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Abstract. Over recent years, archaeologists have started to use object detection 

methods in satellite images to search for potential archaeological sites. Within 

image object recognition, due to its ability to recognize objects with great accu-

racy, convolutional neural networks (CNN) are becoming increasingly popular. 

This study compares the performance of existing deep-learning algorithms for 

the detection of small megalithic monuments in satellite imagery, namely RCNN 

(Region-based Convolutional Neural Networks) and YOLO (You Only Look 

Once). Using a satellite image dataset and after adequate preprocessing, results 

showed that this is a feasible approach for archaeological image prospection, with 

RCNN achieving a remarkable precision of 93% in detecting these small monu-

ments. 

Keywords: object detection, satellite images, CNN, megalithic monuments, ar-

chaeology 

1 Introduction 

Object detection, a pivotal task in computer vision, has emerged as a crucial method 
for archaeologists to recognize specific monuments, thereby facilitating the prospection 
and the study of ancient societies. In the domain of satellite imagery, this task becomes 
especially challenging due to a myriad of factors [13], ranging from inherent spatial 
resolution constraints, where significant yet relatively small constructions like dolmens 
might be represented by a mere handful of pixels (around 15 pixels in this case), to 
issues of rotation invariance, with monuments appearing in any possible orientation. 
Additionally, accuracy is influenced by intraclass variations, where the visualization of 
the same object type, such as a megalithic monument, can vary based on environmental 
conditions, vegetation, shadow length, and soil type [6]. Beyond these technical chal-
lenges, the intensive task of data labelling is yet another challenging task. Nevertheless, 
deep learning presents a promising solution for object detection, and machine learning-
based methods are becoming increasingly common, albeit in recognising easily detect-
able monuments [9]. 

Acknowledging the importance and intricacies of this problem, we delve into a per-
formance analysis of different object detection pipelines to understand their capability 
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for identifying small megalithic monuments in satellite images, aiming to provide a tool 
for helping archaeologists to recognise monuments that have been traditionally difficult 
to detect. For this purpose, with the help of an expert, we collected a customized dataset 
featuring high-resolution images containing known dolmen sites [3]. The new annotated 
dataset intends to benchmark the speed and accuracy of the pipelines developed, striving 
for optimal detection and localization of small heritage monuments in satellite images. 
The information regarding the locations of the analyzed monuments comprising our da-
taset is available on Zenodo [5].  

To optimize the dolmens' detection and classification process using satellite imagery, 
we evaluate and compare two recent renowned algorithms, RCNN (Region-based Con-
volutional Neural Networks) and YOLO (You Only Look Once), benchmarking their 
performance metrics, including running time and accuracy.  

This paper is organized into five distinct sections: after this introduction, a brief 
review of related works is presented. Next, we describe an exploration of object 
detection methodologies, followed by a discussion of our results. The work finishes with 
the presentation of conclusions and the discussion of probable implications. 

2 Case Study Area Characterization 

The archaeological data used in this study focus on the Mora and Arraiolos regions 
in southern Alentejo, Portugal (Figure 1). Situated within the Ancient Massif, known 
for its granitic, schistose, quartzites, and other metamorphic rocks, these areas harbour 
significant clusters of known megalithic monuments, totalling 272 structures classified 
as dolmens according to the Portuguese Portal do Arqueólogo[14]. Dating back to the 
Neolithic/Chalcolithic period (4000/5000 BC), these dolmens primarily served as fu-
nerary sites, typically constructed from granite or schist, with diameters ranging from 
2 to 5 meters [3]. While some are visible above ground, others are buried or integrated 
into modern constructions, making recognition challenging. To our knowledge, there 
has been no prior research on object recognition of these monuments in the analyzed 
region. This study stands out as it goes beyond simply detecting easily identifiable fig-
ures in satellite images. 

Figure 1: Map of Portugal highlighting the regions of Mora and Arraiolos in detail, as well as 

the dolmens in these regions. On the right, a representation of dolmen Lapeira 1 is shown: an 

aerial view from Google Earth. 
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3 Literature Review 

Remote sensing has been utilized as an indispensable tool for archaeologists for 
decades, and recent advancements in Deep Learning (DL) present new opportunities to 
enhance archaeological research methodologies, notably in object recognition within 
satellite images [4]. Despite growing interest in machine learning for site identification, 
its adoption in archaeology remains limited due to its complex nature, demanding 
computational expertise. Among the prevailing neural network architectures in 
contemporary technology, Artificial Neural Networks (ANNs) stand out. Notably, 
CNNs have garnered significant attention and are the most rigorously explored among 
the different techniques. CNN architectures can generally be categorized into two groups 
based on their approach to object detection: one-stage detectors, such as You Look Only 
Once (YOLO), and two-stage detectors like Faster Region-based CNN. In the domain 
of archaeology, the primary use of Remote Sensing Images (RSI) revolves around 
detecting distinct ground structures, examples of which include burial mounds, tells, 
rectangular enclosures, charcoal burning platforms, and qanats [4].  

In recent years, studies have increasingly utilized CNNs to recognize archaeological 
structures in RSIs. Among these architectures, the RCNN has been described as an ideal 
solution for high-precision object detection tasks. For instance, Caspari & Crespo (2019) 
employed a CNN to detect Early Iron Age tombs within the Eastern Central Asian 
steppes using optical satellite imagery. The authors’ findings underlined the superior 
performance of CNNs in RSIs analysis, achieving an impressive accuracy of 0.99 (F1-
score) in images without the presence of tombs, contrasting with a 0.91 score in their 
presence [8]. This study exemplifies the prowess of CNNs in precisely detecting 
archaeological landmarks even from satellite imagery. Another popular approach, 
YOLO, has also been utilized, demonstrating faster detection rates and reduced false 
positive detections. For example, Canedo et al. (2023) used YOLO to detect burial 
mounds, achieving a positive detection rate of 72.53% [7]. This method contrasts with 
traditional CNN approaches and offers a faster alternative. It's crucial to note that 
determining the best model across different training sets may vary, and other algorithms 
could outperform in distinct tests. In comparison with our approach in this paper, 
Caçador (2020) analyzed the same monuments using a different dataset and 
methodology, focusing on the hyperspectral signature of how dolmens appear in satellite 
images. This analysis revealed the challenge of discerning these signatures due to the 
similarity between the surrounding terrain and the monument itself. Despite utilizing 
panchromatic and multispectral images, identification was feasible, albeit with a high 
false positive rate of 87.2% [2].  

While advancements have been made, challenges like false positives and limited data 
persist in archaeological object detection. For instance, image enhancement techniques, 
including rotation, flipping, and augmentation, have been employed to improve object 
detection in challenging environments and expand datasets for analysis [8]. Addition-
ally, techniques such as Location-Based Ranking and Bagging have been utilized to mit-
igate false positives. Despite these improvements, automated results still require refine-
ment to consistently match human expertise, highlighting ongoing challenges and the 
need for further advancements in the field. Current efforts are focused on detecting 
niches or those structures deemed 'easy' to recognize [9], but future research may explore 
analyzing smaller or less identifiable monuments as a potential area of interest. 
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4 Methodology 

After collecting all the dolmen locations within the area to be covered, the next step 
was to obtain their satellite images. For this study, all the images were gathered from 
Google Earth Pro and corresponded to the same monuments analyzed in a previous work 
conducted by Câmara (2017), where the author performed a photo interpretation analysis 
[3]. These images were then extracted and saved in 8k resolution, providing higher-qual-
ity images. Our coverage features 62 dolmens visible from a software perspective. We 
collected five images for each dolmen, changing the monument’s position within each 
image and, therefore, the surrounding background also changed, giving a total dataset of 
310 different images. It is important to note that the low quantity of images of 
monuments for visualization derives from the fact that these are millennia-old structures, 
many of which are either destroyed or not visible in satellite images. 

To test the algorithm's response to an image that does not contain any dolmen, two 
more images, very similar in brackground but devoid of dolmens were added to the test 
set. The data was split as follows: the test set comprises seventeen images, fifteen of 
which depict three different dolmens in different locations, and two images that, to the 
best of our knowledge, do not contain any dolmen. The remaining 285 images were 
used to train the algorithms. The random selection ensures a representative data distri-
bution in training and validation subsets. In the subsequent step, the images underwent 
a preprocessing stage, including image labeling, enhancement, and augmentation, fa-
cilitated by Roboflow [12], augmenting the dataset to 855 images. Following a review 
of the state of the art [11], we determined that the optimal approach for augmentation 
in this setting was to introduce random values for various types of augmentation until 
identifying the most effective set of modifications for improved results. Non-colour-
based and color-based augmentations such as cropping, rotation, hue, saturation, bright-
ness, and exposure were employed. Contrast enhancement was applied using Ro-
boflow's histogram and adaptive histogram equalization. These adjustments accentuate 
local details, making darker or lighter regions of the image more discernible. Such en-
hancement is especially valuable in images with a high vegetation index. 

After pre-processing the images, we transitioned to the modeling phase to train the 
selected algorithms. Our choices included YOLO version 8, the most recent version at 
the time, and Fast R-CNN. YOLO, known for its efficiency in rapidly detecting objects 
within images, and Fast R-CNN, renowned for its high precision in object detection, 
were deemed suitable candidates for our archaeological structure detection project. In 
our experimentation, we systematically explored nine different architectures, leverag-
ing auto-tuning in each experiment to fine-tune the parameters and hyperparameters for 
optimal performance on the training data. Using Fast R-CNN models, we opted to use 
ResNet-101 and ResNet-50 as backbone networks, without pre-training, exploring 
three different network structures: Feature Pyramid Network (FPN), Dilated Convolu-
tional Network (DC), and Convolutional Network (C). We conducted experiments us-
ing two types of training schedules, namely 1x and 3x. These models were trained using 
the custom dataset created on Roboflow, which was then converted to COCO format, 
facilitating training with frameworks like Detectron2. Google Colab was used for train-
ing, and we chose to set 5000 iterations to minimize the total loss and approach the 
optimal learning rate for each algorithm. The training time for each Faster R-CNN al-
gorithm was approximately 40 minutes, while YOLO required only half this time. This 
process consumed 10 GB of RAM and 8 GB of GPU memory in Colab. While the 
backbone networks were not pre-trained, using COCO-formatted data enabled us to 
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leverage pre-trained weights for specific architectures to expedite convergence during 
training. 

5 Results 

For evaluation, the most common metrics were used. Precision (P) is calculated as 
the ratio of true positive (TP) predictions to the sum of true positives and false positives 

(FP): 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
. F1-score, the harmonic mean of precision and recall(R), provides a 

balanced measure calculated by F1=
2*P*R

P+R
 , where R measures the model's ability to 

capture positive instances and is the ratio of true positive predictions to the sum of true 

positives and false negatives: 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. These metrics help assess the model's ability 

to detect objects while minimizing the false positives correctly, and the F1-score is 
specifically emphasized for its relevance in binary classification scenarios [1]. Table 1 
presents the average precision and F1-score metrics that have been obtained for each of 
the trained models for the test set. Notably, the FasterRCNN model, utilizing a ResNet-
50 backbone network with a DC network for structure and a 1x training schedule, 
achieved the best results for this test set, achieving a precision of 0.93 and an F1-score 
of 0.78. The choice of backbone architecture substantially impacts the model's ability 
to learn complex patterns, and these metrics provide insights into the strengths and 
weaknesses of each configuration. 

Table 1. Performance results for all the architectures tested in terms of average precision and 

F1-score values. 

Model Average Precision F1 Score 

R_50_FPN_3x 0.67 0.51 

R_50_FPN_1x 0.69 0.64 

R_50_DC_3x 0.70 0.65 

R_50_DC_1x 0.93 0.78 

R_50_C_3x 0.61 0.57 

R_50_C_1x 0.60 0.57 

R_101_FPN_3x 0.71 0.64 

R_101_DC_3x 0.74 0.71 

R_101_C_3x 0.63 0.59 

YoloV8 0.79 0.71 

 
The training of this particular type of algorithm involved monitoring various metrics 

to identify signs of overfitting or underfitting during the defined epochs. Figure 2 illus-
trates the losses and accuracy metrics throughout the training process. Particularly, the 
classification loss, which typically measures the divergence between predicted class 
probabilities and actual class labels, was scrutinized. The objective during training was 
to minimize this metric across epochs, aiming for optimal model performance. Figure 
2A shows a notable decrease in classification loss that becomes more stable after 4000 
epochs, indicating convergence towards an optimal solution. This observation suggests 
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that the training process effectively learns the underlying patterns in the data, enabling 
the model to make accurate predictions. The loss stableness implies reduced sensitivity 
to minor fluctuations in the training data, indicative of a well-generalised model [10]. 

 
Figure 2: Figure 2 A-D depicts the plots of the train results in terms of loss and 

accuracy: (A) Classification Loss; (B) Classification loss in the Region Proposal Net-

work; (C) Location loss in the Region Proposal Network; and (D) Classification Accu-

racy. 

 In the Region Proposal Network (RPN) of the faster RCNN algorithm 
(R_50_DC_1x), minimizing the classification loss allows the prediction of high object-
ness scores for anchors overlapping significantly with ground-truth object bounding 
boxes and low scores for anchors far distant from any object. This ensures that the 
model focuses on relevant regions likely to contain objects while ignoring background 
or irrelevant areas, which is particularly relevant given that each dolmen was tested 
against five different backgrounds [10]. Figure 2.B) illustrates that after approximately 
2000 epochs, the model becomes more stable. This stableness suggests that the model 
has reached a point of diminishing returns regarding classification improvement. While 
this stabilisation is a positive sign, indicating the likely convergence of the RPN to a 
satisfactory level of classification accuracy, it's crucial to acknowledge that further 
training beyond this point may yield insignificant additional benefits and may even risk 
overfitting. Minimizing the localization loss is crucial because it ensures that the algo-
rithm effectively learns to accurately predict the correct bounding box coordinates for 
the positive region proposals. Through improved training, the regression of the pre-
dicted bounding box coordinates for each positive anchor aligns more closely with the 
ground-truth bounding box. The successful training of the Faster R-CNN algorithm, 
exhibiting minimal losses and high accuracy, underscores the feasibility of implement-
ing object detection models for small megalithic monuments in a rocky terrain through 
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remote imagery, making this a feasible approach for automating and enhancing archae-
ological prospection work.  

In Figure 2.C), the analysis includes the localization loss in the RPN. However, the 
presence of numerous spikes suggests that there are instances where the model encoun-
ters challenges in precisely pinpointing object locations. These spikes may be due to 
various factors, including complex object geometries, augmentations, or variations in 
image backgrounds. In Figure 2.D), the classification accuracy for this algorithm was 
tracked by epoch, illustrating a consistent improvement trend. This means the model's 
growing adeptness in accurately classifying objects during training. While the Faster 
R-CNN algorithm, trained with minimal losses and high accuracy, demonstrates profi-
ciency in object detection, it's noteworthy that YOLOV8, despite a lower confidence 
rate in true positive results, excels in minimizing false positive detections. This reduc-
tion in false positives is particularly advantageous for our overarching goal of providing 
a helpful tool for archaeologists in their prospection work. This trade-off bears practical 
implications, as Faster R-CNN models may be preferable for precise localization, 
whereas YOLO models could be advantageous in scenarios prioritizing false positive 
reduction. Moreover, the results underscore the influence of background contexts on 
confidence scores, emphasizing the importance of background diversity in training da-
tasets to enhance the adaptability of object detection models in real-world scenarios. 
These findings stress the necessity of comprehensive evaluation considering environ-
mental characteristics for robust detection performance. 

6 Conclusions 

The paper addresses the challenge of object detection in identifying dolmens in sat-
ellite imagery. Its primary contribution includes a set of 62 annotated high-quality im-
ages of dolmens in Portugal. Given data constraints, image augmentation and enhance-
ment were crucial in increasing the dataset from 285 to 855 images, as well as high-
lighting the monuments, which can often be obscured by surrounding features. How-
ever, challenges persist due to the scarcity of expert-confirmed dolmen locations, re-
sulting in a relatively small dataset. Evaluation of results highlighted the YOLOv8 
model that, although showing lower confidence in true positives presented fewer false 
positives. Nevertheless, the Faster R-CNN model, despite the higher number of false 
positives, presents the lowest confidence rate in erroneous identifications.  

Future research should prioritize the collection of a broader and diversified dataset 
for a more comprehensive evaluation assessment. Moreover, venturing into advanced 
or hybrid modeling techniques could improve accuracy in detecting dolmens in satellite 
images. 
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