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Abstract. With the depletion of IPv4 address resources, the prevalence
of IPv4 address leasing services by hosting providers has surged. These
services allow users to rent IP blocks, offering an affordable and flexible
solution compared to traditional IP address allocation. Unfortunately,
this convenience has led to an increase in abuse, with illegal users renting
IP blocks to host malicious content such as phishing sites and spam ser-
vices. To mitigate the issue of IP abuse, some research focuses on individ-
ual IP identification for point-wise blacklisting. However, this approach
leads to a game of whack-a-mole, where blacklisted IPs become tran-
sient due to content migration within the IP block. Other studies take
a block perspective, recognizing and classifying IP blocks. This enables
the discovery of potentially malicious IPs within the block, effectively
countering service migration issues. However, existing IP block identi-
fication methods face challenges as they rely on specific WHOIS fields,
which are sometimes not updated in real-time, leading to inaccuracies.
In terms of classification, methods rely on limited statistical features,
overlooking vital relationships between IP blocks, making them suscep-
tible to evasion. To address these challenges, we propose BlockFinder, a
two-stage framework. The first stage leverages the temporal and spatial
stability of services to identify blocks of varying sizes. In the second stage,
we introduce an innovative IP block classification model that integrates
global node and local subgraph representations to comprehensively learn
the graph structure, thereby enhancing evasion difficulty. Experimental
results show that our approach achieves state-of-the-art performance.

Keywords: IP blocks detection - Graph representation learning.

1 Introduction

In recent years, IPv4 address leasing services offered by hosting providers have
become increasingly prevalent. These services often involve the rental of consec-
utive IP addresses, known as "IP Blocks," for hosting Internet services. However,
recent research 1] has highlighted a challenge where illegal users exploit these TP
blocks, frequently migrating malicious services within them, making it difficult
for network authorities to efficiently identify malicious IPs.
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To tackle this issue, we propose BlockFinder, an automated framework de-
signed for the identification of malicious IP blocks. BlockFinder focuses on identi-
fying malicious IPs at the block level, effectively combating the issue of malicious
service migration within IP blocks. The framework consists of two stages:

IP block identification. According to the previous work [6], the IP blocks
leased from hosting providers may not be meticulously recorded by RIRs as with
IP allocations. Relying on public data, such as IP WHOIS records, to obtain IP
blocks is not practical. Therefore, we propose a novel method based on the service
stability of IP blocks. This approach ensures that all IPs within each IP block
belong to the same entity, rather than roughly treating the entire Autonomous
System (AS) IP address space as a single IP block.

IP block classification. Current IP block classification methods [1] often
rely on passive flow statistics, which are susceptible to evasion. We propose a
model that utilizes a comprehensive analysis of statistical features and graph-
based behaviors. For graph-based detection, we leverage the observation that
services migrate between different blocks, and IP block subgraphs reveal com-
munication patterns. Specifically, we integrate a novel combination of node and
subgraph representation, enhancing identification effectiveness even in scenarios
with isolated nodes.

2 Related Work

Existing methods for identifying malicious IPs can be categorized into those that
recognize from the perspective of individual IPs and those that identify from the
perspective of TP blocks.

Individual IP perspective methods, like those by Alvarez et al. [2] and Coskun
et al. [3], cluster IPs based on communication destination to find similarities with
blacklisted IPs. However, these methods may not promptly detect the migration
of malicious content within blocks.

IP block perspective methods include AS or hosting provider reputation-
based approaches and IP block reputation-based methods. The former calculates
a maliciousness score using meta-information from AS or hosting provider IPs [5,
8|, but may miss smaller abused IP blocks. IP block reputation methods evaluate
services’ maliciousness within smaller IP blocks. For instance, Alrwais et al. [1]
identified sub-allocated IP blocks from reputable hosting providers exploited for
hosting malicious content, using IP WHOIS and PDNS. However, challenges
arise due to outdated WHOIS records [6].

The rise in hosting malicious content on IP blocks from reputable providers
underscores the need for effective identification methods. Yet, existing WHOIS-
based methods face limitations due to delayed updates [6]. Meanwhile, relying
solely on PDNS for IP block classification lacks data diversity and is vulnerable
to evasion. Thus, more effective identification methods are necessary.
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Fig. 1: The architecture of BlockFinder.

3 Approach

3.1 IP Block Identification

We propose a technical approach to achieve fine-grained IP block identification
based on the service stability of IP blocks. Through extensive observation of
both active probing and passive traffic data, we have identified that the stability
of services within the IP block is inherently maintained, demonstrating in two
aspects:

— Temporal stability. Significant changes in services within the block are
uncommon over short periods. As shown in the Fig.2, on IP Blockl con-
sisting of two consecutive IP addresses 108.*.*.249% and 108.*.*.249, the
service set {zimm.*.com, harri.*.com} is observed at T1, and {harri.*.com,
zimm.*.com} is observed at T2. Despite dynamic services changes on indi-
vidual IPs, the overall service set of the entire IP block remains the same,
indicating high stability.

— Spatial stability. The service set distribution within an IP block remains
stable. Distinct service sets are observed on different IP blocks. As depicted
in Fig.2, the service set {zimm.*.com, harri.*.com} consistently resides on IP
Block1, while IP Block2 hosts the stable service set {luc.*.com, weiss.*.com}.

Based on the description, we define the stability contribution resulting from
dividing two IPs into the same IP block as W (IP,, IF,), shown in Eq.1. Here,
Sim(IP,,1P,) represents the similarity of their service sets, and I(IP) rep-
resents the information amount of the service set. S(i,j) denotes the sum of
stability contributions brought by each IP in the IP block. The objective of
IP block identification is to determine division locations in the continuous IP
address space to maximize the overall stability value of identified TP blocks.

3 In order to protect user privacy, we use "*" to represent key locations.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:
DOI{10.1007/978-3-031-63759-9_6 |



https://dx.doi.org/10.1007/978-3-031-63759-9_6
https://dx.doi.org/10.1007/978-3-031-63759-9_6

4 Z. Liu et al.

-

- r
Identified IP
Blocks

- Py

— A
MJ Block2 |
1082249 108.%*250 1404213 14044214
L3 [ S zimm.‘.comé harri.*.com luc.*.com Eweiss.*.com
) 2 p—— harri.*.com zimm.*.com| weiss.".comg
Time
Fig. 2: Service stability.
Sim(IPp,IPg) I(IPp) > oy, I(IPg) > a,
Sim > ag
W(IP,,1P,) = 0 I(IP,) < asorl(IP;) < o
punish(punish < 0) I(IPp) > ai, [(IPg) > au,
Sim < as
12 Z WPy, IP,)
.. 2 s 5 P q
S(i,j) = 2=relbal = acl] (p#q)

j—i+1

3.2 1IP Block Classification

Based on the obtained IP block in the previous section, the constructed hetero-
geneous graph is depicted in Fig. 3. Building upon this graph, we introduce the
HGNT-Net algorithm (Heterogeneous Graph Node and Topology representation
learning Network). This algorithm advocates for incorporating both the node
representation of IP blocks and the heterogeneous subgraph topology centered

around IP blocks during the learning phase.
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Fig. 3: Example of IP Block Graph.
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Node representation. To effectively extract node representations, an at-
tention mechanism is introduced. For instance, nodes with more communication
sessions and longer durations should have higher weights, as shown in Eq.4. Here,
|| denotes feature concatenation, and the final node representation is determined
as shown in Eq.5.

Session(i, j) = [sessions, duration _ms,c2s _pkt,s2c_pkt,c2s_byte, s2c_byte] (3)

i Ja((Whi|[Why)), j € Nikell,2] "
€ij = Session(i,j),j €ENi k=3
LeakyReLU( ))
Bl — exp . Wlhé 5
Z Hk 1Jezj\; quN exp(LeakyReLU (el )) wh; + Wohs) (5)

Subgraph representation. The heterogeneous subgraph representation learn-
ing begins by extracting the heterogeneous subgraph centered on each IP block.
This subgraph exhibits unique topology and content characteristics. Content
representation hg4. focuses on the content of all relevant nodes in the IP block
subgraph. The topology representation hg; primarily depicts the network struc-
ture of the IP block subgraph, including its degree, network density, diameter,
and clustering coefficient. Finally, the node representation and subgraph repre-
sentation are merged and fed into the classification layer, as shown in the Eq.6.

h = 5hnl|7(h96|‘hgt) (6)

4 Experimental Evaluation

4.1 1IP Block Identification

We collected a total of 999 IP blocks from FireHOL* IP List within the 122
/24 TP prefixes. Since IP block identification results are represented as ranges
and cannot be evaluated using traditional accuracy metrics, we utilized modified
evaluation indicators commonly used in clustering scenarios: the IP block outline
coefficient (S-Block) and Davies-Bouldin coefficients (DB coefficients), as shown
in Eq.7 and 8. Additionally, we employed the coverage indicator Coverage-Block
to assess the degree of deviation in IP address identification results by comparing
test IP blocks with verified block intervals. We compared our method with a
classical IP block identification approach based on signal pulses [9], which relies
on the observation that IPs within the same block exhibit closely connected
feature distances among adjacent IPs.

b—a
S — Block = max(a,0) (7)
1 - o; +0j
DB - B == _—
lock - Z_; max( dist(cr.c) ) (8)

Our method identified a total of 968 IP blocks within the same 122 /24 TP
prefixes. The S-Block value for our result is 0.55, and the DB-Block is 8.7. In

* FireHOL. https://firehol.org/.
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contrast, the S-Block for the signal pulse method is 0.31, with a DB-Block of
11.9. This demonstrates that our method achieves better cohesion within iden-
tified IP blocks and better separation between blocks. The coverage results are
provided in Table 1. Here, ValBlock represents the collected IP blocks, TestBlock
represents the IP blocks identified by our method, and ValBlock rate represents
the proportion of total ValBlocks. It’s observed that nearly 90% of the ValBlocks
are entirely encompassed within the TestBlock. This is primarily because Val-
Block is manually collected and may not provide comprehensive coverage. Our
method offers broader observation capabilities, hence including more IPs.

Table 1: Coverage-Block results.

Coverage Type Coverage-Block|ValBlock Rate
ValBlock C TestBlock 100% 86.99%
TestBlock = ValBlock 100% 1.9%
TestBlock C ValBlock 59.09% 2.4%

ValBlock N TestBlock C ValBlock 61.5% 10.91%

4.2 1IP Block Classification

The labeled IP block dataset is derived from the 968 IP blocks identified in
Section 4.1. Among these, 300 IP blocks were labeled as malicious by FireHOL,
while 100 blocks were labeled as benign. Table 2 shows the number of nodes and
edges associated with the aforementioned 968 IP blocks. Evaluation indicators
are presented in Eq.9, 10 and 11.

Table 2: Heterogeneous graph nodes.

Node Type|Node Count Edge Type Edge Count
ip_block 968 IP_block-server ip 9399
server _ip 9399 server ip-client ip 14350
client_ip 14350 server _ip-domain 6485

domain 5251 - -

. TN
Speczfzczty = Recall@neg = m (9)
. TN
Precision@neg = TN+ FN (10)

2 - Precision@neg - Recall@Qneg (11)
Precision@neg + Recall@neg

To comprehensively verify the effectiveness of HGNT-Net, we conducted two
sets of experiments. The first set compares our approach with classic heteroge-
neous graph node classification algorithms: RGCN [7] and HGT [4]. RGCN is a

Fl1Qneg =
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foundational work on basic heterogeneous graph node classification, while HGT
introduces an attention mechanism. Our algorithm, HGNT-Net, integrates both
node and subgraph representation. The second set comprises ablation experi-
ments, comparing: 1) using only node features without considering relationships
between nodes; 2) considering relationships between nodes without incorporat-
ing subgraph topology; and 3) integrating both relationships between nodes and
subgraph topology.

Experimental results are summarized in Table 3. Compared to RGCN, HGT
introduces an attention mechanism allocating different attention scores to con-
tributions of different paths. HGNT-Net not only integrates the attention mech-
anism for nodes but also incorporates the topological characteristics of sub-
graphs to further enhance model performance. Experiments demonstrate that
our method outperforms others across various indicators.

Table 3: The experimental results of comparison algorithm.

Methods Accuracy|Precision|Specificity|F1@neg| AUC

RGCN 0.88 0.76 0.76 0.82 [0.85

HGT 0.83 0.81 0.8 0.74 | 0.9

Without using graph 0.77 0.75 0.75 0.77 |0.82
Only node representation| 0.85 0.83 0.83 0.73 |0.86
HGNT-Net 0.91 0.87 0.87 0.86 |0.96

4.3 Measurement

Using BlockFinder, we conducted measurements on the top 5 IP address spaces
of hosting provider M247. Initially, we identified IP blocks within the target IP
address spaces using our method based on service stability. Subsequently, we
updated the heterogeneous graph based on the identified IP blocks. Finally, we
utilized HGNT-Net to identify malicious IP blocks within these spaces. In total,
we identified 4,672 IP blocks out of the 5 IP address spaces, comprising a total
of 300,000 IPs, with 1,101 of them classified as malicious. We systematically
measured the size and utilization rate of these malicious blocks. Our findings
revealed that the average size of malicious IP blocks is approximately 32, ensur-
ing swift evasion without arousing suspicion due to excessively large malicious
scope. The utilization rate of nearly half of the IP blocks is only 40%, indicating
underutilization of IPs within the blocks. In the event of an IP being blacklisted,
services can be migrated to other IPs within the same block, thus prolonging
the service’s survival time. The measurements were conducted on a CPU AMD
Ryzen 5 5600H with Radeon Graphics @ 3.30 GHz. Since IP block leases from
cloud hosting providers typically have minimum durations, such as one month,
IP blocks usually do not change frequently. Additionally, the number of IP block
nodes is typically around 1/100 of individual IP nodes. Due to the relatively
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infrequent updates of IP blocks and the significant reduction in scale compared
to individual IPs, efficient periodic recognition can be achieved.

5 Conclusion

In this paper, we introduce BlockFinder, a novel framework for identifying ma-
licious IP blocks. Initially, we employ an IP block identification method based
on service stability to identify blocks of varying sizes. Subsequently, our clas-
sification model, HGNT-Net, enhances performance in scenarios with isolated
nodes and limited information dissemination by integrating node and subgraph
representations centered on IP blocks. The algorithm’s effectiveness is demon-
strated through ablation experiments and comparisons with classic algorithms.
Our framework effectively addresses the challenge of malicious services migrating
within IP blocks by detecting malicious IPs from a block perspective.
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