
Robustness and Accuracy in Pipelined
Bi-Conjugate Gradient Stabilized Methods
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Abstract. In this article, we propose an accuracy-assuring technique
for finding a solution for unsymmetric linear systems. Such problems are
related to different areas such as image processing, computer vision, and
computational fluid dynamics. Parallel implementation of Krylov sub-
space methods speeds up finding approximate solutions for linear sys-
tems. In this context, the refined approach in pipelined BiCGStab en-
hances scalability on distributed memory machines, yielding to substan-
tial speed improvements compared to the standard BiCGStab method.
However, it’s worth noting that the pipelined BiCGStab algorithm sac-
rifices some accuracy, which is stabilized with the residual replacement
technique. This paper aims to address this issue by employing the ExBLAS-
based reproducible approach. We validate the idea on a set of matrices
from the SuiteSparse Matrix Collection.

Keywords: Krylov subspace methods; BiCGStab; Residual replacement;
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1 Introduction

Krylov subspace methods form a powerful class of iterative techniques for
solving large linear systems arising in diverse scientific and engineering applica-
tions. These methods are particularly well-suited for problems where the coeffi-
cient matrix is sparse and both symmetric or non-symmetric. Such methods are
applicable and often used in image denoising, data compression, inverse prob-
lems, and other areas. The Conjugate Gradient (CG) method, introduced in [6],
is one of the earliest members of this well-known class of iterative solvers. How-
ever, CG is limited to solving symmetric and positive definite (SPD) systems. In
contrast, the Bi-Conjugate Gradient [3] (BiCG) method extends its applicability
to more general classes of non-symmetric and indefinite linear systems. Addition-
ally, the Conjugate Gradient Squared [8] (CGS) method provides an alternative
approach. The BiConjugate Gradient Stabilized (BiCGStab) method [9] was in-
troduced as a smoother converging version of both BiCG and CGS methods.
Preconditioning is usually incorporated in real implementations of these meth-
ods in order to accelerate the convergence of the methods and improve their
numerical features.
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These classical Krylov subspace methods have been actively discussed and
optimized. For instance, optimizations have been explored for a specific class of
hepta-diagonal sparse matrices on GPUs, as well as the implementation of the
pipelined Bi-Conjugate Gradient Stabilized method (p-BiCGStab) [1] to overlap
(hide) communication and computation. The pipelined methods, in particular,
introduced more operations compared to the original ones and with that im-
pacted the convergence as the computer residual deviated from the true one. As
a remedy, the residual replacement technique was proposed [1] to numerically
stabilize convergence with a strong emphasis on mathematical aspects.

The purpose of this initial study is to explore the possibility of avoiding resid-
ual replacement in pipelined Krylov-type methods [1] with the help of accurate
and reproducible computations via the ExBLAS approach [4,5]. As a test case,
we use the pipelined BiCGStab method.

2 Reproducibility of BiCGStab and pipelined BiCGStab

BiCGStab was developed to solve non-symmetric linear systems while avoid-
ing the often irregular convergence patterns of the CGS method. In BiCGStab,
minimizing a residual vector promotes smoother convergence. However, when
the Generalized Minimal Residual method (GMRES) [7] stagnates, preventing
the expansion of the Krylov subspace, BiCGStab may fail to proceed effectively.

In the light of the conventional BiCGStab algorithm, see Alg. 1, introduced
by Van der Vorst, Cools and Vanroose proposed an optimization known as
pipelined BiCGStab (p-BiCGStab) [1], see Alg. 2. This optimization entails
two primary phases within the pipelining framework. Firstly, in what is termed
the ‘communication-avoiding’ phase, the standard Krylov algorithm undergoes
a transformation into a mathematically equivalent form with the reduced global
synchronization points. This reduction is accomplished by merging the global re-
duction phases of various dot products scattered throughout the algorithm into a
single global communication phase. Subsequently, in the ‘communication-hiding’
phase, the algorithm is further refined to overlap the remaining global reduction
phases with the sparse matrix-vector product and application of the precondi-
tioner. This strategic restructuring effectively mitigates the typical communica-
tion bottleneck by concealing communication time behind productive compu-
tational tasks. Although, the methods are mathematically equivalent they may
lead to different numerical results and convergence patterns due to the non-
associativity of floating-point operations.

The BiCGStab (Alg. 1) and p-BiCGStab (Alg. 2) methods will serve as the
primary methods utilized throughout this article, although we mainly focus on
the p-BiCGStab. Due to the non-associativity of finite precision floating-point
operations, the mathematical equivalent of these two methods can show large
divergence while implemented in parallel environments especially for the toler-
ance 10−6 and below. To stabilize this deviation in p-BiCGStab, the residual
replacement technique was proposed [1]. This technique resets the residuals ri,
along with the auxiliary variables wi, si, and zi, to their original values every k
iterations. In the preconditioned version, this process also updates r̄i = M−1ri
and s̄i = M−1si, where M is the preconditioning operator. We refer to [1] for
more details.
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Algorithm 1 BiCGStab [9]

function BiCGStab(A, b, x0)
r0 := b−Ax0

p0 := r0
for i = 0, 1, 2, ... do

si := Api
ai := (r0, ri)/(r0, si)
qi := ri − aisi
yi := Aqi
wi := (qi, yi)/(yi, yi)
xi+1 := xi + aipi + wiqi
ri+1 := qi − wiyi
βi :=

(ai/wi)(r0, ri+1)/(r0, ri)
pi+1 := ri+1+βi(pi−wisi)

end for
end function

Algorithm 2 Pipelined BiCGStab [1]

function p-BiCGStab(A, b, x0)
r0 := b−Ax0

w0 := A− r0
t0 := Aw0

a0 := (r0, r0)/(r0, w0)
β−1 := 0
for i = 0, 1, 2, ... do

pi := ri + βi−1(pi−1 − wi−1si−1)
si := wi + βi−1(si−1 − wi−1zi−1)
zi := ti + βi−1(zi−1 − wi−1vi−1)
qi := ri − aisi; yi := wi − aizi
vi := Azi; wi := (qi, yi)/(yi, yi)
xi+1 := xi + aipi + wiqi
ri+1 := qi − wiyi
wi+1 := yi−wi(ti−aivi); ti+1 := Awi+1

βi := (ai/wi)(r0, ri+1)/(r0, ri)
ai+1 := (r0, ri+1)/((r0, wi+1) +

βi(r0, si)− βiwi(r0, zi))
end for

end function

In [5], we proposed to ensure the reproducibility and accuracy of the pure
MPI implementation of the preconditioned BiCGStab method via the ExBLAS
approach. ExBLAS combines together long accumulator and floating-point ex-
pansions into algorithmic solutions as well as efficiently tunes and implements
them on various architectures. ExBLAS aims to provide new algorithms and
implementations for fundamental linear algebra operations (like those included
in the BLAS library), that deliver reproducible and accurate results with small
or without losses to their performance on modern parallel architectures such
as desktop and server processors, Intel Xeon Phi co-processors, and GPU ac-
celerators. We construct our approach in such a way that it is independent of
data partitioning, order of computations, thread scheduling, or reduction tree
schemes. Instead of using the residual replacement technique, we propose to ex-
hibit the benefits of the ExBLAS approach in the pipelined BiCGStab method.

3 Experimental Results

This section presents a series of numerical experiments to evaluate the con-
vergence, performance, and accuracy of the BiCGStab methods, including the
reproducible with ExBLAS. The results include comparisons between BiCGStab,
pipelined BiCGStab (p-BiCGStab), p-BiCGStab with ExBLAS, and p-BiCGStab
with the residual replacement technique across various matrices from the Suite
Sparse Matrix Collection [2]. In the experiments, IEEE754 double-precision
arithmetic was utilized, and we run on nodes at HPC2N with the dual 14-core
Intel Xeon Gold 6132 (Skylake) @2.60GHz interconnected via EDR Infiniband.

The SuiteSparse Matrix Collection is a comprehensive repository of sparse
matrices widely used for benchmarking and testing numerical algorithms in the
field of computational mathematics. It allows for robust and repeatable exper-
iments, as performance results with artificially generated matrices can be mis-
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leading. Hence, repeatable experiments are crucial for ensuring the reliability of
algorithm evaluations. The collection encompasses a diverse range of matrices
representing real-world problems from various disciplines.

Tab. 1 presents the comparative performance of four iterative BiCGStab
methods, namely BiCGStab, pipelined BiCGStab (p-BiCGStab), p-BiCGStab
with ExBLAS, and pipelined BiCGStab with residual replacement (p-BiCGStab-
RR), across a selection of sparse matrices from the SuiteSparse Matrix Col-
lection. Each cell in the table represents the number of iterations required to
achieve convergence for a specific method and a given matrix, with convergence
thresholds set at 10−6 and 10−9. The results demonstrate varying convergence
behavior among the methods across different matrices, providing insights into
their respective efficiency in solving sparse linear systems.

Problem
BiCGStab p-BiCGStab p-BiCGStabExBLAS p-BiCGStabRR

10−6 10−9 10−6 10−9 10−6 10−9 10−6 10−9

1138 bus 30 151 27 130 35 108 27 130

add32 38 74 38 68 38 69 38 68

bcsstk13 545 - 520 2258 350 3273 195 403

bcsstk14 149 461 44 459 43 433 44 -

bcsstk18 405 2806 261 1284 366 1274 309 -

bcsstk27 283 958 335 2107 279 1477 335 2107

bfwa782 99 647 74 448 54 463 115 576

cdde6 36 122 34 121 34 115 34 388

msc01050 29 61 30 47 28 60 30 47

msc04515 123 257 96 275 98 308 263 334

orsreg 1 21 161 22 168 20 106 22 371

pde2961 100 166 111 278 134 287 170 683

plat1919 79 132 99 185 84 179 87 250

rdb3200l 31 193 31 223 31 171 31 567

saylr4 28 73 28 74 28 69 28 74

sherman3 34 501 33 314 26 400 33 271

utm5940 99 592 97 420 18 603 20 419

Table 1: Number of iterations for the BiCGStab-like methods on a set of the
SuiteSparse matrices without precondition. The initial estimate is a zero vector
x0. The best-performing method is highlighted in bold.

When summarizing the findings, several notable observations come to light.
Firstly, for ε = 10−6, all methods demonstrate comparable performance in nu-
merous cases. However, when considering a higher tolerance, ε = 10−9, the
p-BiCGStabExBLAS method consistently outperforms p-BiCGStab across the
majority of matrices, owing to its enhanced accuracy. Moreover, the p-BiCGStab
with residual replacement strategy (p-BiCGStabRR) method generally exhibits
superior convergence rates compared to the p-BiCGStab method. Yet, increas-
ing the tolerance also reveals instances where the classic BiCGStab method
proves more efficient in terms of iterations, although it may encounter conver-
gence issues for certain matrices. Notably, for the specific bcsstk13 problem,
p-BiCGStabRR demonstrates the most favorable convergence characteristics for
both tol = 10−6, tol = 10−9. Despite these advantages, there are scenarios where
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p-BiCGStabRR fails to converge, namely bcsstk14 and bcsstk18. The accuracy
of the p-BiCGStabRR is highly contingent to the specific problem context and
parameter choices, leading to variability in its effectiveness. This method may ex-
hibit convergence speed under certain conditions while performing poorly under
others, highlighting the sensitivity of its outcomes to these factors. The method
requires multiple runs to determine the optimal step and the best place for ap-
plying residual replacement. A less optimal parameter choice can result in more
iterations compared to the pipelined-BiCGStab method.

Fig. 1: Number of iterations required by various BiCGStab-like methods to
achieve a specified tolerance (10−6, 10−9, 10−13). p-BiCGStabRR stands for
the pipelined version of the BiCGStab method with residual replacement; P-
BiCGStabExBLAS refers to the method with ExBLAS.

.
In Fig. 1, the utm5940 case highlights an interesting trend: the ExBLAS

version performed the best for epsilon 10−6, yet with an increase to 10−9,
it required slightly more iterations compared to other methods. Overall, p-
BiCGStabExBLAS demonstrates good constant performance in terms of iter-
ations. When examining p-BiCGStabRR, it’s evident that for certain examples,
it exhibits the lowest iteration count. However, there are instances for higher
tolerance the method results in significantly higher iteration counts compared
to other methods.

Fig. 2 provides the convergence history of the four BiCGStab-like methods.
We can observe the performance characteristics of the methods on a particular
problem instance, where the tolerance is set to 10−13. The pipelined BiCGStab
method with ExBLAS consistently outperforms the regular pipelined variant in
terms of iterations across a wide range of scenarios. p-BiCGStabExBLAS ex-
hibits a reduced occurrence of spikes compared to p-BiCGStabRR, suggesting
a smoother and more stable performance profile. This difference highlights the
potential of ExBLAS to offer improved reliability and predictability in compu-
tational outcomes, namely results and iterations.

Following this, we evaluate the four considered methods using an increased
number of processes. Subsequently, we present Tabs. 2 and 3 illustrating the out-
comes achieved by the aforementioned methods across different process counts.
A notable observation from both Tab. 2 and Tab. 3 is the consistency in the
number of iterations required for the ExBLAS implementation across different
numbers of processes. Thus, increasing the number of processes does not lead to
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Fig. 2: Residual history of the four BiCGStab-like methods; tol = 10−13.

ε = 10−6 BiCGStab p-BiCGStab p-BiCGStabExBLAS

n01 n08 n16 n01 n08 n16 n01 n08 n16

bcsstk26 791 235 599 583 528 683 493 493 493

bwm2000 37 37 37 37 37 37 37 37 37

bfwa782 99 79 85 74 104 59 54 54 54

bcsstk18 405 414 363 261 305 356 366 366 366

Table 2: Number of iterations required for BiCGStab, p-BiCGStab, and p-
BiCGStabExBLAS by varying numbers of processes (nXX) for ε = 10−6.

a faster solution for pipelined BiCGStab method. The pipelined BiCGStabRR
as indicated in Tab. 1 demonstrates its best outcome of 195 iterations for the
bcsstk13 matrix.

Tab. 4 illustrates the iteration counts for the BiCGStab, p-BiCGStab, and p-
BiCGStabExBLAS methods across different numbers of processes. The method
with residual replacement technique finds an approximation to the solution only
on a single process. Additionally, the table presents the execution times for each
scenario. p-BiCGStabExBLAS requires more time, attributed to its higher accu-
racy. Nonetheless, the overhead associated with p-BiCGStabExBLAS diminishes
as the number of processes increases, dropping from 2.6x on a single process to
1.87x on 16 processes.

Fig. 3 illustrates the benefits of using pipelined methods within a parallel
environment, emphasizing their efficiency and scalability. Certainly, the scale is
small but the gain starts to be visible on 16 processes, four per each of four

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_35

https://dx.doi.org/10.1007/978-3-031-63759-9_35
https://dx.doi.org/10.1007/978-3-031-63759-9_35


Title Suppressed Due to Excessive Length 7

Matrix
BiCGStab p-BiCGStab p-BiCGStabExBLAS

n01 n08 n16 n01 n08 n16 n01 n08 n16

bwm2000 1268 1267 1120 663 1131 1024 1232 1232 1232

bfwa782 647 528 531 448 476 498 464 463 463

bcsstk18 2806 2819 2286 1284 1811 2318 1274 1274 1274

Table 3: Number of iterations required for BiCGStab, p-BiCGStab, and p-
BiCGStabExBLAS by varying the numbers of processes (nXX) for tol = 10−9.

Method
n01 n08 n16

iter time iter time iter time

BiCGStab 545 2.034× 10−1 520 4.8236× 10−2 544 3.94× 10−2

p-BiCGStab 520 2.0495× 10−1 482 4.457× 10−2 394 3.106× 10−2

p-BiCGStabE 350 5.321× 10−1 350 8.976× 10−2 350 5.819× 10−2

p-BiCGStabRR 195 6.198× 10−2 - - - -

Table 4: Number of iterations and time required for the BiCGStab-like methods
for the bcsstk13 matrix. Tolerance is set to tol = 10−6.

Fig. 3: Runtime comparison of BiCGStab-like methods on two matrices:
s3dkq4m2 with 4, 427, 725 nnz tol = 10−9; Queen 4147 with 316, 548, 962 nnz
and tol = 10−6. We used four nodes with 1, 2, and 4 MPI processes each.
nodes; we used only few processes per node to highlight the benefit. In this test,
we focus on two large matrices: s3dkq4m2 with 4, 427, 725 non-zero elements and
Queen 4147 with 316, 548, 962 non-zero elements. Larger-dimensional problems
tend to demonstrate better strong scalability in parallel environments, using
the existing potential of available resources especially on four and eight pro-
cesses. Conversely, employing 16 processes for the s3dkq4m2 matrix with fewer
non-zero elements did not yield significant improvements for BiCGStab and p-
BiCGStab. Additionally, p-BiCGStabExBLAS demonstrates strong scalability
for both problems due to more flops imposed by the ExBLAS approach. Over-
head for s3dkq4m2 varied from 3.41x to 4.8x, and matrix Queen 4147 from 1.96x
to 5.2x. With the increase in the number of processes from 4 to 16, the execution
time for p-BiCGStabExBLAS was reduced by more than 2x.

4 Conclusion

In this study, we investigated the robustness and accuracy of the pipelined
Biconjugate Gradient Stabilized using the ExBLAS approach as not only an
accurate and reproducible solution but also as an alternative to the residual
replacement technique. Our analysis focused on evaluating the convergence be-
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havior of the method across a set of matrices from the SuiteSparse Matrix Col-
lection. Through the numerical experiments, we demonstrated that the pipelined
BiCGStab method with ExbLAS, consistently outperforms the conventional
pipelined BiCGStab approach in terms of convergence rates and numerical re-
liability. Overall, this study emphasizes the importance of considering algorith-
mic refinements and numerical stability enhancements to achieve reliable and
efficient solutions for challenging computational problems. The results under-
score notable performance disparities among the assessed methods. Specifically,
BiCGStab demonstrates better stability compared to p-BiCGStab, showcasing
its reliability in solving linear systems. The residual replacement strategy is ex-
pected to address the stability of the pipelined method, bringing it closer to
the robustness exhibited by BiCGStab. Although its performance is inferior to
ExBLAS implementation. This suggests that the ExBLAS implementation cap-
italizes on the advantages of the pipelined method version while maintaining
stability as in BiCGStab.

As a future work, we shall conduct theoretical study of the ExBLAS ap-
proach as a possible replacement for the residual replacement, which requires
some empirical trials to get the right step. Furthermore, we plan to carry out an
exhaustive study with more matrices from the SuiteSparse Matrix Collection as
well as the real applications like the ones from the EU-funded EuroHPC JU Cen-
ter of Excellence in Exascale CFD (CEEC)4, where the last author contributes.
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