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Abstract. Neural stochastic differential equations (neural SDEs) are
effective for modelling complex dynamics in time series data, especially
random behavior. We introduced JDFlow, a novel normalizing flow method
to capture multivariate structures in time series data. The framework
involves a latent process driven by a neural SDE based on the Merton
jump diffusion model. By using maximum likelihood estimation to de-
termine the intensity parameter of the Poisson process in neural SDE,
we achieved better results in generating time series data compared to
previous methods. We also proposed a new approach to assess synthetic
time series quality using a Wasserstein-based similarity measure, which
compares signature cross-section distributions of original and generated
time series.

Keywords: neural stochastic differential equations · normalising flows
· Merton jump diffusion · multivariate time series modelling · path sig-
nature.

1 Introduction

In the ever-evolving landscape of data science and machine learning, the field
of time series modeling has emerged as an essential and challenging area of
research. Time series data, with its unique temporal dependencies and sequential
patterns, finds applications in various fields such as finance, healthcare, and
climate science, among others [1,2,3]. The accurate modeling of time series is
crucial for creating robust models and understanding complex systems. One
approach to modelling time series is through generative models [4], which have
practical applications in anomaly detection [5] and data augmentation [6]. In
this paper, we propose a novel method based on normalizing flows and neural
SDEs for time series generation and modelling. Especially, we aim to create a
model that can account the jumps in real markets, utilizing the Merton model
[3] as the jump framework.

Normalising flows are a family of generative models with tractable density
estimation. The main idea is to transform the initial complicated data distri-
bution to a simple one, by composition of several functions fi. There are some
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constraints to implement such architecture: i) each function fi should be a bi-
jection (should exist an invertible transformation g−1

i = fi); ii) they should have
an analytically closed form and must be differentiable; iii) the Jacobian deter-
minant of fi should be easily calculable. The composition of the functions fi is
called the flow. Functions gi = f−1

i form the forward or generative direction and
fi form the backward or normalising direction [4].

Stochastic differential equations (SDEs) are applied in various fields due to
their ability to model systems, influenced by both deterministic and random
factors. Here are some common applications: (i) in finance, SDEs determine the
asset price dynamic, e.g., the famous Black-Scholes model for option pricing in-
volves SDEs, by using geometric Brownian motion to determine stock prices;
(ii) in physics, SDEs are used to model a system with random fluctuations. For
example, the motion of particles in a fluid can be described by Langevin equa-
tions; (iii) SDEs are employed in modelling biological systems, e.g., population
dynamics and the spread of diseases can be described using stochastic models.

In this article, we consider the Itô’s type of stochastic differential equations
[7] with additional jump component, which defined as (1).

2 Method

Figure 1 shows the general method’s pipeline. The red section is dedicated to
the latent process driven by neural SDE from the Section 2.1. The blue sec-
tion is devoted to intensity estimation from the Section 2.2. Finally, the general
generative model framework is discussed in the Section 2.3.

Identifying jumps

Preprocessing

Initial
parameters
estimation

MLE for Merton jump
diffusion parameters

Latent process
simulation

Inverse
preprocessing

Training process

Sampling process

Latent process
simulation

Fig. 1: General pipeline.

2.1 Latent process and neural SDE formulation

Consider the time series S of the length T with dimension M . For a given
S, we apply the preprocessing procedure, which scales the series in the range
[0, 1] and result it as X ∈ RM×T . The main idea of our approach is to use
the jump diffusion dynamic instead of the standard Itô’s diffusion. To add the
jump diffusion, we implement a latent process Vt. We suppose, that Vt is square-
integrable and it follows the jump diffusion dynamic (neural SDE [8]),

dVt = µθ(Vt, t)dt+ σθ(Vt, t)dWt + Jθ(Vt, t)dPt, (1)
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where Wt is the Wiener process, Pt is the Poisson process, µθ, σθ, Jθ are the
drift, diffusion, and jump magnitude parameters, respectively. Wt and Pt are
assumed to be independent. The functions µ, σ, J are parameterised by neural
networks instead of using the predefined dynamic. The networks’ parameters
are stored in θ for short. The networks µ, σ, J take the vector Vt ∈ RM and
the vector (t, sin t, cos t) ∈ R3 as input, where time component is augmented by
sine and cosine transformations, and produce the vector of the dimension M .
For hidden layers we use fully connected layers, with hidden dimension 27, and
hyperbolic function, as activation function.

The initial value V0 of the process Vt is identified by another neural network
φθ, which depends on the random noise Zt ∈ R1×M and some initial information
X0 about X (we use X’s values at zero time point X0 ∈ RM×1). The network φθ
takes the vector (Zt, X

⊤
0 ) ∈ R2M as input, and its outcome is the initial value

V0 ∈ RM .
It is complicated to find an analytic solution of the equation (1), because

the functions µ, σ, J have complicated structure (they are the neural networks
with huge amounts of parameters). But, it is possible to use the discrete scheme
to approximate the solution. We choose the standard one so-called the Euler-
Maruyama scheme [9]. Finally, we can represent the equation (1) as the following
discrete scheme,

Vti+1 = Vti + µθ(Vti , ti)∆t+ σθ(Vti , ti)ε
√
∆t+ Jθ(Vti , ti)Pti , (2)

where ∆t = T
τ , τ is the number of steps in the discrete scheme, Pti is the Poisson

random variable with intensity ξ∆t, and ε ∼ N (0, 1). We denote the solution
block with discrete Euler-Maruyama scheme as Fθ(V0, ∆t, µθ, σθ, Jθ), which will
produce the multivariate time series of the dimension M and the length τ . We
refer τ as hyperparameter and recommend to choose it not greater than T .

2.2 Intensity estimation with Merton model

Consider the log return process Rt = log Xt+dt

Xt
. If there is a jump in the time

interval [ti, ti+1), then we can observe it by Rti . We separate the dynamic of
Rt in two components RJ and RD, using the hyperparameter λ (threshold of a
jump presence in Rt). The RJ is dedicated to observations with jumps and RD
with the diffusion part. We use the Merton model to represent the jump diffusion
process (MJD), because it is more natural to use the Gaussian distribution for
jump amplitude in real markets.

To get the intensity parameter ξ, we use the maximum likelihood approach
for MJD on the given data. For that, we define the initial parameters to achieve
better convergence as in [3].

µ̂D =
2E[RD] + Var[RD]dt

2dt
, σ̂2

D =
Var[RD]

dt
, µ̂J = E[RJ ]−

(
µ̂D − σ̂2

D

2

)
dt,

σ̂2
J = Var[RJ ]− σ̂2

Ddt, ξ̂ =
#RJ

T
, (3)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_26

https://dx.doi.org/10.1007/978-3-031-63759-9_26
https://dx.doi.org/10.1007/978-3-031-63759-9_26


4 K. Zakharov

where #RJ is the number of jumps (cardinality of a set RJ).
Finally, we maximise the likelihood function for the log return process,

logL(R|ξ, µD, σ2
D, µJ , σ

2
J) =

=

T∑
i=1

log

( ∞∑
k=0

(ξdt)k

k!
e−ξdt · N

(
Ri

∣∣∣∣(µD − σ2
D

2

)
dt+ µJk, σ

2
Ddt+ σ2

Jk

))
, (4)

where N (x|µ, σ2) = 1√
2πσ2

e−(x−µ)2/2σ2

. The bounds for the optimisation task

are ξ ≥ 0, µD, µJ ∈ R, and σ2
D, σ

2
J > 0. The parameter k is dedicated to a

number of jumps in a single time period and it can be chosen empirically.

2.3 General framework

For the given V0, ∆t, the solution for equation (1) is equal to Vt ≡ V θt =
Fθ(V0, ∆t, µθ, σθ, Jθ) ∈ Rτ×M . After that, we compute the non-linearity term

as Y ≡ Yη,θ = Gη,θ ·X + ζη(Gη,θ), where Gη,θ = e−ψη(V
⊤
t ) ∈ RM×T . The neural

networks ζη and ψη are dedicated to the same part of the model and its param-
eters are stored in η. The network ψη for each m ∈ {1, . . . ,M} takes the vector
from Rτ as input and produces the vector from RT . Further, we identify the
normalising flow for Yη,θ as a composition fη(Y, Vt) = fK ◦ fK−1 ◦ · · · ◦ f1(Y, Vt)
and the generative flow as Ỹ ≡ f−1

η (Z, Vt) = f−1
1 ◦ · · · ◦ f−1

K−1 ◦ f
−1
K (Z, Vt). The

value fη(Y, Vt) should be approximately equals to Z ∼ N (0, I) by distribution.
We propose a new bijection function, which depends on the latent process Vt.

The forward path of fi(Y, Vt) starts from separation of the process Y ∈ RM×T

in two parts Y1 ∈ RM×d and Y2 ∈ RM×(T−d). Further, we calculate the term
which depends on the latent process p̂ = pη(V

⊤
t ) to extract the information

given on the latent dynamic. Then we implement the affine coupling layer [4]
with following modifications,

Z1 = Y1 + p̂,

Z2 = Λη(Z1)⊙ gη(νη(Z⊤
1 )⊤) + Y2 ⊙ eΣη(Z1), (5)

where ⊙ is an element-wise product. After that, we concatenate the outcomes as
Z = (Z1,Z2) ∈ RM×T . The networks Λη, Ση have the same structure with one
recurrent layer and several linear layers with sigmoid activation between them.
Due to we use the affine coupling layer, we also permute the component Z1 with
Z2 after each flow.

Our novel idea is to use the transpose version of Z1 to extract the information
from the multivariate dynamic, utilising the neural network νη, and we transpose
the result again to get the term structure dynamic. Then we apply the neural
network gη to extract once again the time structure component, but in a new
representation of Z1. The networks νη, gη were constructed with two linear layers
with sigmoid activation function between them. The flow constructed in this
manner maintains the form of the Jacobian of a coupling flow.

Therefore, the log determinant of Jacobian is equal to the sum of elements
Ση(Z1)(j), where j ∈ {d + 1, . . . , T}. For the likelihood distribution we choose
the standard Gaussian one.
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We define the inverse flow as

Ỹ2 = (Z2 − Λη(Z1)⊙ gη(νη(Z⊤
1 )⊤))⊙ e−Ση(Z1),

Ỹ1 = Z1 − p̂. (6)

The final value Ỹ achieved by concatenating components (Ỹ1, Ỹ2). After the

flow we implement the inverse procedure for non-linearity term as X̃ = (Ỹ −
ζη(Gη,θ))/e

−ψη(V
⊤
θ ) by sampling the new latent process with discrete scheme (2).

Finally, we get a synthetic multivariate time series S̃, by applying the inverse
preprocessing procedure to X̃.

3 Experimental study

3.1 Data description

To evaluate the proposed model we use three multivariate time series. The first
is dedicated to the jump diffusion so-called Merton model which driven by SDE
in a risk-neutral measure as

dXt =

(
r − ξ · (eµJ+0.5σ2

J − 1)− 1

2
σ2
D

)
dt+ σDdWt + JdPt. (7)

As parameters we use ξ = 15, µJ = 0, σJ = 0.2, r = 0.04, σD = 0.6. The
length of the time series and the dimension are equal to 1000 and 10, respectively.
By the Merton jump diffusion, we check the ability of the models to detect the
complicated dynamics.

The second time series is the diffusion process, driven by DCL stochastic
process [10], with θ = 1 and δ = 2. The time series length is equal to 500 and
the dimension is 5. Using the DCL process, we wish to test the smoothness of
the resulting series.

The third time series is derived from the kaggle stock dataset1 to analyse
the ability of the models to generate the realistic series for the market purposes.
The multivariate attributes are formed by open, close, low, and high prices with
2645 total observations.

3.2 Quality assessment

We employ three methods to compare results: Fourier Flow [11], fSDE [12] and
PAR from SDV [13].

We choose the Jensen-Shannon divergence and W1-distance to compare the
distribution similarity. We also utilise the forecasting model to assess the predic-
tion error, MSE. We use the local extrema QQ-plot, to evaluate the ability of
the model to represent the local dynamic features [14]. To evaluate the multivari-
ate similarity, we use t-SNE plots [15], which provides the dimension reduction
with structure preserving.

1 https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
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We introduced a new method to assess global dynamic similarity by compar-
ing signature distributions at different time points. By calculating path integrals
and extracting cross sections over the interval [0, T], we can compare the dis-
tributions of real-world time series signatures with synthetic data. Using the
W1-distance metric, we visualize the differences in a plot for all models. The
path integrals in the signatures play a key role in determining the time series
dynamics uniquely [16]. This approach helps identify specific time periods where
the synthetic data deviates from the real data.

3.3 Results

Figure 2 illustrates QQ-plots for local extrema. Our approach JDFlow (red color)
is better to approximate the local structure, by matching the diagonal line, which
refers to a real extrema quantile (black color). Fourier Flow is also close to the
real time series, but PAR (orange color) and fSDE (green color) are too far from
the diagonal. For example, PAR’s synthetics differ in the first quantiles in the
stock dataset, which means it has greater local minima values, than it has the
initial time series.
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Fig. 2: QQ-plot for the local extrema comparison.

Figure 3 shows the W1-distance between cross sections of the signatures in
different time periods. The best values should be close to a zero line (black
color). PAR and fSDE models greatly differ from the real time series, especially
in comparison with our approach JDFlow and Fourier Flow. For the Merton
jump diffusion (Fig. 3a), the PAR and fSDE models have a W1-distance that
increases significantly over time. This means that their synthetics branch out too
much over time. The same structure is observed in the stock data, only JDFlow
and Fourier Flow accurately discover the initial data patterns.

Figure 4 shows distinctions in multivariate structure. As a result, real-world
time series, JDFlow, and Fourier Flow synthetics have similar multivariate struc-
ture. fSDE model repeats the local patterns of the source data, but globally
behaves differently. The PAR synthesizer doesn’t match the initial multivariate
dynamic.

The quantitative evaluation can be found in the Table 1. For all time series
JDFlow has shown the best results in terms of distribution similarity (blue color
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Fig. 3: Signature cross section distribution comparison.
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Fig. 4: t-SNE plot for stock.

for best results). When analysing MSE metric for the forecasting task, JDFlow
shows the best results and even decrease the initial time series prediction error.

Table 1: Quality assessment with quantitative metrics.

Data Models W1 DJS MSE

Merton jump diffusion

Real 0.000 0.0000 0.059
JDFlow 0.003 0.005 0.057

Fourier Flow 0.153 0.136 0.439
PAR 0.093 0.078 0.288
fSDE 2.275 0.303 2.181

DCL process

Real 0.000 0.000 0.019
JDFlow 0.002 0.019 0.019

Fourier Flow 0.094 0.345 0.101
PAR 0.041 0.218 0.030
fSDE 0.422 0.333 0.451

Stock

Real 0.000 0.000 12.655
JDFlow 0.022 0.007 11.423

Fourier Flow 0.144 0.010 12.569
PAR 2.351 0.143 12.704
fSDE 5.833 0.124 13.476
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4 Conclusion

Our research has investigated the use of generative methods to model multivari-
ate time series data. Our goal was to contribute valuable insights by evaluating
generative models and introducing a neural SDE method driven by jump diffu-
sion. We have proposed a novel normalising flow architecture that utilises a mul-
tivariate structure. Additionally, we have proposed a method for calibrating the
parameters of the Merton jump diffusion model within our generative framework.
We also proposed the new evaluation method. Code and training parameters for
test models are available by the link https://github.com/kirillzx/JDFlow.
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