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Abstract. In this paper, we consider a training of Physics Informed
Neural Networks with fully connected neural networks for approxima-
tion of solutions of one-dimensional advection-diffusion problem. In this
context, the neural network is interpreted as a non-linear function of
one spatial variable, approximating the solution scalar field, namely
y = PINN(x) = Anσ(An−1...A2σ(A1 + b1) + b2) + ... + bn−1) + bn.
In the standard PINN approach, the Ai denotes dense matrices, bi de-
notes bias vectors, and σ is the non-linear activation function (sigmoid
in our case). In our paper, we consider a case when Ai are hierarchical
matrices Ai = Hi. We assume a structure of our hierarchical matrices ap-
proximating the structure of finite difference matrices employed to solve
analogous PDEs. In this sense, we propose a hierarchical neural network
for training and approximation of PDEs using the PINN method. We ver-
ify our method on the example of a one-dimensional advection-diffusion
problem.

Keywords: Partial Differential Equations, Physics Informed Neural Net-
works, Hierarchical Matrices

1 Introduction

Physics Informed Neural Networks (PINN) was introduced in 2019 by George
Karniadakis [17]. PINNs have several applications from fluid mechanics [2, 15,
12, 20, 21], wave propagation [18, 14, 7], phase-filed modeling [8], biomechanics [1,
11], and inverse problems [5, 16, 13]. In this paper, we focus on a one-dimensional
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advection-diffusion problem. Its extension to a two-dimensional problem, known
as the Eriksson-Johnson model problem [6] can be a subject of our future work.
Both one and two-dimensional model problems are often employed for testing the
convergence of finite element method solvers [4, 3]. Following the idea of PINN,
we represent the solution of a one-dimensional advection-diffusion problem as the
neural network. In order to speed up the training process, the neural network
layers are represented by hierarchically compressed matrices.

1.1 One-dimensional advection-diffusion problem

One-dimensional advection-diffusion problem can be defined as:
Find u ∈ C2(0, 1):

−ϵ
d2u(x)

dx2︸ ︷︷ ︸
diffusion=ϵ

+β
du(x)

dx︸ ︷︷ ︸
advection “wind”=1

= 0, x ∈ (0, 1). (1)

The problem is augmented with boundary conditions

−ϵ
du

dx
(0) + u(0) = 1.0, u(1) = 0. (2)

The solution of this problem has the boundary layer of thickness ϵ at the right
corner of the domain, as it is illustrated in Figure 1.

1.2 PINN for one-dimensional advection-diffusion problem.

Following the idea of PINN, we represent the solution as the neural network:

u(x) = PINN(x) = Anσ (An−1σ(. . . σ(A1x+B1)...+Bn−1) +Bn (3)

We define the loss function for the residual of the PDE

LOSSPDE(x) =

(
−ϵ

d2PINN(x)

dx2
− β

dPINN(x)

dx
− 1

)2

(4)

We also define the loss function for the left boundary condition

LOSSBC0 =

(
−ϵ

dPINN

dx
(0) + PINN(0)− 1.0

)2

, (5)

and the loss function for the right boundary condition

LOSSBC1 = (PINN(1))
2
, (6)

The total loss function is defined by combining a weighted sum

LOSS = wPDE

∑
x∈(0,1)

(LOSSPDE(x))
2

(7)

+wBC0 (LOSSBC0(0))
2

(8)

+wBC1 (LOSSBC1(1))
2
. (9)

The PINN methods can succesfully solve the advection-diffusion problem as
it is shown in [19].
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Fig. 1: PINN solution of the advection-diffusion problem for ϵ = 0.1.

1.3 Neural network with hierarchical matrices.

In this paper, we investigate the fully connected neural networks with hierarchi-
cal matrices [10, 9], see Figure 2, namely y = PINN(x) = Hnσ(Hn−1...H2σ(H1+
b1) + b2) + ...+ bn−1) + bn, where Hi are hierarchical matrices, and bi are nor-
mal vectors. We do not compress the dense matrices of layers from the tradi-
tional fully connected neural network. We rather assume the structure of the
compressed matrix for a layer, and we train it from the very beginning in the
compressed form. We implemented our own training kernel for the matrices of
layers compressed in a hierarchical manner. We have assumed that each layer
has a structure of hierarchical matrix of rank one. The matrix is “refined” to-
wards the diagonal, and the off-diagonal blocks are rank 1. In other words, each
off-diagonal block is represented as a multiplication of 1 column and 1 row.

The main benefit of hierarchical matrices is that they enable linear compu-
tational cost matrix-vector multiplication, see Figure 4.

Fig. 2: Neural network with hierarchical matrices.
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2 Matrix compression

The main idea of speeding up the training process is storing the weight ma-
trices Ai in a compressed form. The matrix compression used in the paper is
based on Recursive Singular Value Decomposition, which is the key idea behind
the hierarchical matrices [9, 10]. In the Recursive Singular Value Decomposition
Compression algorithm, the matrix is recursively divided into four smaller sub-
matrices, and selected submatrices (for which so-called admissibility condition
is fulfilled) are approximated using the singular value decomposition algorithm
(SVD). The remaining submatrices, for which the admissiblity condition is not
fulfilled, are recursively divided into smaller matrices. The SVD algorithm de-
composes matrix A into three matrices A = UDV , where D is diagonal matrix
with singular values sorted in descending order, U is the matrix of columns, and
V is the matrix of rows. In the approximate SVD, the singular values smaller
than the predefined threshold are removed, together with the corresponding rows
from V and columns from U .

The compressed matrix can be stored in a tree-like structure, where the root
node corresponds to the whole matrix, each node can have four sons correspond-
ing to submatrices of the matrix or can be a leaf representing the corresponding
matrix in the SVD compressed form. Figure 3 shows an exemplary tree repre-
senting the hierarchically compressed matrix.

Fig. 3: An exemplary tree representing the hierarchically compressed matrix.
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3 The compressed matrix-vector multiplication

The SVD compressed submatrices are stored as multi-columns U multiplied by
multi-rows (DV ). The SVD compression of a matrix allows to speed up the
matrix-vector multiplication algorithm - the time complexity is (O(Nr)), where
N is the size of the uncompressed matrix and r is the number of singular values
bigger than a given threshold (rank of the matrix). Figure 4 presents the idea of
SVD compressed matrix-vector multiplication.

r

n

m

= =

 r r

     m      n

 
    1

 
    1

     n

      1

Fig. 4: The idea of SVD compressed matrix by vector multiplication.

The recursive algorithm for multiplication of the hierarchically compressed
matrix by a vector takes as input a node representing the tree (hierarchically
compressed matrix) or a node representing part of the hierarchically compressed
matrix, and a vector. The algorithm works recursively. If the input node has no
children, it represents the SVD compressed part of the matrix (stored as multi-
columns U and multi-rows DV (result of multiplication of diagonal matrix D
by V ). In such a case, the result is calculated as the multiplication U((DV ) ∗ v).
It must be underlined that the order of performing multiplication is important
because it hardly influences the computational cost of calculating the results. If
the input node has children, the partial multiplication for each child (submatrix)
by the corresponding part of vector v is performed recursively, then the final
result of multiplications of children is calculated. The algorithm is presented in
Algorithm 1.
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Algorithm 1 MultiplyMatrixByVector

Require: node T , vector to multiply v
if T.sons = ∅ then

return T.U ∗ (T.V ∗ v);
end if
numRows =number of rows of vector v;
v1 = v(1 : floor(numRows/2), :) //first part of vector v
v2 = v(floor(numRows/2 + 1) : numRows, :) //second part of vector v
res1=MultiplyMatrixByVector(T.children(1),v1)
res2=MultiplyMatrixByVector(T.children(2),v2)
res3=MultiplyMatrixByVector(T.children(3),v1)
res4=MultiplyMatrixByVector(T.children(4),v2)
//calculate the final result of multiplication
res1res2=res1+res2
res3res4=res3+res4
return result=[res1res2;res3res4]

4 Using the algorithm of hierarchically compressed
matrix-vector multiplication to speed up neural
network training

The main idea is to store the weight matrix A in the hierarchically compressed
form. The matrix of size n×n can be represented as the hierarchically compressed
matrix of rank 1, where on each level of hierarchy the off-diagonal blocks are
represented by SVD compressed blocks, and the remaining blocks are divided
into smaller blocks. On this lower level of the compression, again, the off-diagonal
blocks are represented by SVD compressed blocks, and the remaining blocks are
divided into smaller blocks. The process of “refinement” of the matrix is stopped
if the if the submatrix has size 1. An exemplary hierarchical compressed matrix
of size 8×8 is presented in figure 5. The number of entries of the compressed form
of the matrix of size n×n is equal to 2∗n∗ log2(2∗n). In our neural network the
compressed matrix of weights is represented as the vector of size 2∗n∗log2(2∗n),
where the first entries are entries corresponding to the second submatrix, then
entries for third submatrix, then entries for the first and finally entries for the
fourth submatrix. The numbering of submatrices of the matrix as well as the
vector form of hierarchical compressed matrix of size 8x8 is presented in figure
5. In our neural network the iterative version of matrix-vector multiplication
algorithm (see algorithm 1), where the n×n matrix is stored in form of a vector
of size 2 ∗ n ∗ log2(2 ∗ n) was used.
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I    II
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Fig. 5: Compressed matrix and its vector representation.

5 Results

Our test shows that an acceptable solution of the problem defined in equations
(1) and (2) was obtained for the LOSS of the order of 0.001. The tests were
performed with a learning rate 0.02 and a number of epochs equal to 1000. We
have used a neural network with 2 internal layers. In our tests in the classical
approach (uncompressed full matrix) each internal layer has number of neurons
equal to: sizeofmatrix = 32, 64, 128, 256, 512. So, the number of entries in
uncompressed matrices were equal to: 322 = 1024, 642 = 4096, 1282 = 16384,
2562 = 65536, 5122 = 262144.

The number of entries in compressed matrices, corresponding to uncom-
pressed matrices of sizes 322, 642, 1282, 2562, 5122 where equal to: 384, 896,
2048, 4608, 10240. The convergence of training is presented in Figures 6a-9a
for uncompressed matrix with classic matrix-vector multiplication. For the fully
connected neural network with full matrices and classical matrix-vector multi-
plication algorithm, the training finds correct solutions for matrices of sizes 322,
642, and 1282. The final loss was of order 0.001, and the shape of solution was
correct. For example, Figure 6a presents the successful training of neural network
with two layers represented by full matrices of size 322, where the loss function
goes below 0.001.

However, the training does not find a correct solution after 2000 epochs for
matrices of size 2562 and 5122 (the final loss was higher than 0.001 and the
solution shape was wrong). For example Figure 9a presents the training for
neural network with two layers represented by full matrices of size 2562.

The convergence of training for compressed matrix with compressed matrix-
vector multiplication is presented in Figures 6b-9b. For a neural network with 2
layers with hierarchical matrices corresponding to matrices of size 322, with total
of 384 non-zero entries to train, the convergence of training is presented in Figure
6b. The loss value reaches 10−3 after 600 epochs. This accuracy and convergence
rate is similar to the classical training presented in Figure 6a. On top of that,
the matrix-vector multiplication is way cheaper in the compressed matrix NN.
Comparing Table 1 and Table 2, we can see that compressed matrices can be
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trained 3 times faster for this smaller neural network (see first rows in Table 1
and Table 2.

For a neural network with 2 layers with hierarchical matrices corresponding
to matrices of size 642, the convergence of training is presented in Figure 7b.
The loss value reaches 10−3 after 600 epochs. The compressed matrix-vector
multiplications are cheaper, and the compressed neural network can be trained
2 times faster (see second row in Table 1 and Table 2).

Finally, for a neural network with 2 layers with hierarchical matrices cor-
responding to matrices of size 1282, the convergence of training is presented in
Figure 8b. The loss value reaches 10−3 after 600 epochs. The compressed matrix-
vector multiplications are cheaper, and the compressed neural network can be
trained 5 times faster (see third row in Table 1 and Table 2).

For larger matrices, contrary to the classical NN, we can still train the com-
pressed NN, using 256 or 512 neurons per layer, see Figure 9b. The compressed
matrices have a lower order of trainable entries. Thus, it is possible to train a
large compressed matrix even if the standard dense approach has not converged
yet.

Table 1: Number of epochs and number of FLOPs of classic multiplication,
learning rate 0.02, LOSS 0.001

matrix size number of FLOPs number of epochs
- classic multiplication - classic multiplication

32 620 257,761,280

64 252 419,069,952

128 246 1,629,716,480

256 - -

512 - -

Table 2: Number of epochs and number of FLOPs of hierarchical multiplication,
learning rate 0.02, LOSS 0.001

matrix size number of epochs number of FLOOPs
hierarchical multiplication hierarchical multiplication

32 539 77,172,480

64 658 222,604,928

128 427 333,634,560

256 836 1,478,905,344

512 382 1,512,684,544
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(a) (b)

Fig. 6: Left panel: convergence of training of the fully connected neural network
with 2 layers, 32 neurons per layer. Right panel: convergence of training of the
fully connected neural network with 2 layers, 32 neurons per layer using com-
pressed matrix.

(a) (b)

Fig. 7: Left panel: convergence of training of the fully connected neural network
with 2 layers, 64 neurons per layer. Right panel: convergence of training of the
fully connected neural network with 2 layers, 64 neurons per layer using com-
pressed matrix.
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(a) (b)

Fig. 8: Left panel: convergence of training of the fully connected neural network
with 2 layers, 128 neurons per layer. Right panel: convergence of training of
the fully connected neural network with 2 layers, 128 neurons per layer using
compressed matrix.

(a) (b)

Fig. 9: Left panel: convergence of training of the fully connected neural network
with 2 layers, 256 neurons per layer. Right panel: convergence of training of
the fully connected neural network with 2 layers, 256 neurons per layer using
compressed matrix.
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6 Conclusions

In this paper, we proposed a Physics Informed Neural Network with hierarchi-
cal matrices for approximation of one-dimensional advection-diffusion problems.
The neural network represented a solution of one-dimensional PDE, namely
y = PINN(x) = Hnσ(Hn−1...H2σ(H1 + b1) + b2) + ... + bn−1) + bn, where
H are the hierarchical matrices. We have verified our method and showed that
it allows to speed up the training process between 2-5 times (compare rows in
Tables 1 and 2), while reducing the memory storage up to 3-20 times. The future
work will involve generalization of this method for more complex PDEs.
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