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Abstract. The purpose of the article is to develop a new dimensional-
ity reduction algorithm for categorical data. We give a new geometric
formulation of the PCA dimensionality reduction method for numerical
data that can be effectively transferred to the case of categorical data
with the Hamming metric.
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1 Introduction

One of the objectives of principal component analysis (PCA) is to reduce the
dimension of the data space while retaining as much information as possible. The
standard algorithm (see, for instance [12]) consists of calculating the eigenvec-
tors of the covariant (correlation) matrix and using it as a new basis in the space
of data. Coordinates of data vectors in this new basis are the principle compo-
nents. The major principle component corresponds to the eigenvector with the
largest eigenvalue, the minor component—to the eigenvector with the smallest
eigenvalue. The dimensionality reduction involves discarding minor components.

However this algorithm is not applicable in case of categorical data, where
the structure of linear space is not available.
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Fig. 1. Scaling that minimizes total relative inner-class squared distance
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In this article we propose a new interpretation of the PCA dimensionality
reduction and transfer it to a set of categorical data. Namely, consider an affine
transform of the data space that minimizes the total relative squared inner-class
distance (figure 1). It turns out that the major principle component will be scaled
with the minimal multiplier, while minor component with the maximal one.

The problem of dimensionality reduction can be brought to finding a scaling
that minimizes the relative total squared distance. The direction with the most
scaling multiplier corresponds to the minor component that can be dropped with
a minimal information lost.

Such interpretation can be transferred to a space of categorical data with the
weighted Hamming metric.

To prove the concept we perform numeric experiments on three datasets.
Experiments show that discarding the features in order according to our method
always results in the loss of a minimum amount of information. Discarding the
features in reverse order results in maximal information loss.

The rest of the paper is organized as follows. In section 2 we shortly recall ba-
sic related works paying main attention to recent works concerning non-numeric
data. Section 3 contains our new interpretation of PCA dimensionality reduction
for numeric data. This interpretation in transferred to categorical data in the
section 4. To verify our concept we performed numerical experiments that are de-
scribed in the section 5. Finally, we give some concluding remarks in the section 6.

2 Related Works

Developed for numerical continuous data in the pioneering works of Pearson [18]
and Hotelling [11], PCA has found many applications in many fields of data
analysis. The method and recent developments for continuous numerical data
are described in book [12] and review [13].

We focus on extensions of the PCA to discrete data. The most known is the
correspondence analysis (see, for instance [12, section 5]) which deals with the
principal components of the normalized contingency matrix.

In articles [10, 7] the PCA was applied to a binary data. In case of ordinal
data the authors of [14] suggested a variant of PCA based on Spearman’s and
Kendall’s rank correlation coefficients. In our algorithm, the data features re not
ordered and can have arbitrary cardinalities.

Let us also mention some recent papers that develop PCA for discrete data
with additional complex structure as intervals or histograms [16, 2, 4]. In our
parer we do not assume any additional structure defined on the data.

The PCA is often formulated as an optimization problem: maximizing disper-
sion of data projection, optimal approximation of the data with a linear manifold,
finding projection that maximize the total inner-class squared distance. To the
best of our knowledge the optimization problem suggested in this paper was
not directly considered before. A characteristic feature that distinguishes our
algorithm from other approaches: first we define a minor feature, and the other
algorithms start by determining the most important feature.
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The weighted Hamming metric itself was recently used for unsupervised [9]
and supervised [8] metric learning for numeric-categorical data. Application of
the weighted Hamming metric to the problem of dimensionality reduction of
categorical data seems to be new.

3 Reformulation of PCA dimensionality reduction for
numerical data

In this section we will show that minimizing of the total relative squared inner-
class distance allows us to determine the minor principle component.

Assume that each data instance x has n numerical features, i.e. x ∈ Rn

with the standard Euclidean distance. The distance is invariant with respect to
translations and rotations. So, let us make two following assumptions:
1. The features are uncorrelated,
2. The data has a multivariate normal distribution centered at the origin.

That means that distribution function is as follows:

f(x) =
exp

(
− 1

2x
TΣ−1x

)√
(2π)n detΣ

,

where Σ is the correlation matrix, which in case of uncorrelated data is diagonal
Σ = diag(λ1, . . . , λn), Σ−1 = diag(λ−1

1 , . . . , λ−1
n ), detΣ = λ1 · · ·λn, and λi > 0

for i = 1, . . . , n. The total inner-class squared distance is

H =

∫
Rn×Rn

dist2(x, y)f(x)f(y) dx dy,

where dx = dx1 . . . dxn, dy = dy1 . . . dyn.
We are to find a scaling (x1, . . . , xn) 7→ (w1x1, . . . , wnxn), where wi ≥ 0 for

i = 1, . . . , n, that minimizes the total inner-class squared distance:

H(w) =

n∑
i=1

w2
i

∫
Rn×Rn

(xi − yi)
2f(x)f(y) dx dy. (1)

Since the function H(w) is homogenious we add a constraint on the weight w:∑n

i=1
wi = 1. (2)

The restriction of H(w) to (2) is the total relative inner-class squared distance.
By the standard calculation the coefficient at w2

i in (1) equals zi = 2λi. So,
the minimization problem is as follows:{∑n

j=1 w
2
jλj → min,∑n

j=1 wj = 1, wj ≥ 0 for j = 1, . . . , n.

One can solve it with the method of Lagrange multipliers:

wi =
(∑n

j=1
λ−1
j

)−1
/λi, i = 1, . . . , n.

Specifically, the minor component (of minimal λi) has the maximal multiplier.
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4 Dimensionality reduction for categorical data

In this section we transfer considerations from the last section to the case of
categorical data.

Assume that the dataset X of M instances is given. Let each instance x ∈
X has n categorical features of finite cardinalities a1, . . . , an respectively, x =
(x1, . . . , xn). We use the standard Hamming metric as a distance on X:

disth(x, y) =
∑n

i=1
diff(xi, yi),

where x, y ∈ X, and diff(α, β) =

{
1, if α ̸= β,

0, if α = β.

Let us also make an assumption that the dataset is divided into c classes,
X = C1 ∪ · · · ∪ Cc. The total inner-class distance is

G =
1

M2

c∑
k=1

∑
x,y∈Ck

disth(x, y).

Do define a “scaling”, let us introduce the weights vector u = (u1, . . . , un) ∈
Rn, where ui ≥ 0 for i = 1, . . . , n and the weighted Hamming distance:

disth,u(x, y) =
∑n

i=1
ui diff(xi, yi).

Consider minimization problem for the function

G(u) =
1

M2

c∑
k=1

∑
x,y∈Ck

disth,u(x, y) =

n∑
i=1

ui

 1

M2

c∑
k=1

∑
x,y∈Ck

diff(xi, yi)

 (3)

with the following constraint on weights u:∑n

i=1
ui = 1, (4)

which is exactly the same as (2), and call the restriction of G(u) to the hyper-
plane (4) the total relative inner-class distance.

Denoting coefficient at ui in (3) by si, we obtain the following minimization
problem: 

n∑
i=1

uisi → min,

n∑
i=1

ui = 1, uj ≥ 0 for i = 1, . . . , n,
(5)

which is known as the linear programming problem. The objective function
reaches its optimal value at one of the vertices of the polytope defined by the
constraint. Hence the optimal vector has the form uopt = (0, . . . , 0, 1, 0, . . . 0),
i.e. all the coordinates but one are zeroes. The feature k that corresponds to
coordinate uopt,k = 1 is called the minor component and can be discarded first
in dimensionality reduction.

Repeating this procedure after the feature k reduction, one determines the
next minor feature, and so on. We summarize the method in the algorithm 4.1.
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Algorithm 4.1 Reduction of m dimensions
Require: the dimension of dataset X is n, n > m
Ensure: the dimension of dataset X is n−m

s← 0
while s < m do

solve the optimization problem (5) and discard the minor component
s← s+ 1

end while

5 Numerical Experiments

To illustrate the concept a few R scripts have been created. The code is available
as a project on Gitlab at https://gitlab.com/adenisiuk/pca.

The purpose of our test is to show that the algorithm allows to reduce dimen-
sionality while retaining as much information as possible. To do this we consider
the classification problem. We classified data with complete set of features and
then we discarded features one by one in different orders. First, according to the
proposed algorithm: starting from the most minor feature, this order is referred
as pca order (red line on the figures). Second order is reverse to the pca order:
starting from most major features. We call this order acp order (blue line on the
figures). We also performed two tests with random order of features discarding,
the sample order (green lines on the figures).

Implementations of three classifiers: random forest, SVM and XGBoost in R
were used in experiments: [15, 17, 5]. For the random forest classifier an average
result for 100 tests is presented.

We use the F1Score as a measure of classification accuracy. Some of datasets
have more than two classes. In all the tests we define F1Score as

F1Score =
2 · total_presicion · total_recall

total_presicion + total_recall
,

where total_presicion and total_recall are the sums of respectively presicion
and recall for all the classes.

We considered the following three datasets: the Car Evaluation [3], the Con-
gressional Voting Records [6] and the Tic-Tac-Toe Endgame [1]. All the tested
datasets were split into train (80%) and test (20%) parts.

One can see that in all the tests the pca order always gives the minimal
information loss while the acp order gives the maximal lost.

5.1 Car Evaluation dataset

The dataset contains 1728 instances. Each instance has 6 features of cardinalities
respectively 4, 4, 4, 3, 3, 3. The dataset is split into 4 classes [3].

The results of classification are presented at the figure 2. The pca order for
this dataset is 3, 2, 1, 5, 4, 6. Orders sampled in tests were as follows: 4, 1, 3, 2,
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Fig. 2. Classification accuracy for the Car Evaluation dataset
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Fig. 3. Classification accuracy for the Congressional Voting Records dataset

6, 5 and 1, 5, 3, 6, 4, 2 for the random forest classifier, 1, 6, 4, 3, 5, 2 and 5, 4,
3, 1, 6, 2 for SVM, 2, 4, 1, 3, 5, 6 and 4, 2, 6, 3, 5, 1 for XGBoost.

One can observe the for all classifiers the pca order has minimal and the acp
order has maximal accuracy loss when discarding features.

5.2 Congressional Voting Records dataset

The dataset contains 435 instances. Each instance has 16 features of cardinali-
ties 3. According to the data description we interpreted values “?” as the third
option in voting. The dataset is split into 2 classes [6].

The results of classification are presented at the figure 3. The pca order for
this dataset is 2, 10, 16, 11, 1, 15, 13, 6, 14, 9, 7, 12, 5, 8, 3, 4. Orders sampled
in tests were as follows: 4, 16, 6, 10, 7, 1, 5, 14, 2, 3, 12, 13, 11, 9, 8, 15 and 10,
4, 8, 6, 16, 5, 2, 7, 15, 14, 9, 1, 12, 13, 11, 3 for the random forest classifier, 1,
11, 7, 9, 14, 2, 4, 13, 8, 10, 16, 6, 15, 5, 3, 12 and 9, 10, 5, 8, 12, 16, 2, 14, 4, 11,
15, 13, 6, 7, 3, 1 for SVM, 12, 15, 7, 9, 4, 11, 1, 8, 14, 3, 16, 10, 6, 13, 2, 5 and
11, 16, 5, 7, 13, 4, 9, 14, 2, 6, 3, 8, 10, 15, 12, 1 for XGBoost.

Again, the pca order has minimal and the acp order has maximal accuracy
loss when discarding features. Note also very stable classification for the pca
order and drastic drop in accuracy after discarding the component 4, which is
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Fig. 4. Classification accuracy for the Tic-Tac-Toe Endgame

most significant according to our algorithm. This is especially noticeable at the
sample orders for random forest classifier: the 4th feature was the first and the
second one.

5.3 Tic-Tac-Toe Endgame dataset

The dataset contains 958 instances. Each instance has 16 features, each one is
of cardinality 3. The dataset is split into 2 classes [1].

The results of classification are presented at the figure 4. The pca order for
this dataset is 2, 4, 8, 6, 9, 3, 7, 1, 5. Orders sampled in tests were as follows: 5,
6, 2, 3, 4, 8, 1, 9, 7 and 4, 9, 3, 6, 5, 1, 8, 7, 2 for the random forest classifier, 5,
4, 7, 3, 9, 2, 8, 1, 6 and 7, 8, 3, 6, 4, 9, 1, 2, 5 for SVM, 2, 8, 6, 3, 1, 7, 9, 5, 4
and 3, 4, 7, 5, 2, 1, 9, 6, 8 for XGBoost.

As in two previous experiments, the pca order has minimal and the acp order
has maximal accuracy loss when discarding features. The accuracy graphs for
this dataset is more monotonic than for the Congressional Voting Records. This
is probably related to greater uncorrelatedness of the features. As in the previous
example, let us notice drop in accuracy after discarding the feature 5: see two
sample orders for the random forest and the SVM classifiers where this feature
is the first one.

6 Conclusion and Future Work

In this article we propose a new geometric interpretation of the PCA dimen-
sionality reduction algorithm and transfer it to categorical data. The algorithm
involves determining and discarding minor features.

Numerical experiments confirm that the method allows to discard features
with minimal lost of information, at least for the classification problem.

So, we can suggest this method of dimensionality reduction for categorical
data analysis.

Hovewer, unlike the classical PCA, our method does not provide any quanti-
tative characterization of the amount of information discarded. Developing such
an interpretation is one of the future tasks.
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Another direction of the future work is extension of the method to data that
have both numerical and categorical features.

References

1. Aha, D.: Tic-Tac-Toe Endgame. UCI Machine Learning Repository (1991)
2. Bock, H. H., Diday, E.: Analysis of symbolic data: exploratory methods for ex-

tracting statistical information from complex data. Springer Science & Business
Media (2012)

3. Bohanec, M.: Car Evaluation. UCI Machine Learning Repository (1997),
4. Brito, P.: Symbolic data analysis: another look at the interaction of data mining and

statistics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
4(4), 281–295 (2014)

5. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K.,
Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., Li, Y., Yuan,
J.: XGBoost: Extreme Gradient Boosting (2023),

6. Congressional Voting Records. UCI Machine Learning Repository (1987),
7. Cox, D.R.: The analysis of multivariate binary data. Applied statistics pp. 113–120

(1972)
8. Denisiuk, A.: Weighted hamming metric and knn classification of nominal-

continuous data. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanov-
skaya, V. V., Dongarra, J. J., Sloot, P. M. (eds.) Computational Science – ICCS
2023. pp. 306–313. Springer Nature Switzerland, Cham (2023)

9. Denisiuk, A., Grabowski, M.: Embedding of the hamming space into a sphere with
weighted quadrance metric and c-means clustering of nominal-continuous data.
Intelligent Data Analysis 22(6), 1297001314 (2018).

10. Gower, J. C.: Some distance properties of latent root and vector methods used in
multivariate analysis. Biometrika 53(3-4), 325–338 (12 1966).

11. Hotelling, H.: Analysis of a complex of statistical variables into principal compo-
nents. Journal of educational psychology 24(6), 417 (1933)

12. Jolliffe, I. T.: Principal component analysis. Springer (2002)
13. Jolliffe, I. T., Cadima, J.: Principal component analysis: a review and recent devel-

opments. Philosophical Transactions of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences 374 (2016),

14. Korhonen, P., Siljamäki, A.: Ordinal principal component analysis theory and an
application. Computational Statistics & Data Analysis 26(4), 411–424 (1998).

15. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3),
18–22 (2002)

16. Makosso-Kallyth, S.: Principal axes analysis of symbolic histogram variables. The
ASA Data Science Journal 9(3), 188–200 (2016).

17. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: e1071: Misc
Functions of the Department of Statistics, Probability Theory Group (Formerly:
E1071), TU Wien (2022), r package version 1.7-12

18. Pearson, K.: On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin philosophical magazine and journal of science
2(11), 559–572 (1901)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_22

https://dx.doi.org/10.1007/978-3-031-63759-9_22
https://dx.doi.org/10.1007/978-3-031-63759-9_22

