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Abstract. Accurate retrodictions of the past evolution of convection
in the Earth’s mantle are crucial to obtain a qualitative understanding
of this central mechanism behind impactful geological events on our
planet. They require highly resolved simulations and therefore extremely
scalable numerical methods. This paper applies the massively parallel
matrix-free finite element framework HyTeG to approximate solutions
to stationary Stokes systems and time-dependent, coupled convection
problems. It summarizes the underlying mathematical model and veri-
fies the implementation through semi-analytical setups and community
benchmarks. The numerical results agree with the expected outcomes
from the literature.
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1 Introduction

Mantle convection is the dominant mechanism of heat transfer from Earth’s hot
outer core to the cold lithosphere. This movement is the major driving force for
plate tectonics and, thus, finally the trigger of earthquakes and other geolog-
ical events, such as mountain building and back-arc volcanism, [9]. Modelling
this mechanism opens up pathways towards answering fundamental geophysical
questions [5]. A model that accurately represents mantle convection can be used
inversely, with the adjoint method, to determine the past state of our planet
from present-day observations, especially seismic data. Such retrodictions can
help us to narrow the range of physical parameters of the mantle and identifying
the location of oil deposits, among other things, [15].

On geological time scales the mantle behaves like a highly viscous fluid. The
governing equations, thus, involve the Stokes system, which is a simplification
of the Navier-Stokes equations for nearly vanishing Reynolds numbers [16].
Buoyancy, resulting from thermo-chemical density differences in the mantle, is
the primary driving force of convection. In addition to the motion of the mantle,
one also needs to consider the evolution of heat, [7], which can be described by
an advection-diffusion equation. Standard formulations can be found in literature
for both compressible and incompressible models, [23, 25].

Accurate predictions require highly resolved simulations that can only be
executed on massively parallel computers using extremely scalable numerical
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methods of optimal complexity. Resolving Earth’s mantle globally with a res-
olution of 1 km requires meshes with trillions (1012) of cells and yields linear
systems of corresponding size. This is crucial to resolve small-scale features such
as rising plumes and subducting slabs, but also to capture sharp viscosity changes
between the lithosphere and underlying asthenosphere (4–5 orders of magnitude),
and the resulting short wavelength asthenosphere dynamics [4].

We therefore employ the massively parallel matrix-free finite element software
framework HyTeG [18, 21] to discretize the governing equations and solve the
corresponding discrete problems. Its extreme-scalability has been demonstrated
in, e.g., [19, 20].

The central focus of this paper is the evaluation and verification of the
accuracy of the software through simulation of various benchmarks from mantle
convection. We consider semi-analytic solutions to the stationary Stokes problem
involving the relevant boundary conditions [22], two community benchmarks for
time-dependent settings [3, 26], and eventually present results from a forward
simulation of a compressible model. All development is driven by the TerraNeo
project [1], which is an effort to create a scalable and accurate Earth model for
the Geodynamics community.

2 Model and Formulation

On geologic time-scales the Earth’s mantle behaves like a fluid. Its motion can,
thus, be described by the Navier-Stokes equations. However, convection in the
mantle is characterised by a very small Reynolds number O(10−15), i.e. the ratio
of inertial to viscous forces, and an Ekmann number of O(109), i.e. the ratio of
viscous to Coriolis forces. Together this allows to neglect inertial and Coriolis
forces and assume an instantaneous balance of viscous and buoyancy forces,
resulting in a quasi-static flow field, [27]. Thus, one arrives at the momentum
part of the Stokes equations

−∇ · τ +∇p = ρg (1)

with the deviatoric stress tensor τ , pressure p, density ρ and gravitational
acceleration g. Using the strain-rate tensor ε̇ = 1

2

(
∇u + (∇u)

>
)
one can re-write

the stress as

τ = 2η

(
ε̇− 1

3
(∇ · u)δij

)
= η

(
∇u + (∇u)

>
)
− 2

3
η(∇ · u)I

where η is the dynamic viscosity, I the identity tensor and the second term on
the right-hand side will vanish in an incompressible model. Buoyancy forces
result from changes in local density, which are primarily driven by deviations in
temperature T . The latter needs to satisfy a time-dependent advection-diffusion
equation of the form

∂T

∂t
= ∇ · (k∇T )− (u · ∇)T + fT (x, T, p,u) . (2)
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The term fT encompasses various possible heat sources, such as shear, adiabatic or
radiogenic heating. The system then needs to be closed by selecting an appropriate
equation of state to couple density to pressure and temperature. It is known that
the hydrostatic density of the mantle increases by a factor of about two from
the surface to the core-mantle boundary (CMB). Hence, a purely incompressible
flow model will not be exact. A common approach in Geodynamics is to select a
reference state (p̄, T̄ ), from which one derives ρ̄, and express quantities of interest
as deviations from this reference state, e.g. T = T̄ +T ′. Commonly these reference
states are only depth-dependent and time invariant. Buoyancy forces arise from
deviations ρ′ to the radial background model ρ̄, but are assumed to be much
smaller than the latter. They can, thus, be neglected in the continuity equation,
which avoids pressure waves in the model, but must, of course, be considered
in the momentum equation, through T ′. In total one commonly employs the
truncated anelastic liquid approximation, see e.g. [11, 16] and uses the following
system of non-dimensional equations

−∇ · τ +∇p′ = −Raρ̄αgT ′ (3)
∇ · (ρ̄u) = 0 (4)

ρ̄cp
DT ′

Dt
+ Diρ̄αw(T ′ + Ts)−∇ · (k∇T ) =

Di
Ra

Φ (5)

where w = −g ·u, Ra and Di are the Rayleigh and dissipation number respectively,
Φ = τ : ε̇ describes shear heating and D

Dt (·) is the material derivative while cp, k,
α, and Ts are the non-dimensionalised coefficients of heat capacity, diffusivity,
thermal expansivity and the surface temperature.

In a typical, so-called mantle circulation model, Earth’s mantle is modeled by
a thick spherical shell. Temperature is fixed on the top and bottom by imposing
Dirichlet boundary conditions. The tangential components of the velocity are
taken from paleo-reconstructions of the movement of tectonic plates, while one
requires the radial component to vanish. So one has a no outflow condition. At
the CMB one also requires no outflow and combines this with the constraint of
vanishing shear-stress, as the rocky mantle slides freely on the molten iron of the
outer core. Formally one requires

u · n = 0 on Γsurf ∪ ΓCMB

u · t = uplate · t on Γsurf

t · τ · n = 0 on ΓCMB

with n being the normal vector in a point and t any vector in the tangential
plane. The combination of vanishing shear stress with no outflow constitutes a
freeslip boundary condition.

3 Software Framework – HyTeG

In this contribution we consider the solution of mantle convection problems
using the finite element framework HyTeG (Hybrid Tetrahedral Grids) [18, 21].
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Fig. 1: Uniform refinement of a single coarse grid element.

HyTeG enables the solution of partial differential equations at the extreme-scale
through massively parallel matrix-free geometric multigrid methods. The mesh
hierarchy is constructed based on an unstructured triangular or tetrahedral base
mesh by successive steps of uniform refinement. Figure 1 illustrates the regular
refinement of a single coarse grid element. This results in an L-level hierarchy T`,
` = 0, . . . , L−1, with T0 being the unstructured coarse mesh. The compute kernels,
then, take advantage of the resulting block-structured domain partitioning, while
the mesh hierarchy supports construction of geometric multigrid solvers. Details
on the refinement and finite element data structures are presented in [18].

HyTeG’s extreme scalability and performance was demonstrated in, e.g.,
[20], where Stokes systems with more than a trillion (> 1012) unknowns were
solved on up to 147, 456 parallel processes. Such problem sizes are only feasible
due to extremely memory-efficient solvers with optimal time complexity such as
the employed matrix-free multigrid methods. For strongly advection-dominated
flows, that are relevant in mantle convection models, HyTeG implements a
massively parallel Eulerian-Lagrangian method that handles the advective terms
through a particle-based implementation of the modified method of characteristics
(MMOC) [19].

4 Finite Element Discretization

We discretise the Stokes equations, (3) and (4), of the convection model by means
of P2 − P1 Taylor-Hood elements to approximate velocity u and pressure p. This
gives us the discrete weak formulation of the problem as: find (uh, ph) ∈ Uh ×Ph
such that ∫

Ω

τ : ∇vh −
∫
Ω

ph∇ · vh =

∫
Ω

−Raρ̄αT ′g · vh (6)

−
∫
Ω

qh∇ · (ρ̄uh) = 0 (7)

holds for all (vh, qh) ∈ Uh × Ph, with

Uh =
(
P2 ∩H1

0

)3
, Ph = P1 ∩H0 .
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Here H1
0 contains all functions from the standard Sobolev space H1, whose trace

equals zero on the Dirichlet part ΓD of the domain boundary. Uniqueness of
pressure within Ph is enforced by requiring that the average over all degrees of
freedom (DoFs) vanishes.

We handle compressibility in the continuity equation by the frozen velocity
approach, see e.g. [14], i.e., we rewrite (7) as∫

Ω

qh∇ · uh(t+ δt) =

∫
Ω

−qh
(
∇ρ̄
ρ̄
· uh(t)

)
(8)

which means that the associated bilinear form, when solving for the velocity at
the new timestep, is the same as in the incompressible case. The energy equation
(5) can formally be re-written as

∂T ′

∂t
+ u · ∇T = F(t, T ′,u) , (9)

where F includes diffusion. We approximate T with P2 elements and apply a split-
ting approach, where the advective component is resolved with the MMOC [19].
Here virtual particles corresponding to the DoFs of Th(t+ δt) are advected back
in time along characteristics to obtain their departure points xdept at time t. A
Runge-Kutta scheme of order 4 is used to solve the resulting ordinary differential
equations (ODEs). With this, the energy equation can then be semi-discretised
in time as

T ′(x, t+ δt)− T̂ ′(x, t)
δt

≈ ΘF(x, t+ δt, T ′,uh) + (1−Θ)F(x, t, T̂ ′,uh) (10)

where T̂ ′(x, t) = T ′(xdept, t). For a full derivation and other variants available in
HyTeG see [19].

With this we proceed in solving the coupled system (3) to (5) according to
Algorithm 1. For each step at time t, the δt for the energy equation is computed
with the Courant–Friedrichs–Lewy (CFL) condition based on the velocity field
at time t. After obtaining the temperature field at time (t+ δt) by solving (9)
and (10), the corresponding velocity field at (t+ δt) is obtained by solving (6)
and (7). Under the assumption that a single Picard type iteration is enough to
couple the Stokes and energy equation, we perform a single solve of each in every
timestep. Note that the MMOC is not formally bound to the CFL. In [19] it was
demonstrated that, with a more sophisticated splitting approach, δt’s exceeding
this condition are permissible.

The geometry of the Earth’s mantle is approximated in our models in 2D by
an annulus and in 3D by a thick spherical shell. The corresponding meshes are
illustrated in Figures 2b and 2c. We apply projections from the computational
polyhedral meshes to the non-polyhedral physical domains to exactly capture
the curvature of the boundaries. These so called blending maps are incorporated
into the finite element integrals, see [2] for details.
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Algorithm 1: Coupled timestepping algorithm
1 initialise T ′;
2 solve Stokes system (6) and (7) for uh;
3 t← t0;
4 while t < tend do
5 calculate timestep size δt using uh(t) for the CFL condition;
6 execute advection step by calculating xdept and evaluating T̂ ′;
7 solve (10) for T ′ (with Θ = 1.0);
8 solve (6) and (7) for uh (using new T ′);
9 t← t+ δt;

10 end

(a) (b) (c)

Fig. 2: Visualizations of domain and mesh. Figure 2a: schematic sketch of the annulus
domain with inner and outer boundaries Γin and Γout. Figure 2b: computational coarse
mesh T0 without projection (green) overlayed by the projected mesh after refinement to
T3 (macro-element boundaries in red, micro-elements in grey). Figure 2c: computational
coarse mesh T0 of the spherical shell (without projection).

5 Results and Discussion

In this section, we present results for a number of standard benchmarks used in
the Geodynamics community, before demonstrating applicability of our code to
model convection in an Earth-like setting.

5.1 Stationary Benchmarks – Stokes System

Here we assess the convergence of the computed finite element approximation
to analytical solutions of the Stokes system (1) and (4). To approximate the
mantle, we define Ω (annulus in 2D, thick spherical shell in 3D) with inner
radius rmin = 1.22 and outer radius rmax = 2.22, thereby maintaining a ratio of
1.22
2.22 ' 0.55, which is close to the actual ratio for Earth, while also maintaining
the non-dimensional thickness of the mantle to be ∆r = rmax − rmin = 1.0. The
forcing function, driving the flow, models a density anomaly, which from (1)
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becomes −gρ′r̂, with ρ̄ = 0 and r̂ is a unit vector pointing outward (opposite to
gravity). For the annulus, the forcing is based on a cosine term, while for the
spherical shell it is based on the spherical harmonics function Y`m of degree `
and order m.

We follow [22] and perform experiments for two choices of ρ′:

Smooth forcing

ρ′ =

(
r

rmax

)k
cos(nφ) in 2D , ρ′ =

(
r

rmax

)k
Y`m(θ, φ) in 3D, (11)

δ-function forcing

ρ′ = δ(r − r′) cos(nφ) in 2D, ρ′ = δ(r − r′)Y`m(θ, φ) in 3D, (12)

where k, n are constants while φ refers to the angle with the x-axis in 2D and
θ, φ refer to the co-latitude and longitude respectively in 3D. In the δ-function
forcing case, the 3D volume integral in the finite element discrete form over the
right-hand side of (1) reduces to a surface integral∫

Ω

−gρ′r̂ · vhdΩ =

∫
Ω

−gδ(r − r′)Y`mr̂ · vhdΩ =

∫
Γ ′
−gY`mr̂ · vhdΓ ′,

where Γ ′ is the spherical surface of radius r′. We design our mesh in such a way
that Γ ′ is discretised by tetrahedral faces. The analogous reduction and meshing
applies to the 2D case.

Two sets of boundary conditions are considered, a freeslip boundary condition
on the inner boundary and a noslip condition on the outer boundary, denoted by
noslip-freeslip (Γin = ΓFS , Γout = ΓD, see Figure 2a), and another type where
only freeslip is considered on both the boundaries, denoted by freeslip-freeslip
(Γin = ΓFS , Γout = ΓFS , see Figure 2a). The analytical solutions for the freeslip-
freeslip case are available through the Python package assess from [22], where
the general form of the solution has been derived for the annulus and spherical
shell. Hence, we use the same form and derive the respective coefficients for
noslip-freeslip boundary condition setup by means of computer algebra.

In the 2D annulus mesh, as shown in Figure 2b, at T0, we consider 8 layers in
tangential direction and 2 layers in radial direction at the coarsest level. For the
3D shell mesh, we use the icosahedral meshing approach [8], which results in ten
diamond shaped sections. Figure 2c shows a top view of the North pole, where five
sections meet. The resolution of the base mesh is defined by two parameters. One
is the number of divisions along the curved edges of each section, the other the
number of layers in radial direction. We use as starting mesh for our convergence
study T2, which contains ' 102 triangles with ' 3× 104 DoFs for the annulus
and ' 105 tetrahedrons with ' 3× 107 DoFs for the spherical shell.

For this study, we use the Minres solver for the Stokes system with a lumped
inverse mass matrix preconditioner [10] for the Schur complement. At the freeslip
boundary, the velocity field is projected such that the normal component is zero
at every step of the iterative solver.
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(a) noslip-freeslip, smooth forcing, 2D (b) freeslip-freeslip, smooth forcing, 2D

Fig. 3: L2-errors of velocity and pressure, smooth forcing on the annulus with n = 2, k = 2
in (11).

(a) noslip-freeslip, smooth forcing, 3D (b) freeslip-freeslip, smooth forcing, 3D

Fig. 4: L2-errors of velocity and pressure, smooth forcing on the spherical shell with
` = 2,m = 2, k = 2 in (11).

Let uh be the discrete solution on level `. Then we approximate the velocity
error e = u − uh and its L2-norm by interpolating both u and uh in the FE
space for T`+1 and evaluating it there, similar for pressure. With smooth forcing,
for both noslip-freeslip and freeslip-freeslip, we obtain the theoretically expected
L2 convergence rates under refinement [12], i.e. cubic, O(h3), for velocity and
quadratic, O(h2), for pressure, for both the annulus and spherical shell as can be
seen in Figures 3 and 4. For the δ-function forcing cases, the convergence speed
deteriorates. We observe only O(h1.5) for velocity and O(h0.5) for pressure. See
Figures 5 and 6. This behaviour is consistent with [22]. The analytical pressure
solution for the δ-function forcing is a discontinuous function. As the P1 finite
element can only represent continuous functions, we should expect to see an
impact on its convergence and in turn for the velocity as well. The convergence
properties can be regained by choosing a discontinuous pressure element. A more
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(a) noslip-freeslip, delta forcing, 2D (b) freeslip-freeslip, delta forcing, 2D

Fig. 5: L2-errors of velocity and pressure, delta forcing on annulus with n = 2 in (12).

(a) noslip-freeslip, delta forcing, 3D (b) freeslip-freeslip, delta forcing, 3D

Fig. 6: L2-errors of velocity and pressure, delta forcing on spherical shell with ` = 2,m =
2 in (12).

detailed discussion and an example with an enriched P2-element for velocity and
a discontiunous P1 element for pressure can be found in [22].

5.2 Time Dependent Benchmarks – Unit Square

In this section, we present a benchmark from [3], specifically case 1a, where a
suite of software codes for modelling convection processes were compared. The
problem considers an isoviscous, bottom heated model on a unit square. The idea
is to prescribe a sinusoidal perturbation of temperature given by

T (x, y, t = 0) = (1− y) +A cos(πx) sin(πy), with A = 0.05 , (13)

while imposing freeslip boundary conditions for the velocity on all four walls of
the box. For the temperature field, a Dirichlet boundary condition of T = 0 and
T = 1 is imposed at the top and bottom respectively, while zero flux is imposed
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(a) Non-dimensional temperature field with
isolines

(b) Nu vs Number of DoFs

Fig. 7: Convection on a square after reaching steady state.

at the vertical sides. The perturbation combined with the freeslip boundary
condition induces a single convection cell in the square and heat advects and
diffuses to reach a steady state. Once this state is reached, the Nusselt number is
calculated at the top boundary. The latter gives an estimate of the amount of
heat transported by advection and diffusion to that of pure diffusion.

Equations (3) to (5) are solved according to Algorithm 1, but we consider
the total temperature T instead of T ′ with no internal heating, Di = 0, cp = 1
and an isoviscous, incompressible model with constant density ρ̄ = 1, η = 1 and
g = [0,−1]

>. The experiments are performed with Ra = 104 and the Nusselt
number (Nu) for the top boundary of the unit square is calculated via

Nu =

∫ 1

0

∂T (x, 1)

∂y
dx∫ 1

0

T (x, 0)dx

, (14)

as in [3]. To verify our implementation, we choose our mesh based on the range
of resolutions in [3] and compare the computed Nusselt numbers to the values
obtained by other codes. With refinement, our computed results converge to the
values reported in the benchmark and stay in the range of values predicted by
other codes, see Figure 7.

5.3 Time Dependent Benchmarks – Thick Spherical Shell

In addition to the previous 2D benchmarks, we now perform computations on
a thick spherical shell and verify our implementation through the community
benchmark described in [6, 26]. It involves simulation of convection behaviour on
a thick spherical shell by imposing freeslip boundary conditions for the velocity
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field on both Γin and Γout, while a Dirichlet boundary condition is specified for
the temperature field with T = 0 on Γout and T = 1 on Γin. The initial condition
for the temperature is given by

T (x, 0) = Tc(x) +AY`m(θ, φ) sin(π(r − rmin)),

with A = 0.04, (`,m) = (3, 2) and the background profile,

Tc(x) =
(rminrmax

r

)
− rmin.

The temperature deviations from the background profile due to this specific
spherical harmonic induces four plumes to rise up and stabilize with time in a
tetrahedral symmetry around the center. When the Rayleigh number increases,
the convective vigour increases and the plumes get thinner. This can be seen from
larger velocity magnitudes and higher Nusselt numbers, which vary proportional
to the third root of the Rayleigh number [9], Nu ' Ra

1
3 . For a spherical surface

Γ at radius r, the Nusselt number is calculated by

Nu =

∫
Γ

∂T

∂r
dΓ∫

Γ

∂Tc
∂r

dΓ

. (15)

Ideally the Nusselt number must be the same for r ∈ [rmin, rmax]. We choose
r = rmin for the evaluation.

Equations (3) to (5) are solved according to Algorithm 1, but we consider the
total temperature T instead of T ′ with Di = 0, cp = 1, constant density ρ̄ = 1
with g = −r̂ and different Rayleigh numbers. The experiments are performed
on an icosahedral mesh with roughly 106 temperature DoFs. Figure 8 shows the
iso-surface of the non-dimensional temperature at T = 0.5 and how the plume
shape changes with the Rayleigh number. Figure 9a shows the Rayleigh number
dependent variation of the Nusselt number, which obeys the cubic proportionality
as expected. An inference to note is that [26] concludes with a proportionality of
Nu ' (Ra/Racrit)

1/4, where Racrit is the Rayleigh number at the onset of convection,
which is constant for a given temperature dependent viscosity law. But for the
Rayleigh number range and the isoviscous case that we have considered, a cubic
proportionality between Nu and Ra is seen which also corroborates with the
values from [26], as seen in Figure 9a.

5.4 Mantle Convection

Here we show results from a model based on the Truncated Anelastic Liquid
Approximation (TALA) formulation which is currently under development. This
is being done with the software framework HyTeG under the TerraNeo project,
the goal of which is to create a scalable and accurate Earth model which can be
used for various geophysical applications.
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(a) Rayleigh number = 7× 103 (b) Rayleigh number = 2× 104

Fig. 8: Iso-surface of non-dimensional temperature at T = 0.5 coloured by magnitude of
velocity for comparison between Rayleigh numbers after reaching steady state

Equations (3) to (5) are solved according to Algorithm 1. An implicit Euler
scheme with Θ = 1.0 in (10) is used for the time discretization of the diffusive
and other forcing terms in (5). The Stokes system is solved with a monolithic
geometric multigrid method that uses an inexact Uzawa method for relaxation,
see [20] for details. The base mesh T0 is a thick spherical shell represented by an
icosahedral mesh composed of ' 103 tetrahedrons. This is taken as the coarsest
level for the V-cycle of the multigrid algorithm and T4 for the finest level, which
then contains ' 3 × 107 DoFs for the Stokes system and ' 1 × 107 DoFs for
temperature. The model is isoviscous with η = 1, compressible with the radially
varying density profile given by

ρ̄ = ρ̄s exp

(
Di(rmax − r)

Gr(rmax − rmin)

)
, (16)

where ρ̄s = 1 here and Gr is the Grüneisen parameter [17]. The values considered
are Ra = 105 and Ts = 0 while all other nondimensional parameters are set to 1
and no-slip boundary conditions are considered both on the surface (rmax) and
CMB (rmin). Around the CMB, we prescribe the initial temperature deviation

T ′(x, 0) = T ′0 exp

(
−A r − rmin

rmax − rmin

)
Y`m(θ, φ) (17)

with scaling factors T ′0 and A, and a spherical harmonics function of order ` = 6
and degree m = 4, which then induces plumes according to the harmonic that
rise up to the surface, see Figure 9b.
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(a) Nu vs Ra from section 5.3 (b) Compressible mantle convection, Ra
= 105

Fig. 9: Variation of Nusselt number with respect to Rayleigh number for the tetrahedral
symmetry case from section 5.3 (left), Compressible Mantle convection model with
adiabatic density profile showing non-dimensional temperature iso-surfaces (right)

The results are obtained from running the model on our in-house cluster
TETHYS-3g [24] which is composed of 24 AMD EPYC 7662 processors for a total
of 1536 cores connected via 100 GBit/s Infiniband HDR. For the export of 3D
data, the ADIOS2 package [13], which is developed for IO operations especially
on supercomputers, is employed in our framework.

6 Conclusion

In this paper, we have verified the implementation of a model for mantle con-
vection simulation in the HyTeG finite element framework against different
semi-analytical setups and community benchmarks. The agreement of our nu-
merical results with the literature demonstrates its applicability for Geophysical
applications. First, we showed the numerical convergence of our approximation
to the solution of a Stokes system for cases with different boundary conditions
and different forcing terms. Then we showcased the capability of our framework
to solve transport equations and verified it through time-dependent benchmark
problems. Finally, we showed results for a model based on the TALA formulation.
Future work will include benchmarking against temperature dependent viscosity
cases and nonlinear rheologies.
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