
A New Highly Efficient Preprocessing Algorithm
for Convex Hull, Maximum Distance and Minimal

Bounding Circle in E2: Efficiency Analysis ⋆

Vaclav Skala[0000−0001−8886−4281]

University of West Bohemia, Faculty of Applied Sciences
Dept. of Computer Science and Engineering

Pilsen, CZ 301 00, Czech Republic
skala@kiv.zcu.cz

Abstract. This contribution describes an efficient and simple prepro-
cessing algorithm for finding a convex hull, maximum distance of points
or convex hull diameter, and the smallest enclosing circle in E2. The pro-
posed algorithm is convenient for large data sets with unknown intervals
and ranges of the data sets. It is based on efficient preprocessing, which
significantly reduces points used in final processing by standard available
algorithms.

Keywords: Preprocessing · maximum distance · smallest enclosing cir-
cle · smallest enclosing ball · algorithm complexity · preprocessing · con-
vex hull · convex hull diameter.

1 Introduction

Many sophisticated algorithms are solving geometrical or computational prob-
lems, mostly evaluated according to their computational (asymptotic) complex-
ity expecting the number of processed elements N 7→ ∞.

Algorithms like maximum distance of points, i.e. convex hull diameter, con-
vex hull, and minimal enclosing circle in E2 are typical examples with known
computational complexities with many modifications claiming better asymp-
totic computational complexity and faster run-time. Usually, a small attention
is given to possible preprocessing strategies, which can significantly improve the
total run-time and memory needed in some cases.

Let’s consider an elementary problem: Find the maximum distance of two points
in E2 for the given a set Ω of points xi, i = 1, . . . , N and N is "reasonably"
high. There are several strategies:

1. Simple algorithm based on mutual finding dmax = max
i,j, & i<j

∥xi − xj∥2
It leads to O(N2) the computational complexity (the algorithm requires
N(N − 1)/2 steps), which is prohibitive even for a small N .

⋆ This work was supported by the MEYS CZ, Institutional Support for LCDRO.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_7

https://dx.doi.org/10.1007/978-3-031-63759-9_7
https://dx.doi.org/10.1007/978-3-031-63759-9_7

2 V. Skala

2. Convex Hull (CH) computation, e.g. using the Kirkpatrick–Seidel algorithm [1]
with O(N log h), followed by finding a maximum distance of the remaining
h ≪ N convex hull points using the algorithm with computational complex-
ity O(h2). It should be noted, that of the given set Ω of unordered points
form a circle, the number of processed points is h = N .

Using the Convex Hull algorithm, can be also used to accelerate the minimum
enclosing circle algorithm [2,3,9,11,12,13,14]. A simple and efficient algorithm for
finding the minimum distance of points was introduced in [5,6,7,8], see Fig.2.

Fig. 1: Data domain subdivision; courtesy [10].

The algorithm uses a preprocessing with computational complexity O(N)
based on simple steps:

1. Find the Axis Aligned Bounding Box (AABB) of points in the given data
set Ω.

2. Find the maximum mutual distance d = max{dist(AC), dist(BD)}.
3. Split points into data subsets Ω0, . . . , Ω4, see Fig.1, subset are defined by

arcs given by the radius d and by the corners of the AABB.
Points inside the subsets Ω0 can be removed from the further processing
directly.

4. Find the maximum mutual distance of points in pairs of subsets: (Ω1, Ω3),
(Ω2, Ω4), (Ω1, Ω2), (Ω2, Ω4), (Ω3, Ω4), (Ω4, Ω1).

In the case of the uniform point’s distribution, this approach leads to a maxi-
mum distance algorithm with computational complexity Oexpected(N), see Fig.2.
Detailed descriptions can be found in [5,10].

Several modifications of the that based on orthogonal and polar space sub-
division [6,9], extension used in 3D convex hull algorithm [8], etc. However, by
a deeper analysis of the preprocessing step, additional significant improvements
can be made.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_7

https://dx.doi.org/10.1007/978-3-031-63759-9_7
https://dx.doi.org/10.1007/978-3-031-63759-9_7

Preprocessing efficiency analysis 3

Fig. 2: Maximum distance speed-up of the Quick Hull and the Quick Hull with
the original preprocessing; courtesy [10].

2 Proposed preprocessing algorithm

The original preprocessing for the reduction of points needs to find a min-max
box (AABB), which requires O(N) computation. Despite the liner complexity,
this step is time-consuming if large data sets are to be processed, or a limited
storage of incoming data is available, e.g. in the stream data processing.

(a) Squared area (b) Rectangular area

Fig. 3: Squared and rectangular areas and the selection function influence

2.1 Basic idea

Let us consider situations in Fig.3. In the case of the square data domain, Fig.3a,
the tests based on a circular segment containment or a half-space test seem to

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_7

https://dx.doi.org/10.1007/978-3-031-63759-9_7
https://dx.doi.org/10.1007/978-3-031-63759-9_7

4 V. Skala

be more or less equivalent. In the case of the rectangular AABB, Fig.3b, the
circular segment test is more efficient. However, the areas Ωi, i = 1, . . . , 4 are
too large.

It can be seen that the area of points which can be directly excluded is
significantly larger. If the AABBox is known, the closest points to the AABBox
corners can be found, see Fig.4, with the computational complexity O(N).

If the AABBox is known, the nearest points to the AABBox vertices can be
found with computational complexity O(N). Then the area Ω0 is defined by a
convex polygon and all points inside to the area Ω0 can be removed from further
processing. In the following step, the remaining points will be split into the other
areas Ωi. However, this step requires additional large memory allocation.

However, the removal steps of finding AABBox and finding the closest points
to the AABBox vertices lead to a more efficient algorithm.

2.2 Increasing efficiency

Let us assume, that from a small sample of points, the AABBox and the closest
points to the AABBox vertices are obtained. Then the extreme points on the
AABBox edges form separating half-planes defined by points A,C and B,D, see
Fig.4.

Fig. 4: Spliting the dataset to subsets Ωi

It means, that for any point determining to which set of points it belongs to,
is computationally simple. Even more, each basic area is split to areas Ωi, Ωi0

and Ωi1 which are formed by the points E,F,G,H, i.e. the points closest the

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_7

https://dx.doi.org/10.1007/978-3-031-63759-9_7
https://dx.doi.org/10.1007/978-3-031-63759-9_7

Preprocessing efficiency analysis 5

AABBox vertices found so far. The point-in-area test is computationally simple
as only tests for two half-planes given by points A,E and E,B are needed in the
case of Ωi, Ωi0 and Ωi1, similarly for other areas.

Then, for all points ξ in the given data set Ω the following steps are made.

1. will fall into the convex hull of those points or one of the side areas outside;
the point is excluded from further processing, or

2. change of the position of some points of the convex hull, i.e. new closest
point to an AABBox vertex found, then the half-planes given by points A,E
and E,B has to be recomputed, or

3. change of the position of extreme points forming AABBox, e.g. position of
the point A, then the half-planes A,E and H,A have to be recomputed and
check if the vertices H and E remained convex; in the concave case, the
relevant vertex has to be replaced by a virtual one laying the line AB or
DA, see Fig.4.

Note, that the AABBox and eight-point convex hull are changing dynamically
as points are processed with the complete computational complexity O(N).

However, the areas Ωi0 and Ωi1 contain also invalid points due to their in-
cremental construction, and have to be rechecked and non-relevant points have
to be removed.

After those two steps above, eight subsets Ωi0 and Ωi1, i = 0, . . . , 3 are ob-
tained and their points are used for further processing. In the maximum distance
case, the opposite areas are to be tested similarly as in [5,6].

There are two different situations in dynamically building the approximate
convex hull, i.e. a new point ξ:

1. is changing the AABB
2. does not change the AABB

In the case, when the new point ξ does not change the AABB, the simple
half-planes tests are to be used, see Tab.1:

pA > 0 pB > 0 Ωi

+ + Ω0

+ − Ω1

− + Ω3

− − Ω2

Table 1: Conditions for splitting the Ω dataset into datasets Ωi

Let us consider a new point ξ in the Ω0 area. There are the following possible
cases:

– the point ξ is closer to the AABB corner P than the CH corner E, then the
point ξ replaces the CH point E, Fig.5, and the line pP has to be recomputed,
i.e. the areas Ω00 and Ω01 are changed.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_7

https://dx.doi.org/10.1007/978-3-031-63759-9_7
https://dx.doi.org/10.1007/978-3-031-63759-9_7

6 V. Skala

– the position of the point ξ can be in an area Ω00 or Ω01. If the point ξ is in
the area Ω00, resp. Ω01, the point is stored in the relevant list.

– the point ξ is not in area Ω00 nor Ω01, the point is removed from the future
processing.

Fig. 5: Corner detail with Ω00 and Ω01 subareas specification

Now, an approximate convex hull (A-CH) has been constructed. It is defined
by eight points, i.e. A,E,B, F,C,G,D,H,A. It means, that after this prepro-
cessing step of all points with O(N) complexity, points are:

– some points are stored in the lists Ωi0, resp. Ωi1, i = 0, . . . , 3,
– some points have been removed directly during this preprocessing step.

Now, points in Ωi0 and Ωi1 are re-checked and points inside the A-CH are to be
removed. It means, that points inside the Ωi0, resp. Ωi1, i = 0, . . . , 3 areas form
only a very small fraction of the original data set.

2.3 Preprocessing efficiency

The preprocessing algorithm described above is of the O(N) computational com-
plexity and computational requirements are very low, actually half-plane tests
only1. As the preprocessing algorithm is intended for algorithms with a higher
computational complexity, the efficiency of the preprocessing algorithm is an
important issue.

For the sake of simplicity, let us consider data from the domain [0, 1]× [0, 1]
with N = n2 points, and points forming the AABBox are in the middle of the
AABB edges. Fig.6a presents a detail of the AABB corner areas, formed by a
square and two triangles.
1 Half-plane test is implemented as the dot-product, and a separating plane line is

determined by the outer-product (cross product in this case) [4].

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_7

https://dx.doi.org/10.1007/978-3-031-63759-9_7
https://dx.doi.org/10.1007/978-3-031-63759-9_7

Preprocessing efficiency analysis 7

(a) Corner area detail (b) Efficiency estimation ν = ν(N)

Fig. 6: Preprocessing efficiency

Then the "blue zones" in Fig.6a consists of a square of the size 1/n × 1/n and
two triangles of the size 1/n×(0.5−1/n). The area contains M = 1/(2n) points.

It means, that points inside the convex hull can be removed directly and
only 4/(2n) of points of four corners need to be further processed. It leads to
the preprocessing efficiency estimation of this step ν, Fig.6b:

ν =
N

4M
=

n2

4 1
2n

=
n3

2
, ν = O(n3) = O(N

√
N) (1)

The efficiency of preprocessing grows O(n3), resp.O(N
√
N), where N is the

number of points in the given data set.

3 Conclusion

The proposed preprocessing algorithm with the O(N) computational complexity
has been introduced. It can be used directly with an advantage for the solution
of many geometrical problems with higher computational complexity the O(N),
e.g. for a convex hull, a diameter of a convex hull, smallest enclosing circle
computations, etc. An extension for the E3 case is expected.

Acknowledgment

The author would like to thank colleagues from Zhejiang University (Hangzhou),
Shandong University in Jinan (China), colleagues and students at the University
of West Bohemia in Pilsen (CZ) for the suggestions and fruitful discussions, and
special thanks to Alexander Drdak for experimental counter implementation.
Thanks also go to the anonymous reviewers for their critical comments, advice
provided, and unknown relevant references.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_7

https://dx.doi.org/10.1007/978-3-031-63759-9_7
https://dx.doi.org/10.1007/978-3-031-63759-9_7

8 V. Skala

References

1. Kirkpatrick, D.G., Seidel, R.: Ultimate planar convex hull algorithm? SIAM Jour-
nal on Computing 15(1), 287 – 299 (1986). https://doi.org/10.1137/0215021

2. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for
linear programming. Algorithmica (New York) 16(4-5), 498–516
(1996). https://doi.org/10.1007/bf01940877, the code available at
https://news.ycombinator.com/item?id=14475832

3. Shen, K.W., Wang, X.K., Wang, J.Q.: Multi-criteria decision-making method
based on smallest enclosing circle in incompletely reliable information
environment. Computers and Industrial Engineering 130, 1–13 (2019).
https://doi.org/10.1016/j.cie.2019.02.011

4. Skala, V.: Barycentric coordinates computation in homogeneous coor-
dinates. Computers and Graphics (Pergamon) 32(1), 120–127 (2008).
https://doi.org/10.1016/j.cag.2007.09.007

5. Skala, V.: Fast oexpected(n) algorithm for finding exact maximum distance in E2
instead of o(n2) or o(n lgn). AIP Conference Proceedings 1558, 2496–2499 (2013).
https://doi.org/10.1063/1.4826047

6. Skala, V.: Diameter and convex hull of points using space subdivision in E2 and E3.
LNCS 12249, 286–295 (2020). https://doi.org/10.1007/978-3-030-58799-4_21

7. Skala, V., Majdisova, Z.: Fast algorithm for finding maximum distance with space
subdivision in E2. LNCS 9218, 261–274 (2015). https://doi.org/10.1007/978-3-
319-21963-9_24

8. Skala, V., Majdisova, Z., Smolik, M.: Space subdivision to speed-up convex
hull construction in E3. Advances in Engineering Software 91, 12–22 (2016).
https://doi.org/10.1016/j.advengsoft.2015.09.002

9. Skala, V., Smolik, M., Majdisova, Z.: Reducing the number of points on the convex
hull calculation using the polar space subdivision in E2. SIBGRAPI 2016 pp. 40–47
(2017). https://doi.org/10.1109/SIBGRAPI.2016.015

10. Skala, V.: Fast oexpected(n) algorithm for finding exact maximum distance in
e2 instead of o(n2) or o(n lgn). In: AIP Conference Proceedings. AIP (2013).
https://doi.org/10.1063/1.4826047, http://dx.doi.org/10.1063/1.4826047

11. Skala, V., Cerny, M., Saleh, J.Y.: Simple and efficient acceleration of the small-
est enclosing ball for large data sets in e2: Analysis and comparative re-
sults. Lecture Notes in Computer Science 13350 LNCS, 720 – 733 (2022).
https://doi.org/10.1007/978-3-031-08751-6_52

12. Smolik, M., Skala, V.: Efficient speed-up of the smallest enclosing circle algorithm.
Informatica (Netherlands) 33(3), 623 – 633 (2022). https://doi.org/10.15388/22-
INFOR477

13. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). LNCS 555, 359–370
(1991). https://doi.org/10.1007/BFb0038202

14. Welzl, E.: The smallest enclosing circle - a contribution to democracy from switzer-
land? Algorithms Unplugged pp. 357–360 (2011). https://doi.org/10.1007/978-3-
642-15328-0_36

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_7

https://dx.doi.org/10.1007/978-3-031-63759-9_7
https://dx.doi.org/10.1007/978-3-031-63759-9_7

