
Agent Based Simulation as an efficient way for
HPC I/O system tuning

Diego Encinas1,2 ID , Marcelo Naiouf1 ID , Armando De Giusti1 ID , Román

Bond2 ID , Sandra Mendez3 ID , Dolores Rexachs3 ID , Emilio Luque3 ID

1 Informatics Research Institute LIDI, CIC’s Associated Research Center, National
University of La Plata, 50 y 120, La Plata, 1900, ARGENTINA

2 SimHPC-TICAPPS, Universidad Nacional Arturo Jauretche, Florencio Varela,
1888, ARGENTINA

3 Computer Architecture and Operating Systems Department, Escola d’Enginyeria.
Universitat Autònoma de Barcelona, Edifici Q Campus UAB, Bellaterra, 08193,

SPAIN

Abstract. Generally, evaluating the performance offered by an HPC
I/O system with different configurations and the same application al-
lows selecting the best settings. This paper proposes to use agent-based
modeling and simulation (ABMS) to evaluate the performance of the
I/O software stack to allow researchers to choose the best possible con-
figuration without testing the real system. Testing configurations in a
simulated environment minimizes the risk of disrupting real systems.
In particular, this paper analyzes the communication layer of an HPC
I/O system, more specifically the communication layer of the parallel
file system (PVFS2). ABMS has been selected because it enables a rapid
change in the level of analysis for modeling and implementing a simu-
lator. It can focus on both macro- and micro-levels (how the aggregate
behavior of system agents is born and analyzing their individual behav-
ior).

Keywords: Agent-Based Modeling and Simulation (ABMS) · HPC I/O
System · Parallel File System.

1 Introduction

Improving the processing and storage of large amounts of data has become a chal-
lenge in parallel and distributed systems. Generally, evaluating the performance
offered by an I/O system with different configurations and the same application
allows selecting the best settings. However, to make changes in the configuration,
analyzing the performance that the applications will be able to achieve before
tuning the system (hardware and software) could be advantageous. Since at the
hardware level a correct configuration encompasses the arrangement of comput-
ing and input/output nodes, and at the software level, it includes selecting the
configurable parameters for the type of application used (intensive writing or

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_16

https://orcid.org/0000-0002-6948-9786
https://orcid.org/0000-0001-9127-3212
https://orcid.org/0000-0002-6459-3592
https://orcid.org/0000-0001-8021-8621
https://orcid.org/0000-0001-8021-8621
https://orcid.org/0000-0003-3228-0134
https://orcid.org/0000-0001-5500-850X
https://dx.doi.org/10.1007/978-3-031-63759-9_16
https://dx.doi.org/10.1007/978-3-031-63759-9_16


2 Encinas D. et al.

reading, method for performing I/O, and so forth). On top of this there can be
a user level both for hardware and software such as an administrator, to gener-
ate the appropriate configurations. In other words, both users and researchers
oftentimes want to make changes to these shares systems to analyze how this
affects their applications, but they are unable to do so because these systems
often run 24/7 or administration permissions are required. For this reason, one
of the methods used to predict different configurations and the same application
behavior in a computer system is using modeling and simulation techniques [1].

In this paper, we propose using Agent-Based Modeling and Simulation
(ABMS) to develop a modeling of the Parallel Virtual File System 2 (PVFS2)
communications layer called BMI (Buffered Message Interface) that will allow
evaluating much of the performance of the I/O software stack. ABMS allows an
easy change at the analysis level: it can focus on both macro- and micro-levels
(how the aggregate behavior of system agents is born and, also, analyzing their
individual behavior). The agent paradigm is used in various scientific fields and
is of special interest in Artificial Intelligence (AI); it allows successfully solving
complex problems compared with other classic techniques [2] like event-based
simulation paradigm (Discrete Event Simulation, DES).

Fig. 1. At the left box, the layers in computer node and the right box represents the
layers in the I/O server.

Generally, both paradigms operate in discrete time, but DES is used for low
to medium abstraction levels. In ABMS, system behavior is defined at an individ-
ual level, and global behavior appears when the communication and interaction
activities among the agents in an environment start. In fact, ABMS is easier
to modify, since model debugging is usually done locally rather than globally.
With the idea of using bottom-up modeling [3] and thus working in parts of the
system, the agent paradigm was chosen.

To model the system and to have data to calibrate and validate, the test
platforms developed have been previously explained [4] and add the appropriate
monitoring tasks to the I/O software stack layers (Figure 1), as well as the
different functional and temporal models achieved [5] and their implementation
to check the different stages of the model. Furthermore, storage nodes can be
classified into data servers and metadata servers. The file system divides the files

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_16

https://dx.doi.org/10.1007/978-3-031-63759-9_16
https://dx.doi.org/10.1007/978-3-031-63759-9_16


Agent Based Simulation as an efficient way for HPC I/O system tuning 3

to be stored into fragments or stripes that are distributed in the data servers.
The fragments are stored in the aforementioned buffers, both in client nodes and
in server nodes.

In a nutshell, the simulator developed allows configuring the selected scenario
(computing nodes, data servers and metadata servers), the file size for read and
write operations, the access pattern (shared file or one file per process), and the
number of iterations for each experiment. The output will allow quantifying I/O
operations (immediate and non-immediate), bandwidth, operation time for the
analyzed layer in the software stack. At a functional level, node-layer interactions
can be viewed on the dashboard. To achieve a better control the test platform,
each client node was configured to run a single application process.

2 Functional Analysis

The difficulty in the analysis of the I/O system lies in hardware heterogeneity
and software stack complexity. In particular, work has been going on analyzing
the PVFS file system as well as its OrangeFS equivalent, monitoring the different
functions that make up each of the software layers. In the last publication [6] both
client and server system interface and main loop layers, respectively, have been
modeled in detail, and functional and temporal modeling and simulation were
achieved. In the Modeling section below, the development achieved is explained.

To obtain data sets that allow carrying out a spatial modeling of the I/O
system, monitoring tools were used on the Job, Flow and BMI layers of both the
client and the server. These tools were used in previous works [6] but only fo-
cusing on obtaining temporary metrics. To further describe spatial behavior, the
functions on the BMI layer were taken into account. BMI is a high-performance
communications library used in PVFS2 that facilitates data transfer between the
nodes of a computing system transparently. BMI will affect the model achieved
through an agent that represents it and is explained in the Modeling section
below.

Both BMI_tcp_post_send_list() and BMI_tcp_post_recv_list() are func-
tions used to send and receive data asynchronously. Both functions are called
by the PVFS2 client process to send a list of data buffers (BMI buffer) over the
network to the dataservers.

By default, the size of the buffers at this level is 256 KiB. As regards the
number of elements in the buffer, this strictly depends on the size of the selected
stripe defined by the file system in the system interface layer. Generally:

stripesPerBuffer =
BMIBufferSize

StripeSize
(1)

The number of stripes used by each client can be calculated as the size divided
by the size of stripe. To know the number of stripes handled by each client, divide
the previous result by the number of clients. Therefore:

StripesPerClient =
FileSize÷ StripeSize

amountOfClients
=

workloadi
StripeSize

(2)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_16

https://dx.doi.org/10.1007/978-3-031-63759-9_16
https://dx.doi.org/10.1007/978-3-031-63759-9_16


4 Encinas D. et al.

Where workloadi represents a portion of the total file size. Thus, the sum of
all workload_i would be the size of the entire file. As mentioned in the previous
section, to achieve greater control of the test platform, it is configured so that
each client node executes a single application process. Thus, the size of the file
is divided equally for each client node.

Another issue to consider is the number of BMI_tcp_post_send_list oper-
ations that are called to send a certain workload in bytes. Generally:

BMIClientOps =
bytesPerClient

BMIBufferSize
=

FileSize÷ amountOfClients

BMIBufferSize
(3)

If the number of dataservers is odd, the BMIclientOps relation must be mod-
ified by adding the file size as a new term.

All of this regarding tcp_post_send/recv_generic and
work_on_recv/send_op applies to both client and server. The server dif-
fers from the client in terms of the function responsible for sending data. On
the client side, the function BMI_tcp_post_send/recv_lists used, while the
equivalent server-side function is BMI_tcp_post_send/recv. It should be noted
that, in the context of the server, a write operation corresponds to the reception
of data and a read operation corresponds to the sending of data.

For operations in each dataserver, this involves taking into account that the
total number of client operations must reach all dataservers. That is, the number
of BMI client operations are sent to the different dataservers equally, using a
round robin method [7].

3 Modeling

In previous works, the functional and temporal analysis has been carried out by
monitoring the interactions of the I/O system at the software layer level in the
I/O nodes as well as between the functions that make up each of these layers.
Also, the use of state machines and sequence diagrams allowed obtaining a more
detailed model to describe the interactions that are triggered throughout the
system when write, read or close files operations are performed.

In the area of modeling, the concepts of macro- and micro-modeling have
been introduced to describe other systems [8]. It could be said that the modeling
carried out in the parallel I/O system is a macro-modeling, since the interactions
found are due to the communications necessary to represent the behavior of the
system without individualizing spatial parameters such as I/O operations, stripes
and number of bytes per second. A micro-modeling would imply modeling the
behavior of the fragments to be distributed in each of the I/O nodes.

3.1 Macro-Modeling

In a previous work has been [6] detailed client-server interactions for the PVFS2
file system, the interactions between their system interface and main loop layers,

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_16

https://dx.doi.org/10.1007/978-3-031-63759-9_16
https://dx.doi.org/10.1007/978-3-031-63759-9_16


Agent Based Simulation as an efficient way for HPC I/O system tuning 5

to analyze the spatial parameters for the BMI layers. In the BMI layer, immediate
message quantification had to be added to the model; these messages are sent
immediately to the receiver with the certainty that they will be received [9].
Next, the sequences of events that occur to send messages between client and
server through the BMI layer are explained.

The BMI_tcp_post_recv() function is called to receive a 256-KiB buffer.
Then, the tcp_post_recv_generic() function is started, but it fails to receive
the entire buffer. At this point, the server receives only a few bytes or nothing
at all. If some bytes of data are received, it is considered as an immediate op-
eration (with the amount of bytes received). Therefore, BMI_tcp_post_recv()
ends with errors. Next, the function work_on_recv_op() is started, which is
responsible for receiving the remaining bytes that tcp_post_recv_generic()
could not receive immediately. Several operations are necessary to receive the
data buffer. Finally, work_on_recv_op() manages to receive the entire buffer
and the BMI_tcp_testcontext() function is called to confirm the correct recep-
tion of the data. By means of the above-mentioned functions, the state machine
corresponding to the BMI layer has been generated.

3.2 Micro-Modeling

To find spatial parameters data sets, the elements that make up the data buffers,
the operations and the times in which they are transmitted have been monitored,
but with certain configuration conditions in the real system. The deployed test
scenarios used PVFS2 as parallel file system and MPICH distribution as middle-
ware. File and transfer sizes were 1, 2, 3, and 4 GiB using the IOR (Interleaved-
or-Random) benchmark (application layer) [10] on a 6-node physical cluster.
Each cluster node has a specific and dedicated role on different physical ma-
chines: 2 client nodes, 3 dataserver nodes and 1 metadataserver node.

An important feature of PVFS2 is that it has an event logging system called
Gossip that generates a text file with all the events ordered chronologically with
relevant information such as timestamp for each operation and bytes involved.
In this stage, the number of total operations, IOPS and Bps are obtained.

Finally, the data sets obtained are analyzed to find the algorithms that are
shown below and model the behavior of the spatial parameters, and implement
them in the simulator. That is, the verification and calibration stages of the
simulation are carried out considering state machines, state variables and agents
as in previous works [5,6].

It is observed that, to send data, the client uses immediate and non-immediate
operations. In the case of reception by the client, only non-immediate operations
are observed. Table 1 summarizes client node send operations.

With this information, equations are proposed to model total times, imme-
diate times, number of total operations, number of immediate operations and
bytes. The development of the modeling equations was carried out using the
regression technique. Based on the above, the file size is used as the independent
variable; in the following equations it is represented by the parameter x.

On the client side, for data send operations:

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_16

https://dx.doi.org/10.1007/978-3-031-63759-9_16
https://dx.doi.org/10.1007/978-3-031-63759-9_16


6 Encinas D. et al.

Table 1. Results for sending data by client.

BMI_tcp_post_send_list()
File Size (GiB)

1 2 3 4

BMI Client Ops 2049 4098 6147 8196

Immediate operations 235 1023 1635 2690

Non-immediate operations 1814 3075 4512 5506

Total time; immediate ops. (s) 0.015 0.063 0.1 0.16

Total time; immediate and non-immediate ops. (s) 130.54 254.39 378.03 493.21

bps (MB/seg) 3.92 4.02 4.06 4.15

BMI Client Total IOPS 15.69 16.11 16.26 16.62

Immediate IOPS 15187.25 16095.15 16190.76 16284.94

– inmmediateOperations = 104.553571x2 + 259.8107142x− 30.19285714
– totalT ime = 123.39x+ 4.46
– immediateOpsTotalT ime = 0.00336x4−0.00274x2+0.07493x2−0.0354x−

(1.365E − 16)
– totalOperations = x÷amountOfClients

BMIBufferSize − 1 + 2x
– bytes = x

amountOfClients

On the client side, for data receive operations:

– totalT ime = 131.61x+ 0.097
– bytes and totaloperations same as send operations.

As regards the implementation of the simulator, it was developed using the
NetLogo framework. This tool is used especially in the context of complex sys-
tem simulation. Once the equations explained in the previous section have been
found, they are implemented in the simulator for their corresponding tuning and
validation.

4 Results and Discussion

The scenario generated for the micro-modeling is configured in the simulator, and
the following metrics are obtained to represent the spatial parameters related to
operations and bytes over time. Besides, simulation total times are minimal.

Table 2 shows the difference between the values obtained from the real system
and the values generated by the simulation model of the system. Table 3 show
predictions/estimates for 5 and 6 GiB for client.

Based on the network equipment and the interfaces used, the amount of main
memory available to the nodes that make up the cluster, the type of protocol
and the defined file size, it was expected to find a low percentage of operations
completed immediately and a high percentage of non-immediate operations.

As regards buffers, it was observed on the server side that many small opera-
tions are needed to fill a 262,144 KiB buffer. Data reception on the server refers

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_16

https://dx.doi.org/10.1007/978-3-031-63759-9_16
https://dx.doi.org/10.1007/978-3-031-63759-9_16


Agent Based Simulation as an efficient way for HPC I/O system tuning 7

Table 2. Simulated vs. physical with absolute error.

Executed Simulated Absolute error

BMI_tcp_post_recv()
File Size (GiB) File Size (GiB) File Size (GiB)

1 2 3 4 1 2 3 4 1 2 3 4

BMI Server Ops 1366 2732 4098 5464 1366 2732 4098 5464 0 0 0 0

Bytes (GiB) 0.33 0.66 1 1.33 0.33 0.66 1 1.33 0 0 0 0

Total time (s) 87.14 169.87 252.39 329.35 86.22 168.88 250.95 333.62 0.9133 0.9985 1.4472 4.2624

BMI Server Total IOPS 15.67 16.08 16.24 16.59 15.84 16.18 16.33 16.38 0.166 0.095 0.0936 0.2119

Bps (MB/s) 3.88 3.98 4.06 4.13 3.92 4 4.08 4.08 0.0411 0.0235 0.0234 0.0528

Table 3. Prediction of 5 and 6 GiB for sending data to the client.

BMI_tcp_post_send_list()
File Size (GiB)

5 6

BMI Client Ops 10249 12299

Immediate operations 3888 5299

Non-immediate operations 6331 7000

Total time; immediate ops. (s) 0.37 0.93

Total time; immediate and non-immediate ops. (s) 622.022 745.61

Bps (MB/s) 4.11 4.12

BMI Client Total IOPS 16.47 16.49

Immediate IOPS 10384.98 5715.14

to write operations, so this behavior is reasonable/expected. On the client side,
a similar behavior is observed when receiving (reading) data; to fill reception
buffers, a considerable number of operations are necessary.

The times in the different functions scale reasonably as file size increases. As
indicated by the predictions, it is expected that the times will skyrocket expo-
nentially if the physical performance of the cluster does not change. Some of the
improvements in physical features may include solid state drives in data servers
or a change in the speed of the local network (to 1Gbps, for example). With
the proposed improvements, the number of immediate operations is expected to
increase considerably, consequently increasing IOPS.

5 Conclusions

This article presents an analysis and conceptual modeling of the PVFS2 com-
munications layer, using the agent paradigm with the objective of better tuning
a costly part of HPC such as communications I/O. When creating the model, a
distinction is made to achieve a macro- and micro-model.

For macro-modeling, the interactions between client and server of PVFS2
are taken into account. Finite state machines allow modeling the exchanges and

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_16

https://dx.doi.org/10.1007/978-3-031-63759-9_16
https://dx.doi.org/10.1007/978-3-031-63759-9_16


8 Encinas D. et al.

defining agent implementation in the simulator. Additionally, the relations that
represent spatial parameters functionality are obtained.

For micro-modeling, the mathematical equations are obtained to quantify
the different parameters, such as number of operations, bytes, bandwidth and
IOPS. Time is the only temporal parameter used. Consequently, the agents are
BMI_client and BMI_server along with functions that help to the communica-
tion process between layers.

Finally, with the purpose of making system predictions, the simulator is
run with input parameters of 5 and 6 GiB. As regards future work, different
analysis, monitoring and tuning strategies will continue to be evaluated, such as
different input and output stack elements in the system; and communications
in metadata servers or at the metadata level. Another possibility is to include
several processes on different nodes.

Acknowledgements This research has been supported by the Agencia Estatal
de Investigacion (AEI), Spain and the Fondo Europeo de Desarrollo Regional
(FEDER) UE, under contract PID2020-112496GB-I00 and partially funded by
the Fundacion Escuelas Universitarias Gimbernat (EUG).

References

1. Boito, Francieli Zanon, et al. A checkpoint of research on parallel i/o for high-
performance computing. ACM Computing Surveys (CSUR) 51.2 (2018): 1-35.

2. Paradiso, Martín, et al. An approach to parallelization of respiratory disease spread
simulations in emergency rooms, 2022 International Conference on Computational
Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 2022, pp.
1359-1365, doi: 10.1109/CSCI58124.2022.00244.

3. Siebers, P., Macal, C., Garnett, J. et al. Discrete-event simulation is
dead, long live agent-based simulation!. J Simulation 4, 204–210 (2010).
https://doi.org/10.1057/jos.2010.14

4. Gomez-Sanchez, Pilar, et al. Using AWS EC2 as Test-Bed infrastructure in theI/O
system configuration for HPC applications. Journal of Computer Science and Tech-
nology 16.02 (2016): 65-75.

5. Encinas, Diego, et al. On the Calibration, Verification and Validation of an Agent-
Based Model of the HPC Input/Output System. Proceedings from The Eleventh
International Conference on Advances in System Simulation (SIMUL 2019). 2019.

6. Encinas, Diego, et al. An Agent-Based Model for Analyzing the HPC Input/Output
System. International journal on advances in systems and measurements 13.3: 192-
202. ISSN: 1942-261x. 2020.

7. Koziol, Quincey, ed. High performance parallel I/O. CRC Press, 2014.
8. Helbing, Dirk, et al. Micro-and macro-simulation of freeway traffic. Mathematical

and computer modelling 35.5-6 (2002): 517-547.
9. Amerson, Gregory, and Amy Apon. Implementation and design analysis of a net-

work messaging module using virtual interface architecture. 2004 IEEE International
Conference on Cluster Computing (IEEE Cat. No. 04EX935). IEEE, 2004.

10. Shan, Hongzhang, and John Shalf. Using IOR to analyze the I/O performance
for HPC platforms. No. LBNL-62647. Lawrence Berkeley National Lab.(LBNL),
Berkeley, CA (United States), 2007.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_16

https://dx.doi.org/10.1007/978-3-031-63759-9_16
https://dx.doi.org/10.1007/978-3-031-63759-9_16

