Energy Efficiency of Multithreaded WZ
Factorization with the use of OpenMP and
OpenACC on CPU and GPU

Beata Bylina[0000700027132779747] and Jaroslaw Bylina[0000700027031972525]

Institute of Computer Science
Marie Curie-Sklodowska University
Lublin, Poland
{beata.bylina, jaroslaw.bylina}@umcs.pl

Abstract. Energii efficiency research aims to optimize the use of com-
puting resources by minimizing energy consumption and increasing com-
putational efficiency. This article explores the effect of the directive-based
parallel programming model on energy efficiency for the multithreaded
WZ factorization on multi-core central processing units (CPUs) and
multi-core Graphics Processing Units (GPUs). Implementations of the
multithreaded WZ factorization (both the basic and its variant opti-
mized by strip-mining vectorization) are based on OpenMP and Ope-
nACC. Strip-mining gave clear enhancement in comparison to the basic
version. The energy efficiency is much better on GPU than on CPU; and
on CPU, the use of OpenMP is more energy-efficient; however, for GPU,
OpenACC gives better results.

Keywords: WZ factorization, OpenACC, OpenMP, energy efficiency

1 Introduction

Research focused on enhancing the energy efficiency of algorithms through var-
ious programming techniques plays a crucial role in the broader context of sus-
tainable development. In this paper, we will examine energy efficiency using only
the ratio of the total number of floating-point operations to the total energy con-
sumption (Flop/J) metric, as presented in paper [I1].

The development of multithreaded parallel applications on multi-core archi-
tectures can be based on various parallel programming frameworks, including
OpenMP (Open Multi-Processing) [9], OpenCL (Open Computing Language)
[5], and OpenACC (Open ACCelerators) [8]. Choosing the one that is appropri-
ate for the target context is not easy. OpenMP and OpenACC are two of the most
widely used directive-based parallel programming models for parallelization.

The WZ matrix factorization was introduced in 1979 by D.J. Evans and M.
Hatzopoulos [2]. Tt is also known as Quadrant Interlocking Factorization (QIF).
The aim of their work was to design a factorization for greater parallelization.
The WZ factorization is investigated by variuos researchers, as [TI12].

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-63759-9_12 |

https://dx.doi.org/10.1007/978-3-031-63759-9_12
https://dx.doi.org/10.1007/978-3-031-63759-9_12

The WZ factorization was chosen because it contains a lot of arithmetic op-
erations that could be performed in parallel and distributed among many cores
on both the CPU and GPU. factorization were selected for further research
described in this article, namely, the basic one and its variant optimized by
strip-mining vectorization, which is the best in terms of performance and en-
ergy consumption. In this paper, the focus is on describing the experience of
moving ideas and concepts from the OpenMP programming model on multi-
core architecture CPU to OpenACC both on multi-core architecture CPU and
GPU. In particular, energy efficiency is analyzed and compared for two directive-
based programming models on CPU, namely OpenMP and OpenACC, on two
platforms (GPU and CPU). Experimental evaluations prove the expected im-
provement in energy efficiency.

The rest of the paper is organized as follows. In Section [2] contemporary
research on parallel programming and its impact on energy consumption was
presented. Section [3] details multithreaded implementations of the WZ factor-
ization algorithm, utilizing OpenMP and OpenACC. In Section [4 experimental
evaluations of energy efficiency on multi-core CPUs and many-core GPUs are
presented. Lastly, Section [f] concludes the paper and outlines future research
directions.

2 Related Work

In high-performance computing, energy efficiency via directive-based parallel
programming is crucial. Articles [7U10] explore OpenMP’s impact on energy ef-
ficiency, optimizing execution time and energy consumption. [10] delves into
OpenMP’s runtime power level adjustments, while [7] studies performance and
energy usage in linear algebra kernels. Other works [36] compare parallel pro-
gramming models on multi-core CPUs and GPUs, including OpenMP and Ope-
nACC. The paper [3] assesses CUDA, OpenMP, and OpenACC on Nvidia Tesla
V100 GPU for matrix multiplication, highlighting data size’s impact on perfor-
mance. None of them compare OpenMP with OpenACC in dense linear algebra
algorithms regarding energy-performance trade-offs.

3 Multithreaded implementations of the WZ factorization

The WZ factorization [I2] consists in transforming a nonsingular square matrix
A into a product of two matrices, namely W and Z. The form of the matrix W
is a butterfly and the for of the matrix Z — of an hourglass (details can be seen
in [I], for example).

The easiest way was to transform OpenMP to OpenACC is to replace
#pragma omp parallel for enforcing the parallelism of the loops. In Ope-
nACC, parallel directives #pragma acc parallel loop gang will be used by
the compiler for different architectures (both CPU and GPU). The loop direc-
tive uses the gang clause to instruct the compiler about the level of parallelism.
There is no direct equivalent of #pragma omp simd in OpenACC. However, a

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-63759-9_12 |

https://dx.doi.org/10.1007/978-3-031-63759-9_12
https://dx.doi.org/10.1007/978-3-031-63759-9_12

certain substitute of that pragma is #pragma acc loop vector. Additionally,
we put independent which is to notify the compiler that the iterations of the
loop are data independent. In the GPU version only, we need to provide the
compiler with additional information on how to manage the transfer between
the device (GPU) and the host (CPU) and therefore we added #pragma acc
data copy(a) copy(w). Lastly, in the OpenMP version on GPU we have to
put #pragma omp target device(0) — to enforce computations offloading to
GPU.

Figure |1| shows the pseudocode (only the inner loop fragment) of the basic
version of WZ factorization with the use of OpenMP (blue pragmas) and Ope-
nACC (green pragmas). Purple pragmas are added to make the OpenMP code
run on a GPU device.

Therefore, the strip-mining technique is manually applied to the algorithm
as shown in Figure [2| A loop in the process of strip-mining is divided into two
loops, where the inner one has BLOCK_SIZE iterations and the outer one has
n/BLOCK_SIZE iterations (n is the number of iterations in the original loop). The
strip-mining alone can have some positive impact on the performance (by easing
the automatic vectorization process).

In such a process we improve the temporal and spatial locality of the data.
By dividing the data into pieces of BLOCK_SIZE, we cause them to fit in cache
memory and stay there as long as needed to conduct current computations.
This minimizes the frequency of cache memory swaps. The theoretical value of

#pragma omp target device(0)
#pragma acc data copy(al[0:n*n]) copy(w[0:n*n])
for(k = 0; k < n/2-1; k++) {
p = n-k-1; akk = alk][k]; akp = alk][p];
apk = alpl[k]; app = alpl[pl; detinv = 1 / (apk*akp - akk*app);
#pragma omp parallel for
#pragma acc parallel
{
#pragma acc loop gang
for(i = k+1; i < p; i++) {
wlil [k] = (apk*al[il[p] - app*alil [k]) * detinv;
wli] [p] (akp*ali] [k] - akk*a[i] [p]) * detinv;
// INNER LOOP
#pragma omp simd

#pragma acc loop vector independent
for(j = k+1; j < p; j++)
alil[j1 = alil[j] - wlil[kI*alk][j] - wlil[pl*alpl(jl; } 3 }

Fig. 1. The version of the basic algorithm with the use of OpenMP and OpenACC —
pseudocode.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-63759-9_12 |

https://dx.doi.org/10.1007/978-3-031-63759-9_12
https://dx.doi.org/10.1007/978-3-031-63759-9_12

BLOCK_SIZE can be estimated from: (BLOCK _SIZE? + 4 -BLOCK_SIZE)-s < M
where M is the size (in bytes) of the cache memory considered and s is the size
(also in bytes) of one floating-point number. Thus we can see that it should be
satisfied (for the L2 cache size M = 1024 kB and the size of the double precision
s =8 B) if BLOCK _SIZE < 256 (we use only divisors of the size of the matrix).

4 Numerical experiments

We tested two types of the WZ factorization algorithm: basic, which is the
algorithm presented in Figure [T and sm-b, which refers to the strip-mining
algorithms depicted in Figure [2]

All the implementations were tested on randomly generated dense matrices
which had the WZ factorization with no pivoting needed. The sizes of the ma-
trices were: 8192, 16384, 32768 (as in [7]). The experiment was conducted on a
CPU Intel(R) Xeon(R) Gold 5218R with codename Cascade Lake-SP, featuring
40 cores (20 per socket), 80 threads (2 per core), and a SIMD register size of 512
bits. During the tests, Intel ICC (version 2021.5.0) was used, with the follow-
ing compiler options: -03 -qopenmp -xHOST -ipo -no-prec-div -fp-model
fast=2 -qopt-zmm-usage=high. The -xHOST option generates optimized code
based on the Intel(R) Xeon(R) Gold processor capabilities, but does not uti-
lize 512-bit ZMM registers. To utilize AVX2 instructions on ZMM registers, the
-qopt-zmm-usage=high option is added. To analyze the impact of all versions
of the algorithm on energy consumption on CPU, we used measurements from
the RAPL (Running Average Power Limit) interface [4].

The experiment was also conducted on a Tesla V100S-PCIE-32GB GPU. It
features a 1370 MHz core clock, 32 GB memory, and 5120 CUDA cores. The
compiler used during testing was nvc. GPU power sensors were monitored using
the NVIDIA System Management Interface (nvidia-smi), based on the NVIDIA
Management Library (NVML).

// INNER LOOP
start = RDTTNM(k+1, BLOCK_SIZE);
for(jj = start; jj < p; jj += BLOCK_SIZE) {
__assume(jj % BLOCK_SIZE == 0);
#pragma omp simd
#pragma acc loop vector independent
for(j = jj; j < jj+BLOCK_SIZE; ++j)
alil[j] = alil[j] - wlil[kl=*alk][j]1- wlil[pl=*alpl(jl; } } }

Fig. 2. Strip-mining in the basic algorithm with the use of OpenMP and OpenACC
— pseudocode (the inner loop only).

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-63759-9_12 |

https://dx.doi.org/10.1007/978-3-031-63759-9_12
https://dx.doi.org/10.1007/978-3-031-63759-9_12

In Figure 3] we have graphs showing the energy efficiency of the sm-b version
for block size b = 64,128,256 on both CPU and GPU, using both OpenMP and
OpenACC (NB: different scales were used for GPU and CPU).

Analyzing these data, we can observe that there is no single block size that
consistently yields optimal results across all dataset sizes. The experimental re-
sults indicate that the energy efficiency of both OpenMP and OpenACC may
deteriorate with larger input data sizes. Thus, comprehensive studies are neces-
sary for all dataset sizes.

Contrary to common belief, the best runtime performance does not always
correspond to the best energy consumption. Tables[I} 2] and [3] present the time,
performance, energy consumption, and energy efficiency of the algorithm ver-
sions that performed best during the experiments across all dataset sizes. An-
alyzing data from these tables, we observe that the GPU version using Ope-
nACC (values in bold) outperforms other versions of the algorithm. Conversely,
the worst-performing version is on CPU with OpenACC. Additionally, applying
strip-mining to the algorithm results in improvements across time, performance,
and energy consumption. For instance, in terms of energy efficiency, the sm-64
variant on GPU exhibits about a 61% improvement compared to the second-best
variant, namely basic on GPU for a size of 8192.

Analyzing the collected data, reveals that as matrix size increases, time,
performance, energy consumption, and energy efficiency all decline. Similar per-
formance trends are noted in [3].

OpenMP/CPU OpenACC/CPU
025 025
o 020 = 020
g 3
2 K
S 015 basic S o01s mbasic
z sm-64 g msm-64
é 0.10 sm-128 ;g 0.10 sm-128
S " sm-256 s " sm-256
5 B
2 005 2 005
5 H
0.00 0.00
8192 16384 32768 8192 16384 32768
matrix size matrix size
OpenMP/GPU OpenACCIGPU

16 16
14 14
12

1 mbasic 1 W basic
08 msm-64 08 " sm-64
sm-128 8 sm-128
06 = sm-256 - " sm-256
0.4 & 04
0.2 0.2
0 0

8192 16384 32768 8192 16384 32768

energy efficiency [GFlop/J]
energy efficiency [GFlopiJ]

matrix size matrix size

Fig. 3. Energy efficiency for sm-b for b = 64,128,256 on CPU (top) using OpenMP
and OpenACC and GPU (bottom) using OpenMP and OpenACC

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-63759-9_12 |

https://dx.doi.org/10.1007/978-3-031-63759-9_12
https://dx.doi.org/10.1007/978-3-031-63759-9_12

Table 1. Time, Performance, Energy, Energy efficiency for 8192

Versions Time|Performance|Energy consumption|Energy efficiency
s | [Gfiops] [J] [Gflop,J]
basic OpenMP CPU 9.64 38.01 1932.87 0.18
basic OpenACC CPU | 9.99 36.68 2414.23 0.15
basic OpenMP GPU 2.58 142,06 405.55 0.90
basic OpenACC GPU | 2.53 144.86 383.62 0.95
sm-64 OpenMP CPU 8.67 42.27 1687.53 0.21
sm-128 OpenACC CPU|10.40 35.22 2419.90 0.15
sm-64 OpenMP GPU 2.43 150.82 272.77 1.34
sm-64 OpenACC GPU | 2.33 157.29 238.00 1.53

Table 2. Time, Performance, Energy, Energy efficiency for 16384

Versions Time|Performance|Energy consumption|Energy efficiency
[s] | [Gflops]] [Gflop/J]
basic OpenMP CPU |75.96 38.59 16512.92 0.17
basic OpenACC CPU (92.03 31.86 22845.20 0.12
basic OpenMP GPU [19.17 152.95 3312.43 0.88
basic OpenACC GPU [17.72 165.46 3306.49 0.88
sm-256 OpenMP CPU [68.54 42.77 14925.40 0.19
sm-256 OpenACC CPU|90.13 32.52 22618.68 0.12
sm-64 OpenMP GPU [13.81 212.31 3352.50 0.87
sm-64 OpenACC GPU |14.52 201.93 2934.79 0.99

Table 3. Time, Performance, Energy, Energy efficiency for 32768

Versions Time |Performance|Energy consumption|Energy efficiency
[s] [Gflops] [J] [Gflop/J]
basic OpenMP CPU [582.63 40.26 125098.70 0.19
basic OpenACC CPU [681.70 34.41 168578.50 0.14
basic OpenMP GPU [138.62 169.21 31869.74 0.74
basic OpenACC GPU [140.18 167.33 26657.43 0.88
sm-256 OpenMP CPU [556.17 42.17 118442.28 0.20
sm-64 OpenACC CPU [685.11 34.24 162233.58 0.14
sm-128 OpenMP GPU [140.82 166.57 21172.60 1.12
sm-256 OpenACC GPU|117.10 200.31 18661.66 1.26

4.1 Assembler on CPU

The compiler’s task is complex, translating high-level source code into machine
code while optimizing processor resources. Assembly code varies across compil-
ers, affecting execution times and energy efficiency. In [6], execution times differ
significantly between OpenMP and OpenACC implementations for the same ap-
plication, likely due to compiler maturity with directives. Our analysis reveals
energy consumption and efficiency also depend on compiler maturity. Examining
assembler code on CPU with ICC (OpenMP) and nvc (OpenACC), we observe
differences in register usage, impacting code vectorization and thus performance
and energy efficiency. Longer registers enable better vectorization, but memory
bandwidth limitations may mitigate their impact on performance.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-63759-9_12 |

https://dx.doi.org/10.1007/978-3-031-63759-9_12
https://dx.doi.org/10.1007/978-3-031-63759-9_12

5 Conclusion

This paper develops a multithreaded implementation of the WZ factorization
using OpenACC, comparing energy efficiency between OpenMP for multi-core
CPUs and OpenACC for both CPUs and GPUs. Strip-mining enhances perfor-
mance and energy efficiency. Choosing between OpenMP and OpenACC affects
time, performance, energy consumption, and efficiency. Porting OpenMP to Ope-
nACC on CPU doesn’t improve performance or efficiency, but on GPU, results
are better. In general, OpenMP and OpenACC may increase energy efficiency.

The energy efficiency findings in multithreaded WZ factorization can be ex-
tended to similar numerical algorithms in computational linear algebra (espe-
cially ones, which employ quite regular nested loops), providing valuable insights
for developers and researchers.

Future work will focus on developing mathematical models for energy effi-
ciency with OpenMP and OpenACC, and software for optimizing energy effi-
ciency on CPU and GPU automatically.

/ICC compiler, OpenMP, CPU without -qopt-zmm-usage=high option:

vmovupd 8(%r15,%rsi,8), %ymmi #26.68
vbroadcastsd (Yrdi,%r11,8), %ymm2 #26.51
vbroadcastsd (%rdi,%r10,8), %ymm3 #26.85
vfnmadd213pd 8(%ri2,%rsi,8), %ymml, %ymm2 #26.68
vfnmadd132pd 8(%r14,%rsi,8), %ymm2, %ymm3 #26.103

stk ok sk sk ke ok stk ke ok sk sk ok sk sk sk sk ok sk sk s ok sk sk ke ok sksk ok sk sk ok
/ICC compiler, OpenMP, CPU with -qopt-zmm-usage=high option:

vmovups 8(%r15,%r13,8), %zmm3 #26.68
vbroadcastsd (%rdi,%r12,8), %zmm4 #26.51
vbroadcastsd (%rdi,%r8,8), %zmm5 #26.85
vfnmadd213pd 8(%rsi,%r13,8), %zmm3, %zmmé #26.68
vfnmadd132pd 8(%r9,%r13,8), %zmm4, %zmmb #26.103

3k >k 3k 5k 3k 5k >k 3k 5k 3k 5k >k 3k 5k 3k 5k >k 3k 5k 3k 5k %k 5k 5k k 5k >k 3k >k %k 5k %k 3k >k k >k k sk k k
/NVC compiler, OpenACC, CPU:

vmovsd -8(%r14,%r15,8), %xmmil # xmml = mem[0],zero
vmovsd (%r11), %xmm2 # xmm2 = mem[0],zero
vfnmadd213sd -8(%ri14,%rsi,8), %xmml, %xmm2

xmm2 = -(xmml * xmm2) + mem
vmovsd -8(%r14,%r10,8), %xmmil # xmml = mem[0],zero
vfnmadd132sd (%r8), %xmm2, %xmml # xmml = -(xmml * mem) + xmm2

Fig. 4. The snippet of assembly code for element calculations a[i][j] with the use of
OpenMP (ICC compiler — on the top) and OpenACC (NVC — on the bottom) on
CPU.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-63759-9_12 |

https://dx.doi.org/10.1007/978-3-031-63759-9_12
https://dx.doi.org/10.1007/978-3-031-63759-9_12

References

10.

11.

12.

. Bylina, B., Bylina, J., Piekarz, M.: Influence of loop transformations on perfor-

mance and energy consumption of the multithreded WZ factorization. In: Ganzha,
M., Maciaszek, L.A., Paprzycki, M., Slezak, D. (eds.) Proceedings of the 17th Con-
ference on Computer Science and Intelligence Systems, FedCSIS 2022, Sofia, Bul-
garia, September 4-7, 2022. Annals of Computer Science and Information Systems,
vol. 30, pp. 479-488 (2022). https://doi.org/10.15439/2022F251

Evans, D.J., Hatzopoulos, M.: A parallel linear system solver. International Jour-
nal of Computer Mathematics 7(3), 227-238 (1979). https://doi.org/10.1080/
00207167908803174

. Khalilov, M., Timofeev, A.: Performance analysis of CUDA, OpenACC and

OpenMP programming models on TESLA V100 GPU. Journal of Physics: Confer-
ence Series 1740, 012056 (01 2021). https://doi.org/10.1088/1742-6596/1740/
1/012056

Khan, K.N., Hirki, M., Niemi, T., Nurminen, J.K., Ou, Z.: Rapl in action: Ex-
periences in using rapl for power measurements. ACM Trans. Model. Perform.
Eval. Comput. Syst. 3(2) (2018). https://doi.org/10.1145/3177754, https:
//doi.org/10.1145/3177754

Khronos Group: OpenCL overview. https://www.khronos.org/opencl/}, accessed:
April 2024

Larrea, V., Budiardja, R., Gayatri, R., Daley, C., Hernandez, O., Joubert, W.:
Experiences in porting mini-applications to OpenACC and OpenMP on hetero-
geneous systems. Concurrency and Computation: Practice and Experience 32 (04
2020). https://doi.org/10.1002/cpe.5780

Lima, J.V.F., Rals, 1., Lefévre, L., Gautier, T.: Performance and energy analy-
sis of OpenMP runtime systems with dense linear algebra algorithms. The In-
ternational Journal of High Performance Computing Applications 33(3), 431-443
(2019). https://doi.org/10.1177/1094342018792079

OpenACC Organization: Homepage | OpenACC. https://www.openacc.org/, ac-
cessed: April 2024

OpenMP ARB: Home — OpenMP. https://www.openmp.org/, accessed: April
2024

Shahneous Bari, M.A., Malik, A.M., Qawasmeh, A., Chapman, B.: Performance
and energy impact of OpenMP runtime configurations on power constrained sys-
tems. Sustainable Computing: Informatics and Systems 23, 1-12 (2019). https:
//doi.org/https://doi.org/10.1016/j.suscom.2019.04.002

Szustak, L., Wyrzykowski, R., Olas, T., Mele, V.: Correlation of performance op-
timizations and energy consumption for stencil-based application on Intel Xeon
scalable processors. IEEE Transactions on Parallel and Distributed Systems PP,
1-1 (05 2020). https://doi.org/10.1109/TPDS.2020.2996314

Yalamov, P., Evans, D.. The WZ matrix factorisation method. Par-
allel Computing 21(7), 1111-1120 (1995). https://doi.org/https:
//doi.org/10.1016/0167-8191(94)00088-R, https://www.sciencedirect.
com/science/article/pii/016781919400088R

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-63759-9_12 |

https://doi.org/10.15439/2022F251
https://doi.org/10.15439/2022F251
https://doi.org/10.1080/00207167908803174
https://doi.org/10.1080/00207167908803174
https://doi.org/10.1080/00207167908803174
https://doi.org/10.1080/00207167908803174
https://doi.org/10.1088/1742-6596/1740/1/012056
https://doi.org/10.1088/1742-6596/1740/1/012056
https://doi.org/10.1088/1742-6596/1740/1/012056
https://doi.org/10.1088/1742-6596/1740/1/012056
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3177754
https://www.khronos.org/opencl/
https://doi.org/10.1002/cpe.5780
https://doi.org/10.1002/cpe.5780
https://doi.org/10.1177/1094342018792079
https://doi.org/10.1177/1094342018792079
https://www.openacc.org/
https://www.openmp.org/
https://doi.org/https://doi.org/10.1016/j.suscom.2019.04.002
https://doi.org/https://doi.org/10.1016/j.suscom.2019.04.002
https://doi.org/https://doi.org/10.1016/j.suscom.2019.04.002
https://doi.org/https://doi.org/10.1016/j.suscom.2019.04.002
https://doi.org/10.1109/TPDS.2020.2996314
https://doi.org/10.1109/TPDS.2020.2996314
https://doi.org/https://doi.org/10.1016/0167-8191(94)00088-R
https://doi.org/https://doi.org/10.1016/0167-8191(94)00088-R
https://doi.org/https://doi.org/10.1016/0167-8191(94)00088-R
https://doi.org/https://doi.org/10.1016/0167-8191(94)00088-R
https://www.sciencedirect.com/science/article/pii/016781919400088R
https://www.sciencedirect.com/science/article/pii/016781919400088R
https://dx.doi.org/10.1007/978-3-031-63759-9_12
https://dx.doi.org/10.1007/978-3-031-63759-9_12

