation on an unstructured grid. In this present work, Poisson’s equation
will be computed using the finite volume method. We describe our Poisson’s
problem on a given discretized domain Ω̊ delimited by Dirichlet boundary con-
ditions ∂ΩD: ∇2Φ = − q

ϵ0
(ni − ne) on Ω̊

Φ = ΦD on ∂ΩD

(1)

where −q(ni−ne) represents the right-hand side of our Poisson’s equation with
q the electric charge of an electron, ϵ0 the vacuum permittivity, ni the charge
density of ions constituting the plasma, and ne the electron charge density. The
numerical scheme based on the AVBP solver created at CERFACS [12] defines
the discretization of Poisson’s equation with the Green-Ostrogradski theorem
where for a nodal volume Vi of a node i belonging to the computational domain
E(i) for each cell τ :∫

Vi

∇2ΦdV =

∫
∂Vi

∇Φ · ndS =
∑

τ∈E(i)

∫
∂Vi∩τ

∇Φ · n dS, (2)

where n dS represents the orthogonal vector to the surface of the cell τ . So that
it is possible to build the discretized Laplacian operator over an unstructured
mesh with primal cell volume Vi, which gives us the following linear system to
solve:

AΦt = bt, (3)

where for t the designated time step of a simulation, A is the discretized Lapla-
cian operator, Φt the solution of the linear system at time step t and bt the
right-hand side of the linear system at time step t since Φ and b will evolve over
time.

2.2 Graph Convolution Network model

We use a non-structured approach to harness a graph convolutional network
that leverages node information stored on large unstructured meshes affiliated
with the physical problem. By learning the node features on the graph, the neural
network should have a global understanding of the nature of the data represented
on the graph. We use the SAGEConv operator proposed by Hamilton et al. [19].
It consists of sampling the nodes of a graph, aggregating the features of the
sampled node to a certain level of the node’s local neighborhood, and repeating
the process until the network has a complete representation of the node features

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

4 G. Vigot et al.

of the graph.
SAGEConv is a mean aggregator which could be summarized with the following
equation where for a designated graph convolutional layer k:

hk
v ← σ(W .MEAN({hk−1

v }) ∪ {hk−1
u ,∀u ∈ N (v)}) (4)

where

– hk
v : represents the new node representation,

– v: the concatenation of the current node propagation,
– {hk−1

v } : the current node information propagation,
– {hk−1

u ,∀u ∈ N (v)} means the information, aggregation from its immediate
neighborhood,

– u the selected neighborhood nodes,
– W is the weight matrix of the trainable parameters,
– σ the nonlinear activation.

This strategy makes it possible to pass through a large graph and learn its
dynamics in terms of node feature information.

2.3 Neural network architecture

As noted in section 2.2, the SAGEConv model requires several layers to fully
increase the capacity of the neural network to analyze globally the node fea-
tures, mostly in the case where the graph is very large. As the neural network’s
main architecture, we suggest stacking several SAGEConv convolution layers.
Each layer will be associated with PReLU as a nonlinear activation layer since
this type of activation layer has a trainable parameter to adapt the output of
the convolution layer [20]. Finally, the activation layer will be followed by a
LayerNorm to stabilize the neural network’s learning process [21]. The chosen
neural network architecture has five layers with a linear operator at the end
of it. Each layer’s structure comprises a sequential operator of the SAGEConv
model, a PReLU activation layer, and a LayerNorm. The neural network was
optimized using the Adam optimizer [22] with β1 = 0.95 and β2 = 0.90 with all
the trainable parameters initialized by default with the Glorot Normal distribu-
tion [23]. The learning rate is fixed at 1×10−3. All training methods are written
using PyTorch [3] and PyTorch Geometric [5] to model graph neural networks
and monitor their training. Every training was conducted using the Distributed
Data-Parallel paradigm from PyTorch [4] and ran on 4 NVIDIA A30 GPUs for
the 2D case and 4 NVIDIA V100 for the 3D case.

2.4 Hybridization method

The benefit of using a neural network inside a numerical simulation is that it
decreases the computation time necessary for the discretized Poisson problem.
In plasma physics simulation where we have to solve Poisson’s equation at each

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

Sparse linear systems with GNNs 5

time step of a simulation, the solution at the current time step Φt could be found
incrementally such as:

Φt = Φt−1 +∆Φt, (5)

where ∆Φt represents the solution update for the current time step, in the cor-
rection of what we had in the previous simulation time step. At first, the neural
network is built using the same connectivity as the unstructured mesh from the
numerical simulation. Then, the neural network is employed to find the solution
update ∆Φt so that:

Φt = Φt−1 + fθ(Φ
t−1,bt), (6)

where fθ(Φ
t−1,bt) represents the output of the neural network, with hyper-

parameters θ. The output will update the current time step solution ∆Φt. As
explained in equation (6), the neural network will have as input the solution of
the previous time step Φt−1, the current right-hand side of the discretized PDE
bt, source term as defined in equation (3). The supervised approach uses the
neural network to provide an initial guess for each simulation time step. The
initial guess is then refined by an iterative solver, which is supposed to perform
a few iterations to converge.

Φt−1, bt

INPUT

(˜Φt−1, b̃t)

∆Φt
0 = fθ(˜Φt−1, b̃t)

Make Φ0

GMRES

Iterative
solvers

Φt

OUTPUT

Fig. 1: Inference sketch for solving linear system AΦt = bt throughout a simulation

As demonstrated in figure 1, we take inputs from the solution of the previous
time step Φt−1, and the right-hand side bt of the linear system. We normalize bt

and Φt−1 with their respective L2 norm giving Φ̃t−1 and b̃t. Inside a simulation,
the neural network will provide an update ∆Φt

0 that will give an initial guess
x0 = Φt−1+∆Φt

0 for an iterative solver such as a GMRES solver [8]. The iterative
solver in that method is here to ensure good accuracy for the next step to avoid
the divergence of the simulation throughout time iterations.

2.5 Training and partitioning algorithm

As a training method, we propose a supervised approach where the neural net-
work should make a prediction close to a solution of reference obtained with an

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

6 G. Vigot et al.

iterative solver for each simulation time step. The supervised learning objective
will be the root-mean-squared error (RMSE) between the output of the neural
network and the update of reference for the designated time step:

Lθ =

√√√√ n∑
j=1

(f t
θ,j −∆Φt

j,ref)
2

n
, (7)

where j corresponds to the node index of the update vector. The update of
reference ∆Φt

j,ref = Φt
ref − Φt−1

ref is also expressed with the same node index as
the prediction of the neural network for all solution node n of the unstructured
mesh. In the major cases of industrial numerical simulations for plasma physics,
it is necessary to study a discretized domain that largely exceeds the memory
capacity of one single processor. This issue remains consistent for large graphs
where the training phase and the feature node information linked to the graph
structure exceeds the memory capacity of one single GPU.
In 2019, Chiang et al. [24] suggested partitioning the graph into several clusters
and making predictions for each cluster separately. Using the library METIS
[25], the clustering is computed by subdividing the initial graph Ḡ into k groups
of nodes G1, G2, ..., Gk, where Gk := {Vi, Ei} ∀i ∈ [[1, k]]. Ei represents the edge
connectivity of subgraph Gi. The partitioning is realized without overlapping.
Hence, the neural network should have only one representation of a node on
a designated subgraph. Once the graph is partitioned, the training could be
organized as follows:

1. For each time step we partition the input data Φt−1 and bt and distribute
each partitioned data to their respective subgraph,

2. We do a forward passing for each subgraph independently from one another
without communication between them,

3. We concatenate each subgraph output into a single vector and reorder this
vector the same way as the global node ordering before the partitioning as
for Φt−1 or bt,

4. This final vector will be used to compute the RMSE loss for each time step
of a simulation,

5. We repeat the process for each time step of a simulation.

The process is repeated for each training iteration, giving the neural network an
overview of the whole dynamics of the simulation. Despite the missing communi-
cation between the subgraph of the problem, we expect, with the backpropaga-
tion, a global understanding of the problem. Each subgraph’s output vector has
gradient values, which will be concatenated for backpropagation. Even though
the forward pass of the neural network is done locally for each subgraph, the
update of the neural network weights is done globally by backpropagating the
final vector that regroups all the gradients of each subgraph output. In the end,
the optimization process will be global, and the neural network must be able to
learn the global patterns of the main graph before its partitioning.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

Sparse linear systems with GNNs 7

3 Test cases and training datasets

The present work has a special application to electric space propulsion. Hence,
the datasets that constitute the training process for our method are based on
the specific application field.

3.1 2D MTSI in a radial-azimuthal (r, θ) plan

As a first example, we propose a 2D Particle-In-Cell (PIC) simulation from
Petronio et al. [26] where we study the interaction of two opposite flows called
Modified-Two-Stream-Instability (MTSI), meaning two species of charged par-
ticles going in opposite directions: one constituted of ions and the other, of
electrons.
In the context of this simulation, the domain is discretized with regular squares,
each split in half into triangles. A static electromagnetic field E×B is imposed on
the virtual axis of the simulation (axial direction for Ex and azimuthal direction
By) so that the plasma instability will be correctly presented. This simulation
aims to demonstrate the feasibility of solving Poisson’s equation for a regular
grid enough to fit in the memory of one single GPU (33,153 nodes). In this
simulation, when a particle leaves on the right side of the domain, it will be rein-
jected on the left side, which is assimilated as a periodic boundary condition.
The remaining boundaries marked in green are considered Dirichlet boundary
conditions where the electric field is forced to zero.

3.2 3D PIC simulation for Electron Drift Instability (EDI)

The second case is the study led by Villafana et al. [27], where 3D Particle-In-
Cell simulation was made to describe the plasma instabilities due to the electrons
which are very difficult to track inside a Hall-Thruster. A 3D unstructured mesh
comprising 2,739,491 nodes was set to capture this physical phenomenon. The
mesh is a section of the Hall Thruster channel in the azimuthal direction. Peri-
odicity is added for the faces belonging to the azimuthal direction to guarantee
an electric equilibrium of the plasma. The mesh itself is fully unstructured with
a refined region inside the chamber of a Hall-Thruster. On this complex large
geometry with different cell sizes, using a graph neural network becomes advan-
tageous when capturing the dynamics of the physical fields without interpolating
the latter. Due to the size of the graph, this graph will be split into 100 parti-
tions to ensure every partition will fit in the memory capacity of one GPU for
the training sequence.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

8 G. Vigot et al.

x

z

Wall

Lx

Lz

5

6
Lz

Lch

y

LR

5

6
Lz

zmax

x

z

Wall

Lx

Lz

5

6
Lz

Lch

y

5

6
Lz

zmax

(a) (b)

(a) 2D radial-axial (z − x) view
of the 3D geometry

(b) Radial distribution of the cell size
normalized on the radial length Lz

Fig. 2: 3D global view of 3D PIC simulation

3.3 Datasets overview

In figure (2), the simulations constitute the datasets for the neural network’s
training. Throughout the simulation of the 2D case, every linear system solution
is computed using a GMRES solver from PETSc [10] with stopping criteria of
1 × 10−8 for the residual norm value without preconditioner. For the 3D case,
an iterative solver MAPHYS [11] was used to obtain the solution with a similar
threshold convergence.

Fig. 3: Variation of L2 norm ||AΦt−delay
ref − bt||2/||bt||2 for MTSI 2D simulation (with

delay = 1) and the 3D EDI simulation on the right (with delay = 5, 000)

In the 2D case, the solutions that compose the dataset of our neural network
are saved every 100 time steps. For every 100 time steps, we store the current
solution, the solution of the previous time step, and the right-hand side of the

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

Sparse linear systems with GNNs 9

current time step. Overall when computing the mean L2 norm of the whole
dataset ||AΦt − bt||2, the L2 norm of the simulation turns approximately around
30. In the 3D case, the solutions to save are more computationally expensive to
store. The solutions are then stored every 5,000-time step without saving the
solution of the previous time step for the current time step solution we want to
store. Consequently, the mean L2 norm of the 3D case is higher than the 2D
case, with approximately 7,900.

4 Numerical Experiments

In this section, we report the results of our neural networks in training and
inference. For both cases, we use the simulations reduced in PyTorch format
datasets presented in section 3.3. We split each simulation into training and
validation sets. The validation represents the last 5% of the simulation itself,
where we check the learning evolution of the model.

4.1 Training and inference for the 2D case

We present a synthesis of our training and inference results and the training and
validation set for both cases. For the training process, we plot a map of neural
network predictions along the time steps of the simulation and compare them to
the solution of reference, which has a precision error of 1 × 10−8. The timeline
results for the 300th epochs of the training process are shown in figure (6a) in
the appendix (6).

Table 1: Mean and standard deviation of the RMSE of the training set during the
training phase, the validation set during inference, compared to the reference

Training Validation Reference

≈ 0.07 ± 3× 10−4 ≈ 0.10 ± 3× 10−4 ≈ 0.19 ± 0.04

From figure (6a), the predictions made by the neural network during the
training process show a prediction with an absolute error that does not exceed
1.0. As we can notice in table 1, the training phase shows an RMSE that does not
exceed the mean level of 0.10. With a standard deviation lesser than 0.001, the
neural network approximates the solution update well for all simulation time
steps for the training and validation phase. The RMSE of reference refers to
the RMSE between the previous time step and the current time step solution,
meaning the error of the initial guess before the neural network correction giving
∆Φt

0 as mentioned in section 2.4.
The validation set in inference presented in figure (4) below seems to follow

the same trend as for the training set during the training phase. Indeed, super-
vised learning is expected to reach a certain level of accuracy for both training

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

10 G. Vigot et al.

and validation sets since the difference bt and Φt have the same profile for both
sets. If the solution of reference is an acceptable target for the user with a known
precision error, then optimizing the neural network with a supervised approach
is recommended.

Fig. 4: Comparison of the solution updated by the neural network Φ, the reference
Φref , the absolute difference between them |Φ− Φref | and the right-hand side of the

Poisson’s equation at time step ts = 3.55 µs for the validation set

4.2 Training and inference for the 3D case

Contrary to section 4.1, the inputs given to the neural network for the current
time step are not the solution from the previous time step but from the 5,000th
before the current one. Thus, the learning process would become harder, explain-
ing the difference in resolution between the RMSE of the 2D case’s RMSE and
the 3D case. As in section 4.1, we present a synthesis of our results for training
and inference, training and validation set combined. For the training process,
we plot in the appendix (6) on the figure (6b) a map of neural network predic-
tions along the time steps of the simulation and compare them to the solution
of reference, which has a precision error of 1× 10−12.

Table 2: 3D Case: Mean and standard deviation of the RMSE for all the training set
during the training, the validation set during inference, compared to the reference

Training Validation Reference

≈ 3.49 ± 8× 10−3 ≈ 4.92 ± 0.02 ≈ 7.02 ± 0.59

Overall, since the predictions made by the neural network are based on the
previous time step with a delay of 5,000-time steps and the current right-hand

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

Sparse linear systems with GNNs 11

side bt, it becomes more difficult for the neural network to capture the update
of the current time step properly. This could be explained by the plasma being
stabilized progressively during the simulation, giving the same trend for all time
steps at this phase. But it is not at the beginning of the simulation where we
have a high variation of the Poisson’s equation solution every time step. Conse-
quently, the training process shows a prediction with an absolute error of 100 V
amplitude at the training dataset’s beginning. It ends with an absolute error of
approximately 20 V of amplitude. As we can notice in table 2, the training phase
shows an RMSE with a mean level of 3.49, significantly higher than the results
given in table 1. But with a standard deviation lesser than 0.05, the neural net-
work can provide for all time steps a good approximation of the solution update
without a high dispersion degree of the solution update’s precision for all time
steps. The standard deviation of RMSE for the reference dataset is significantly
higher. This could be explained by the heterogeneity of the dataset, which results
in a higher dispersion of solution accuracy throughout the simulation.

(a) |Φ− Φref | [V] (b) Φ [V] (c) Map of partitions

Fig. 5: Absolute difference between the solution updated by the neural network and
the solution of reference (a) |Φ− Φref |, the solution updated by the neural network
(b) Φ, at time step ts = 4.25 µs for the validation set, and the partition map of the

graph using METIS [25]

For the validation set, with the partitioning as for the training set, the super-
vised approach remains closer to the reference solution. Even with a partitioned
process, the prediction does not seem to present the same discontinuities as the
partitions presented in figure (5c). As shown in figure (5a), the amplitude of the
difference does not exceed 15 V for a solution of reference where the amplitude
exceeds 400 V despite that the neural network has an input of Φt−5000. Nonethe-
less, for training and inference, the neural network seems to capture the global
pattern of the solution even though the forward passing is realized locally for
each subgraph.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

12 G. Vigot et al.

5 Conclusion & perspectives

In this work, we proposed a method capable of giving an initial guess for each
time step of a simulation to speed up the solving process of a linear system.
This method has been applied to plasma physics problems to obtain the electric
potential from Poisson’s equation. The method proposed in this study is also
applied to large graph problems concerning unstructured mesh, which cannot
be treated with one GPU processor. The partitioning process explained in this
article proposed an approach to tackle this challenge. By summing all the sub-
graphs’ outputs in one single vector indexed in global graph node ordering, we
proceed with a global backpropagation of all the subgraphs’ outputs to let the
neural network learn about the problem globally. In the end, the neural network
should be able to make an initial guess of our current linear system for large
graph problems, which could be an asset for industrial applications, specifically
in our case to Hall-effect thrusters where the size of the unstructured mesh is
often very large.
As we intended to prove that the neural network can predict the solution for
multiple bt for one single geometry, meaning only a unique A matrix, we expect
to generalize the process by training a neural network on a geometry then testing
the model on a different geometry to observe the variations of the predictions.
Until now, we have proven the possibility of using a neural network to give a
good initial guess for each simulation time step. To validate the method, we also
need to show the ability of this new method to accelerate the convergence of
iterative solvers. The present work is to prove the viability of using a neural
network as an accelerator for an iterative solver like GMRES. With this hybrid
implementation, we expect the hybrid method to be faster and have fewer itera-
tions to converge. Future results will be presented at the conference with a fully
coupled neural network with an iterative solver. In the end, once the neural net-
work is trained, the latter will be used in inference inside a numerical simulation
to provide a good approximation of the solution that helps the iterative solver
to converge faster.

Acknowledgments. This research has been realized under the supervision of Béné-
dicte Cuenot and Olivier Vermorel (senior researchers at CERFACS). Gabriel Vigot
acknowledges the support of Luciano Drozda (senior researcher at CERFACS) in con-
ceiving and validating this present article for the machine learning part. Gabriel Vigot
also acknowledges the support of Luc Giraud (senior researcher at INRIA) in conceiving
and validating this present article for the part concerning linear algebra.

Disclosure of Interests. The present authors have no competing interests with the
participants of this article. Gabriel Vigot acknowledges the financial support from
Safran Spacecraft Propulsion, under the supervision of Benjamin Laurent, and the
French Space Agency (CNES: Centre National d’Études Spatiales), under the supervi-
sion of Ulysse Weller, under the EPIC convention. This work is introduced within the
CHEOPS project.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

Sparse linear systems with GNNs 13

6 Appendix

(a) 2D radial-azimuthal (Lr, Lθ) map at epoch 300

(b) 3D map in the centered axial-radial (Lx, Lz) plane at epoch 300

Fig. 6: (a) 2D map along the simulation time line t in microseconds. From the first to
the fourth row is the update Φ, the solution of reference Φref , the absolute difference

|Φ− Φref |, and RHS the right-hand side of the Poisson’s equation.
(b) Neural network predictions Φ with the same variable order as in fig (6a)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

14 G. Vigot et al.

References

1. Luz, I., Galun, M., Maron, H., Basri, R., and Yavneh, I. Learning algebraic multigrid
using graph neural networks. In: International Conference on Machine Learning, pp.
6489–6499. PMLR, 2020.

2. Jiang, Z., Jiang, J., Yao, Q. et al. A neural network-based PDE solving algorithm
with high precision. Sci Rep 13, 4479 (2023), (https://doi.org/10.1038/s41598-023-
31236-0)

3. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and
Chintala, S. Pytorch: An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32, pp. 8024– 8035. Curran
Associates, Inc., 2019.

4. S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith,
B. Vaughan, P. Damania, S. Chintala, PyTorch distributed: experiences on ac-
celerating data parallel training, In: VLDB Endowment, 2020, vol. 13, n. 12,
(https://doi.org/10.14778/3415478.3415530)

5. Fey, M. and Lenssen, J. E. Fast graph representation learning with PyTorch Geo-
metric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds
(2019)

6. Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and Battaglia, P. Learning mesh-
based simulation with graph networks. In the International Conference on Learning
Representations, 2020.

7. Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics Informed Neural Networks:
A deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations. Journal of Computational physics, 378:686–707,
2019, (https://doi.org/10.1016/j.jcp.2018.10.045)

8. Saad, Y. and Zhang, J. Enhanced multi-level block ilu preconditioning strategies
for general sparse linear systems. Journal of Computational and Applied Math-
ematics, 130(1):99–118, 2001. ISSN 0377-0427, (https://doi.org/10.1016/S0377-
0427(99)00388-X).

9. Chen, J., Schäfer, F., Huang, J., and Desbrun, M. Multiscale Cholesky precondi-
tioning for ill-conditioned problems. ACM Trans. Graph., 40(4), jul 2021c. ISSN
0730- 0301. (https://doi.org/10.1145/3450626.3459851)

10. S. Balay, W. D. Gropp, L. Curfman McInnes, B. F. Smith, Efficient Management of
Parallelism in Object Oriented Numerical Software Libraries, In: Modern Software
Tools in Scientific Computing, p. 163–202 (1997), (https://doi.org/10.1007/978-1-
4612-1986-6_8)

11. E. Agullo, L. Giraud, A. Guermouche, J. Roman, Parallel hierarchical hy-
brid linear solvers for emerging computing platforms, Comptes Rendus Mé-
canique, Volume 339, Issues 2–3, (2011), Pages 96-103, ISSN 1631-0721,
(https://doi.org/https://doi.org/10.1016/j.crme.2010.11.005)

12. N. Gourdain, Prediction of the unsteady turbulent flow
in an axial compressor stage. Computers & Fluids, (2015),
(https://doi.org/10.1016/j.compfluid.2014.09.052).

13. Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., and Battaglia,
P. Learning to simulate complex physics with graph networks. In International Con-
ference on Machine Learning, pp. 8459–8468. PMLR, 2020.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

Sparse linear systems with GNNs 15

14. Sappl, J., Seiler, L., Harders, M., and Rauch, W. Deep learning of precon-
ditioners for conjugate gradient solvers in urban water related problems, 2019.
https://arxiv.org/abs/1906.06925.

15. Schäfer, F., Katzfuss, M., and Owhadi, H. Sparse Cholesky factorization
by Kullback–Leibler minimization. SIAM Journal on Scientific Computing,
43(3):A2019–A2046, 2021, (https://doi.org/10.1137/20M1336254)

16. A. Kopaničáková and G. E. Karniadakis, DeepOnet Based Preconditioning Strate-
gies For Solving Parametric Linear Systems of Equations, (2024), 2401.02016, arXiv

17. Y. Li, P. Y. Chen, T. Du, W. Matusik, Learning Preconditioner for
Conjugate Gradient PDE Solvers, In International Conference on Ma-
chine Learning Computer Science, Mathematics, Engineering (2023),
(https://proceedings.mlr.press/v202/li23e.html)

18. A. Stanziola, S. R. Arridge, B. T. Cox, B. E. Treeby, A Helmholtz
equation solver using unsupervised learning: Application to transcra-
nial ultrasound, Journal of Computational Physics, Volume 441, (2021),
(https://doi.org/10.1016/j.jcp.2021.110430)

19. W. L. Hamilton, R. Ying, J. Leskovec: Inductive representation learning on Large
graphs. In: 31st International Conference on Neural Information Processing Systems
(NIPS) (2017),

20. K. He, X. Zhang, S. Ren, J. Sun: Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification, International Conference on Com-
puter Vision (2015), (https://doi.org/10.1109/ICCV.2015.123)

21. J. L. Ba, J. R. Kiros, G.E. Hinton, Layer Normalization, In: Neural Information
Processing System (2016)

22. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980 (2014).

23. X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, In: Proceedings of the thirteenth international conference on arti-
ficial intelligence and statistics, JMLR Workshop and Conference Proceedings, 2010,
pp. 249–256.

24. W. L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, C. J. Hsieh, Cluster-
GCN: An Efficient Algorithm for Training Deep and Large Graph Convolu-
tional Networks, In: Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data MiningJuly (2019), Pages 257–266,
(https://doi.org/10.1145/3292500.3330925)

25. G. Karypis, V. Kumar. A fast and high-quality multilevel scheme for
partitioning irregular graphs. SIAMJ. Sci. Comput. 20,1, (1998), 359–392,
(https://doi.org/10.1137/S1064827595287997)

26. W. Villafana, F. Petronio, A. C. Denig, M. J. Jimenez, D. Eremin, L. Gar-
rigues, F. Taccogna, A. Alvarez-Laguna, J. P. Boeuf, A. Bourdon, P. Chabert, T.
Charoy, B. Cuenot, K. Hara, F. Pechereau, A. Smolyakov, D. Sydorenko, A. Ta-
vant and O. Vermorel, 2D radial-azimuthal particle-in-cell benchmark for E×B dis-
charges, In Plasma Sources Science and Technology, Volume 30, Number 7, (2021),
(https://doi.org/10.1088/1361-6595/ac0a4a)

27. W. Villafana, G. Fubiani, L. Garrigues, G. Vigot, B. Cuenot, O. Vermorel, 3D
Particle-In-Cell modeling of anomalous transport driven by the Electron Drift In-
stability in Hall Thrusters, In: 37th International Electric Propulsion Conference,
MIT, (2022)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_41

https://dx.doi.org/10.1007/978-3-031-63759-9_41
https://dx.doi.org/10.1007/978-3-031-63759-9_41

