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Abstract. The understanding of large-scale scientific software is a sig-
nificant challenge due to its diverse codebase, extensive code length, and
target computing architectures. The emergence of generative AI, specif-
ically large language models (LLMs), provides novel pathways for un-
derstanding such complex scientific codes. This paper presents S3LLM ,
an LLM-based framework designed to enable the examination of source
code, code metadata, and summarized information in conjunction with
textual technical reports in an interactive, conversational manner through
a user-friendly interface. S3LLM leverages open-source LLaMA-2 mod-
els to enhance code analysis through the automatic transformation of
natural language queries into domain-specific language (DSL) queries.
In addition, S3LLM is equipped to handle diverse metadata types, in-
cluding DOT, SQL, and customized formats. Furthermore, S3LLM in-
corporates retrieval-augmented generation (RAG) and LangChain tech-
nologies to directly query extensive documents. S3LLM demonstrates
the potential of using locally deployed open-source LLMs for the rapid
understanding of large-scale scientific computing software, eliminating
the need for extensive coding expertise and thereby making the process
more efficient and effective. S3LLM is available at https://github.com/
ResponsibleAILab/s3llm.
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1 Introduction

Large-scale scientific computing software is crucial in various scientific fields,
undergoing extensive development cycles that lead to the formation of intricate
software libraries and ecosystems. This complexity stems from the lengthy de-
velopment periods, ongoing extensions, and evolving development paradigms,
making it imperative to provide users with insights into these computing tools.
However, understanding such software is a challenging task for several reasons.
First, large-scale scientific software often incorporates multiple programming
languages, including older languages such as Fortran and Pascal, which poses
a significant challenge for contemporary programmers trying to understand the
code. Second, the large volume of scientific software, which may encompass mil-
lions of lines of code, makes comprehensively understanding each segment of
the code an additional obstacle. Lastly, the documentation for these software
systems is sometimes less than ideal, often lacking detailed explanations, which
further complicates the task of gaining a thorough understanding of the software.

To enhance comprehension of large-scale scientific software, numerous tools
have been devised to aid in code analysis and documentation. For instance,
Doxygen [1] is capable of generating documentation from the source code and
performing static code analysis for software source trees. Nonetheless, the avail-
able tools are primarily tailored for static code analysis and lack the capability
to accommodate dynamic queries. Moreover, given the complexity inherent in
large-scale scientific software, both developers and users may struggle to formu-
late queries in both instructed (e.g., textural documents) and structured formats
(e.g., SQL). Therefore, it is imperative to devise methods for understanding and
parsing large-scale scientific software that are both user-friendly and precise.

The emergence of generative AI, particularly large language models (LLMs),
represents a new era in software comprehension and interaction. LLMs have
shown remarkable capabilities across various tasks, including chatbot interac-
tions [15, 3, 5], text summarization [13, 4, 14], and content creation [2, 7, 8], demon-
strating their potential to vastly improve programming and documentation prac-
tices. Beyond these applications, LLMs offer promising solutions for understand-
ing the complex landscapes of large-scale scientific software [12]. By leveraging
LLMs, we can envision a future in which software comprehension is not only more
accessible but also more intuitive, enabling users to query and interact with soft-
ware in natural language. This paper introduces S3LLM , a novel framework that
embodies this vision by providing a user-friendly interface for interacting with
scientific computing software through natural language queries. S3LLM aims
to bridge the gap between the world of complex scientific software and the di-
verse community of users and developers, fostering a deeper understanding and
facilitating more effective use of these critical computational tools.

As opposed to most existing works on software understanding, the pro-
posed S3LLM can handle various types of tasks for large-scale scientific software
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understanding—including source code query, metadata analysis, and text-based
technical report understanding. S3LLM is capable of conducting queries over
the information extracted from source code in diverse formats, such as DOT
(graph description language)5 and relational databases. By leveraging the few-
shot learning capability of LLMs, S3LLM can also generate domain-specific lan-
guage (DSL) queries, such as Feature Query Language (FQL) [17], to gather and
extract software features through code analysis. Furthermore, S3LLM imple-
ments LangChain and retrieval-augmented generation (RAG) [9] schemes to en-
able text-based queries from technical reports and project summaries. More im-
portantly, all the aforementioned interactions and inquiries facilitated by S3LLM
are executed utilizing natural language.

The contributions outlined in this paper are summarized as follows:

– We conceptualized, designed, and implemented S3LLM , a novel framework
that utilizes LLMs to improve the understanding of large-scale scientific soft-
ware. This framework excels in analyzing source code, metadata, and textual
technical reports, providing a holistic approach to software comprehension.

– S3LLM presents a user-friendly natural language–based interface that allows
users, even those with limited programming knowledge, to easily query and
gain insights into scientific software.

– Given the need to balance inference speed with the framework’s computa-
tional demands, S3LLM provides three options featuring LLaMA-2 models
with 7B, 13B, and 70B parameters, allowing users to choose the most ap-
propriate model based on their specific requirements.

– Tests on the Energy Exascale Earth System Model (E3SM) [6] shows our
model’s effectiveness in analyzing source code, metadata, and documents.

– We contribute to the wider scientific computing community by releasing
S3LLM as an open-source tool, ensuring broad accessibility and usefulness
across a spectrum of scientific computing applications and research pursuits.

2 Method

2.1 Framework Overview

Figure 1 shows that S3LLM consists of three main components designed to
process source code, code metadata, and textual technical documents. Central to
all three components are LLaMA-2 models, which translate natural language into
domain-specific language (DSL) queries or perform in-text information analysis
and retrieval. Some components within S3LLM use the RAG methodology to
improve LLM responses by referencing an external knowledge base, enhancing
the model’s output. S3LLM employs open-source LLaMA-2 models (7B, 13B,
and 70B) for language understanding, providing a range of model sizes and
ensuring reproducibility across different computational settings.

5 https://en.wikipedia.org/wiki/DOT_(graph_description_language)
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Fig. 1: Framework overview of S3LLM

2.2 Source Code Analysis

Large-scale scientific software like E3SM often involves over a million lines of
source code, posing challenges for open-source LLMs due to the massive to-
ken count exceeding their context windows. Additionally, contemporary sophis-
ticated source code analysis tools demand extensive programming knowledge or
specialized domain expertise from users. To tackle these issues, S3LLM inte-
grates the analytical strengths of existing tools with the natural language ca-
pabilities of LLMs, enabling source code queries in natural language without
loading the entire codebase into the LLMs.

To demonstrate S3LLM ’s strategy for LLM-based source code analysis, we
use XScan as a key backend engine [16]. XScan, an integrated toolkit, extracts
essential data from scientific code like lines of code, programming languages,
library dependencies, and features of parallel software. While XScan simplifies
tasks like line tallying, it employs FQL for deeper static code analysis. FQL,
which handles queries like Library Utilization, Version Assessment, and Feature
Enumeration, requires skills for precise query crafting. S3LLM bridges the gap by
enabling accessible source code analysis with less need for extensive programming
knowledge. Additionally, the core LLMs of S3LLM are versatile and can integrate
with various source code analysis engines, not limited to XScan.

In transforming natural language into FQL queries, S3LLM focuses on three
aspects: understanding FQL’s purpose and syntax, grasping relevant terminolo-
gies like high-performance computing standards, and accurately translating nat-
ural language to FQL. To equip LLM models with a solid understanding of
FQL, we integrated a foundational FQL document and query examples into the
RAG framework as external resources. Addressing the challenge of converting
specific terminologies into programming code keywords, initial efforts using open-
source LLMs were inadequate. Consequently, GPT-4 was chosen for its ability
to translate terminology within S3LLM . The model uses few-shot learning and
RAG-enhanced contexts to generate FQL queries from natural language inputs.
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2.3 Software Metadata Comprehension

To enhance S3LLM’s handling of diverse scientific computing software infor-
mation, we developed a dual-phase strategy. Initially, we enriched the LLMs’
understanding of metadata formats by embedding detailed context using the
RAG technique or direct integration into prompts. S3LLM then allows meta-
data interrogation through natural language prompts. It features two prompting
modes: zero-shot, which lets users query metadata without prior examples, and
few-shot, which uses example inputs to refine responses, proving more effective
for complex metadata. S3LLM supports three metadata types from scientific
software: DOT, SQL, and third-party specified formats, with the flexibility to
expand to more in the future. For DOT, we enhance understanding by including
a detailed format explanation in prompts. SQL queries are directly generated
using LLaMA-2 models, bypassing traditional instruction-based prompts. For
custom third-party formats, we showcased S3LLM’s capabilities with SPEL, a
toolkit for adapting E3SM models for GPU execution, demonstrating S3LLM’s
ability to handle specialized data formats through GPT-4. This broadens its
utility across various metadata types.

2.4 Technical Document Interpretation

Large-scale scientific software is often accompanied by detailed documentation
such as technical reports, user manuals, and research papers, which can be chal-
lenging to navigate. To efficiently extract information from these extensive texts,
S3LLM utilizes a combination of RAG and LLMs to improve the accuracy of
document-related queries. The RAG framework operates in three phases: docu-
ment indexing, retrieval, and generation. It first segments external texts for the
LLM’s contextual analysis, then indexes and stores document embeddings. Upon
receiving a query, it retrieves relevant embeddings to provide a context window
for the LLM, which generates responses using both the query and the retrieved
data. S3LLM incorporates the LangChain framework, an advanced tool for de-
veloping LLM applications, to implement RAG. LangChain’s DocumentLoaders
and Text Splitters organize and segment documents for query processing. Vec-
torStore and Embeddings models, using all-MiniLM-L6-v2 for embeddings and
a FAISS-based index for efficient retrieval, maintain document embeddings. The
Retriever component fetches relevant segments for inclusion in user prompts. Fi-
nally, the refined query, enhanced with retrieved data, is processed by LLaMA-2
to produce customized responses, demonstrating the effective integration of RAG
to enhance document comprehension in scientific software.

3 Case Study

We deployed S3LLM on E3SM as a case study to demonstrate its effectiveness in
analyzing source code, code metadata, and text-based technical reports. E3SM
is a state-of-the-art Earth system modeling framework, developed and supported
by the United States Department of Energy (DOE)[6].
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3.1 Source Code Query Results

To illustrate the effectiveness of S3LLM in source code analysis, we assessed its
ability to generate FQL queries across three distinct categories: Library Utiliza-
tion Queries, Version Assessment Queries, and Feature Enumeration Queries.
Through the use of crafted prompts, as demonstrated in the subsequent text
box, S3LLM successfully generates the correct FQL query in certain instances.
Specifically, for the Library Utilization Query, S3LLM produces the precise FQL
query in a zero-shot manner. This accuracy is likely attributed to the pretrain-
ing of the LLaMA-2 model within S3LLM on RAG supporting documents that
include FQL queries and HPC terminologies. Similarly, for Version Assessment
and Feature Enumeration Query, “Please Generate FQL query to Find the min-
imum version of MPI ” and “Please Generate FQL query to List MPI process
topology used in the Code” can prompt S3LLM to generate accurate queries.

Prompt for Library Utilization Query:
Please Generate FQL query to Check Whether OpenMP is used
Response:
CHECK (omp task || end task || omp taskloop || omp taskloop simd
|| omp taskyield) WHERE (*)

3.2 Metadata Comprehension with S3LLM

In our study, we utilized three distinct forms of metadata to demonstrate the
capabilities of S3LLM in enhancing metadata comprehension. These include
DOT files produced by XScan [16], CSV files generated by SPEL [11]6, and
bespoke metadata formats also created by SPEL, all derived from E3SM.

First, S3LLM ’s efficacy was assessed on standardized DOT files, as produced
by XScan and on a unique metadata format devised by SPEL. A DOT file, as
illustrated in the box below, represents a directed graph that visualizes the
interactions between caller and callee functions within E3SM, offering insights
into the software’s structural dynamics.

Prompt for Summarizing DOT File:
DOT files can describe a directed graph using the keyword of “digraph". Inside a di-
rected graph, each line starts with a module name, which is followed by the “::" sym-
bol. For example, “allocationmod" is the module in “allocationmod::allocationinit ->
clm_time_manager." Please list all the unique modules in the following DOT file de-
scribing directed graph G.

digraph G {
emi_datamod::emidcopy -> emi_datamod::emidallocatememory_real_3d
...
firemod::firefluxes -> histfilemod::hist_addfld1d

}

Response:
Sure! Here are the unique modules in the directed graph G described by the DOT file:
1. emi_datamod ... 17. verticalprofilemod There are 17 unique modules in total.

6 A software toolkit for porting E3SM land models onto GPUs using OpenACC.
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SQL is widely utilized for managing data in relational databases, and lan-
guage models can translate natural language into SQL queries efficiently. We
demonstrated the SQL capabilities of S3LLM using two CSV files from SPEL [11].
The process involved two steps. Initially, S3LLM generated SQL statements to
convert the subtables into SQL tables. Then, it created specific SQL queries. Our
experimental results demonstrate S3LLM ’s skill in handling and manipulating
SQL tables for complex database tasks.

Additionally, a sequence of executions for LakeTemperature as delineated
by SPEL [11] has been tested. The result offers an in-depth view of variable
usage during the execution process, which is beneficial for code performance
optimization (through asynchronous kernel launch) on GPUs. This structured
approach to metadata analysis underscores S3LLM ’s capability to navigate and
elucidate complex metadata representations, enhancing comprehension and fa-
cilitating deeper insights into the software’s operational mechanisms. Due to the
space limitation, please refer to our GitHub repository for more details.

3.3 Document Parsing

This section demonstrates the effectiveness of combining the RAG framework
and LangChain with LLMs, as described in Section 2.4, for extracting specific
technical information from comprehensive scientific documents. We utilized a 28-
page technical report on lake temperature (in PDF format), from the Community
Land Model [10], as the testbed. The example experiment in the following colored
box confirms S3LLM ’s proficiency in extracting complex physical processes, such
as phase changes, and its capability in both comprehension and explanation.

Prompt for Querying Technical Report of Lake Temperature:
What is the significance of phase changes in the model, and how are they accounted for?
Response: Phase changes, such as freezing and melting, play a significant role in the
atmosphere model, as they affect the energy balance at the land surface. The model accounts
for phase changes by calculating heat diffusion and phase change in given layers based on
temperature and moisture conditions. The available energy for melting is computed as
function of temperature and moisture content.

4 Conclusion

This paper introduces S3LLM , a robust framework built on LLMs designed to
understand the intricacies of large-scale scientific software. Through advanced
techniques such as instruction-based prompting, integration with external queries,
and the use of RAG and LangChain, S3LLM enhances the operational capabil-
ities of pre-trained LLMs, and its effectiveness across various data formats was
demonstrated herein. This framework not only underscores our current achieve-
ments but also lights the way for future advancements in generative AI and
software engineering, particularly within scientific computing.
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