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Abstract. The objective of the paper is to describe computational meth-
ods and techniques of investigation of certain algebraic structures needed
in order to apply the results in concrete problems in mathematical con-
trol theory of nonlinear systems. Contemporary theoretic research re-
quires more and more sophisticated tools for a possible application of
the results. In the paper we propose computational tools and techniques
for a certain type of simplification of driftless control systems. Such sim-
plification still preserve most crucial properties of the original ones like
controllability, but the simplified system have a special feedforward form
that is much easier to integrate or allows to solve other problems in con-
trol theory. We present the computational procedure and foundations of
the library as the extension of existing software libraries in Python lan-
guage. The approach is illustrated with some numerical experiments and
simulations. We conclude with a discussion about related computational
issues.

Keywords: nonlinear system · nonlinear approximation · homogeneous
approximation · computational procedures.

1 Introduction

We consider control systems – nonlinear with respect to state and linear with
respect to controls – namely (driftless) systems of the form

ẋ =

m∑
i=1

Xi(x)ui, (1)
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where Xi(x) are real analytic vector fields in the neighborhood of the origin in
Rn. It is one of class of systems widely considered in modern control theory.
In general, control theory is devoted to studying dynamical processes that are
described in most cases as systems of difference or differential equations (usually
with additional constraints) where some parameters – controls – can be exter-
nally changed at any moment of time during the process, as desired. One of most
important problems arising is construct a proper method of designing controls
which transfer a system from a given state to some other preassigned target
state. This desired control should usually also satisfy additional requirements: it
should be, for example, bounded or optimal in a certain sense.

An important feature of the modern control theory is that the studied prob-
lems are mostly nonlinear and, moreover, their linear approximations often lose
the structural properties of original systems thus cannot be loosely applied. This
means that, among nonlinear systems, the simplest systems should be chosen, in
particular, to approximate other nonlinear systems of more complicated struc-
ture. This direction is represented by a homogeneous approximation problem
which was actively developed during several decades [1, 2, 4, 6, 10,16,17].

Along with the differential-geometric methods which are most commonly ap-
plied, algebraic methods proved to be useful in such problems. The first idea was
given by M. Fliess [8]; he proposed to consider a series in the free associative
algebra instead of the control system. One of the follow-ups was proving that
the free algebraic interpretation of concepts related to homogeneous approxima-
tion allows more exact description of local properties of nonlinear affine control
systems [18]. This approach, based mainly on algebraic constructions, is well
suitable for numerical implementation.

In this paper we continue this research direction depicting the computational
approach to the control synthesis problem of a class of non-linear dynamical
systems. Firstly we introduce the needed notions, then we describe the numerical
procedures for obtaining homogeneous approximations of our systems. In the end
we provide numerical experiments for three systems – two artificially constructed
and one physical – illustrating our approach.

2 Theoretical background

Thus, we consider the control system (1), where Xi(x) are real analytic vec-
tor fields in the neighborhood of the origin. We are interested in trajectories
of this system starting at the origin and corresponding to a control u(t) =
(u1(t), . . . , um(t)), which is supposed to be measured and bounded. In this pa-
per we assume that the system is locally controllable in a neighborhood of the
origin. Then, for some tf , the trajectory x(t) of the system exists for t ∈ [0, tf ].
Let us denote by EX1,...,Xm

(tf , u) the “end-point map” which takes u(t) to the
end point of the trajectory x(tf ). Linearity in the control and analyticity allows
expressing the end-point map as a series

EX1,...,Xm
(tf , u) =

∞∑
k=1

∑
1≤i1,...,ik≤m

ci1...ikηi1...ik(tf , u), (2)
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where ηi1...ik(tf , u) are “iterated integrals” of the form

ηi1...ik = ηi1...ik(tf , u) =

∫ tf

0

∫ τ1

0

· · ·
∫ τk−1

0

ui1(τ1) · · ·uik(τk)dτk · · · dτ1.

Coefficients ci1...ik ∈ Rn are defined by the system as

ci1...ik = XikXik−1
· · ·Xi1E(0), (3)

where E(x) = x is the identity map and Xi are understood as differential oper-
ators acting as Xiφ = Dφ(x) ·Xi(x), i = 1, . . . ,m.

If controls are such that |ui(t)| ≤ 1, t ∈ [0, tf ], iterated integrals satisfy the
estimate |ηi1...ik(tf , u)| ≤ 1

k! t
k
f . Hence, for small tf , it is natural to truncate

the series in (2) and to consider an approximation that is described by a finite
number of iterated integrals. If such a truncated series actually is an end-point
map for a certain system, then such a system can be regarded as a reasonable
approximation of the initial system (1).

It turns out that there exist such coordinates in which one easily finds an
appropriate truncation. Suppose we want to write the system (1) in the new
coordinates y = F (x); then coefficients of the series for the end-point map in the
new coordinates equal XikXik−1

· · ·Xi1F (0). This leads to studying the opera-
tors XikXik−1

· · ·Xi1 (so-called nonholonomic derivatives); the goal is to find the
convenient privileged coordinates: if the system is written in these coordinates
then the end-point map takes the componentwise form

(EX1,...,Xm
)j(tf , u) = (EX̂1,...,X̂m

)j(tf , u) + ρj(tf , u),

where EX̂1,...,X̂m
is the end-point map of the system

ż =

m∑
i=1

X̂i(z)ui, (4)

which is locally controllable in a neighborhood of the origin and is such that
(EX̂1,...,X̂m

)j contains iterated integrals of length wj and ρj contains iterated
integrals of length greater than wj . Then the system (4) is called a homogeneous
approximation of the system (1). Due to homogeneity (more specifically, quasi-
homogeneity), a homogeneous approximation is the simplest approximation of
the nonlinear system (1). Numbers wj are interpreted as weights of coordinates;
for convenience assume w1 ≤ · · · ≤ wn.

The question is how to construct a homogeneous approximation. In [2], the
general method is described, which suggests to find privileged coordinates apply-
ing successive polynomial change of coordinates. After a finite number of steps,
the system (4) can be constructed. In practical implementation we deal with
vector fields, therefore, symbolic computations are needed.

Another way for finding a homogeneous approximation is as follows. Let us
start with the series representation (2), where we assume that coefficients ci1...ik
are fixed vectors. Then we turn our attention to the iterated integrals.
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As was noticed by M. Fliess [8], for a fixed tf > 0, iterated integrals form
a free associative algebra F over R with the algebraic operation ηi1...ikηj1...jp =
ηi1...ikj1...jp . We introduce the inner product in F assuming the basis ηi1...ik to
be orthonormal. Notice that η1, . . . , ηm can be considered as the free generators
of F . A natural grading in F is defined as

F =

∞∑
k=1

Fk, Fk = Lin{ηi1...ik : i1, . . . , ik ∈ {1, . . .m}}.

We write ord(a) = k if a ∈ Fk. Let L be a free graded Lie algebra generated
by η1, . . . , ηm with the Lie brackets operation [ℓ1, ℓ2] = ℓ1ℓ2 − ℓ2ℓ1 and grading
L =

∑∞
k=1 Lk, where Lk = L ∩ Fk.

Now, with the series (2) we associate a linear map c : F → Rn defined on the
basis as c(ηi1...ik) = ci1...ik . Suppose an analytic change of variables y = F (x) is
applied; then in the new coordinates the end-point map has a series representa-
tion F (EX1,...,Xm); it should be written in the form of a series of iterated integrals
with vector coefficients. While transforming, products of iterated integrals arise,
which should be represented as linear combinations of iterated integrals. In alge-
braic terms, the product of iterated integrals corresponds to the “shuffle product”
defined recursively as

ηi1...ik � ηj1...jp = ηi1(ηi2...ik � ηj1...jp) + ηj1(ηi1...ik � ηj2...jp).

The shuffle product in F and the Lie algebra L are surprisingly connected: by
R. Ree’s theorem, an element from F belongs to L if and only if it is orthogonal
to shuffle product of any two elements from F .

We use this property in order to define the homogeneous approximation.
Namely, let us consider the following linear subspace in L,

LX1,...,Xm
=

∞∑
k=1

Pk, where Pk = {ℓ ∈ Lk : c(ℓ) ∈ c(L1 + · · ·+ Lk−1)}, k ≥ 1.

(5)
One can show that LX1,...,Xm

is a graded subalgebra of L of codimension n; we
call it a core Lie subalgebra of the system (1). Let ℓ1, . . . , ℓn ∈ L be (homoge-
neous) elements such that L = Lin{ℓ1, . . . , ℓn} + LX1,...,Xm

, and let {ℓj}∞j=n+1

be a (homogeneous) basis of LX1,...,Xm . Without loss of generality we assume
that ℓi ∈ Lwi , i = 1, . . . , n, where w1 ≤ · · · ≤ wn. Due to the Poincaré-Birkhoff-
Witt theorem, elements ℓq1i1 · · · ℓqkik form a basis of F , where i1 < · · · < ik and ℓq

means the q-th power of ℓ. Then there exists a biorthogonal basis, and, due to
the Melançone-Reutenauer theorem, its elements are of the form

1

q1! · · · qk!
d�q1
i1
� · · ·� d�qk

ik
,

where d�q means the q-th shuffle power of d and di are elements of the biorthog-
onal basis orthogonal to all elements of the Poincaré-Birkhoff-Witt basis except
ℓi and such that the inner product of di and ℓi equals 1.

The main result about homogeneous approximation is as follows.
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– There exists the system (4) (homogeneous approximation of (1)) whose end-
point map equals

(EX̂1,...,X̂m
)j = dj , j = 1, . . . , n. (6)

– There exists a change of coordinates y = F (x) in the system (1) which
reduces it to the form ẏ =

∑m
i=1 Yi(y)ui such that

(EY1,...,Ym)j = dj + ρj , j = 1, . . . , n, (7)

where ρj contains iterated integrals of length greater than wj .

We emphasize that it may be more convenient to consider the system (4) in
other coordinates for which the end-point map equals

(EX̂1,...,X̂m
)j = dj + Pj(d1, . . . , dj−1), j = 1, . . . , n, (8)

where Pj are shuffle polynomials containing elements from Fwj only.

3 Procedure for obtaining homogeneous approximations

Thus, the rough plan for finding a homogeneous approximation using the results
described in the previous section is as follows.

1. Find the core Lie subalgebra and the elements d1, . . . , dn of the biorthogonal
basis.

2. Reconstruct the system (4) having the end-point map (6).
3. Find a change of variables y = F (x) reducing the end-point map of the

system (1) to the form (7).

In [15], the first attempt was taken to implement these steps (for a slightly
different class of systems). Now we present a much better implementation, which
allows us to perform computer experiments. We discuss the algorithm in more
detail.

In step 1, we first of all find the core Lie subalgebra (5). To use its definition,
we perform the following steps:

1.1. Find a basis in the free Lie algebra L.
1.2. Find coefficients ci1...ik of the series (2).
1.3. Find bases for subspaces Pk.

Actually, we need to find c(bj), where bj are basis elements in L. Taking into
account the grading, we find bases of subspaces L1,L2, . . . successfully until Lr

such that c(L1 + · · · + Lr) = Rn. More specifically, for any k, we find a basis
bj of Lk and the coefficients ci1...ik ; then we form the vectors c(bj) and find the
subspace Pk.
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Coefficients ci1...ik are defined by (3). For a sufficiently general form of vector
fields Xi, this step is of a large complexity, where symbolic and numerical ap-
proaches should be combined. However, some simplification can be implemented:
for example, if the coefficient cj vanishes then all ci1···iq j vanish as well.

Finding a basis in the free Lie algebra is a standard problem. However we
observe that the dimension of Lk grow rapidly, so the complexity here is related
to the depth of singularity r rather than the dimension of the system n.

Finally, for step 1 two more sub-steps are needed:

1.4. Find elements of the Poincaré-Birkhoff-Witt basis.
1.5. Find elements of the biorthogonal basis d1, . . . , dn.

As above, we consider each subspace Fk separately and restrict ourselves by
k ≤ r and solve linear algebra problems, possible with sparse matrices.

The algorithm for step 2 is given in [18]. Namely, step 2 consists of two
sub-steps applied to each of dj , j = 1, . . . , n:

2.1. Represent dj as a sum dj =
∑m

k=1 ηkak. If wj = 1, then ak ∈ R. If
wj ≥ 2, then ak ∈ Fwj−1 and, moreover, ak equals a shuffle polynomial
of d1, . . . , dj−1, i.e.,

ak =
∑

αk
q1...qj−1

d�q1
1 � · · ·� d

�qj−1

j−1 , where αk
q1...qj−1

∈ R.

2.2. For any k = 1, . . . , n, define the j-th component of X̂k as follows: if wj = 1,
then put (X̂k(z))j = ak; if wj ≥ 2, then (X̂k(z))j =

∑
αk
q1...qj−1

zq11 · · · zqj−1

j−1 .

Concerning step 3, we note that such a change of variables is not unique. In
particular, one can find F (x) as a polynomial [17,18] in the following way:

3.1. Consider the polynomial mapping Φ : Rn → Rn of the form

Φ(z) =
∑

q1w1+···+qnwn≤wn

1

q1! · · · qn!
c(ℓq11 · · · ℓqnn )zq11 · · · zqnn .

3.2. Find a mapping y = F (x) that reduces Φ(z) to the “upper triangular form”,
i.e., such that component-wise

(F (Φ(z)))j = zj + pj(z1, . . . , zj−1),

where pj is a polynomial that contains terms of the form zq11 · · · zqnn such that
q1w1 + · · ·+ qnwn ≥ wj + 1.

Our general goal to provide a fully automatic procedure for any system in
the form (1). The presented method is effective, but computational complexity
may depend on complexity of the system, of length and order of the endpoint
series expansion, and of the number of gaps in the resulting Lie core algebra.
Computational issues of the presented procedure consist of combinatorial, sym-
bolic, and numerical algebra procedures. The main difficulty is the need to com-
bine symbolic and numeric computations. There are two separate parts where
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symbolic-based computations are required: high-order differentiation for com-
putations of Lie brackets and Lie elements and finding nonlinear mapping and
change of variables. Currently, we use sympy [13] and lambdification, but at least
for differentiation, we see the possibility of using modern tools of automatic dif-
ferentiation like JAX/Autograd [5].

4 Numerical experiments

Systems and transformations. In the experimental part we consider three
control systems:

1. Artificial system 1:
ẋ0

ẋ1

ẋ2

ẋ3

 =


1
0
0

sin(x2)

u0 +


x2

1
x1 (1− x3)

1

u1; (9)

2. Artificial system 2:
ẋ0

ẋ1

ẋ2

ẋ3

 =


1

1− x2
1

0
x3 (1− x0)

u0 +


x1 (1− x3)

0
x1 (1− x2) + x3

1

u1; (10)

3. Vehicle (truck/lorry) linked to with two trailers:
ẋ0

ẋ1

ẋ2

ẋ3

ẋ4

 =


cos (x2)
sin (x2)

0
sin (x2 − x3)

sin (x3 − x4) cos (x2 − x3)

u0 +


0
0
1
0
0

u1, (11)

where x0, x1 are car position and x2 is the angle between the car direction
and the Ox0 axis.

For each system, we aim to find the control signal that moves the system
from a given initial point to zero.

First, we write the solution of the considered system in the form of the
series (2). Using the procedure described in the previous section, we find the
transformation that allows the truncation of the series to the homogeneous form.

System (9) has the following homogeneous approximation:
ż0
ż1
ż2
ż3

 =


1
0
0
0

u0 +


0
1

−z0z1
− 1

6z0z
3
1

u1, (12)
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and the transformation y = F (x) can be chosen as

y = F (x) =


x0

x1

x3 − x1 − 1
2x0x

2
1

1
6x2 − 1

12x
2
1 − 1

36x
3
1 − 1

24x0x
4
1 +

1
12x

2
1x3

 . (13)

Homogeneous approximation of the systems (10) is the following:
ż0
ż1
ż2
ż3

 =


1
0
0
0

u0 +


0
1
z0

−z0z1

u1, (14)

and transformation for the system (10) can be

y = F (x) =


x1

x3

x2 − 1
2x

2
3

1
3x0 − 1

3x1 − 1
3x2 − 1

6x
2
1 +

1
6x

2
3 − 1

9x
3
1 − 1

3x1x
2
3

 . (15)

The homogeneous approximation for the car–trailers system (11) is given by:
ż0
ż1
ż2
ż3
ż4

 =


1
0
0
0
0

u0 +


0
1
z0

− 1
2z

2
0

1
6z

3
0

u1, (16)

and the transformation can be

y = F (x) =


x0

x2

−x1 + x0x2

−x4 + x0x1 − 1
2x

2
0x2

x3 − x1 + x4 − 1
2x

2
0x1 + x0x4 +

1
6x

3
0x2

 . (17)

As we see, the homogeneous systems (12), (14) and (16) are much simpler
than the original systems (9), (10), (11). Please note that the transformations
y = F (x) are effectively invertible. The linear part is easy to invert, and the
nonlinear part has the feedforward form. As was mentioned above, choosing
a homogeneous approximation in a slightly different form (8) could be more
convenient, for example, if we are interested in simplifying the change of variables
y = F (x).

The homogeneous approximation is a certain kind of simplification of a non-
linear control system, that makes the system easier to being integrated and also
allows easier solutions of various controllability problems. A homogeneous ap-
proximation simplifies the given system and maintains its main properties like
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controllability. Both systems are equivalent up to a nonlinear transformation.
Having the approximation and transformation, we can compare the trajectories
of both systems with the same control signals. We can also find the control for
the approximated homogeneous system in a simpler transformed space, and we
apply the same control to the original system in the transformed space. In order
to compare both trajectories, we must transform the homogeneous system tra-
jectory to the original space using inverse transformations. In our experiments
we inverse the time in the initial system and in its homogeneous approximation
and consider the origin as a goal point.

Results. Comparing the system trajectories with the same control signals, we
would like to show and briefly discuss the quality of such approximations. One
of objectives of the presented research is to review how good the homogeneous
approximation is with regard to the original system.

Finding the optimal control ui was not the main task in this paper. Never-
theless, because the approximation is valid close to the origin, we should find
some control signal for the approximated system that moves the system from a
given initial point to the origin (point 0) or close to the origin. In our experi-
ment we chose the sequence of radii of increasing size and randomly selected ten
initial points per radius. Each initial point in chosen from an original space is
transformed to z’s space i.e. z0 = F (x0). Next, we try to find a control signal
that moves the transformed homogeneous system from the initial point z0 to the
final point 0. Finally, we inspect trajectories of the original and approximated
systems in the original space. To transform the trajectory of the homogeneous
system to the original space, we have to apply the transformation x = F−1(z).
As the quality measure, we use two following measures: the distance between
final positions,

etf = ∥x(tf )− xh(tf )∥, (18)

and summed up distance between trajectories,

e1 =

∫ tf

0

∥x(t)− xh(t)∥dt, (19)

where x denotes the original systems’ trajectories, and xh the trajectories of their
homogeneous approximations transformed back to the original coordinates.

Detailed results are summarized in Table 1. Figures 2 and 3 present sample
trajectories for different initial positions. It is worth to notice that in the car-
trailers system (11) our simulation shows that the behaviour of the approximated
system is better than the theory suggests. Here the trajectory (namely state
variables x3 and x4) at some point goes out of the region of applicability but
it comes back in later, and in the end the trajectory arrives very close to the
end-point of the original system. One can observe this quantitatively in Table 1
where the total (integral) error e1 may be much larger than etf which measures
the deviation of the end-point only.
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Fig. 1. Illustration of the proposed approach with the system (9); a–d) projection of
system’s trajectories to 2D and 3D subspaces starting from different initial points. e),
f) control signals u0, u1 (solid black) and systems’ trajectories in separate coordinates.
Red solid lines – original system trajectories, black dashed lines represent behavior of
approximated system in original system’s coordinates
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Fig. 2. Illustration of the proposed approach with the system (10); a–d) projection of
system’s trajectories to 2D and 3D subspaces starting from different initial points. e),
f) control signals u0, u1 (solid black) and systems’ trajectories in separate coordinates.
Red solid lines – original system trajectories, black dashed lines represent behavior of
approximated system in original system’s coordinates

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_25

https://dx.doi.org/10.1007/978-3-031-63751-3_25
https://dx.doi.org/10.1007/978-3-031-63751-3_25


12 M. Korzeń et al.

a)
x0

1.0
0.5

0.0
0.5

1.0
1.5

x 1
0.0

0.2
0.4

0.6
0.8

1.0

x 2

0.2
0.0
0.2
0.4
0.6

system
approx.
initial
goal

Original system space

b)

0 2 4 6 8 10 12 14
1

0

1

x 0
, u

0 system
approx.
control

0 2 4 6 8 10 12 14
0.0

0.5

1.0

x 1

0 2 4 6 8 10 12 14

0.0

0.5

x 2
, u

1

0 2 4 6 8 10 12 14
0

1

x 3

0 2 4 6 8 10 12 14
t [sec. ]

2

0

x 4

Original system space

c)
x0

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

x 1

0.4
0.3

0.2
0.1
0.0

0.1
0.2

0.3

x 2

0.2
0.1

0.0
0.1
0.2
0.3
0.4

system
approx.
initial
goal

Original system space

d)

0 2 4 6 8 10

2

0

x 0
, u

0 system
approx.
control

0 2 4 6 8 10

0.25
0.00
0.25

x 1

0 2 4 6 8 10
0.25
0.00
0.25

x 2
, u

1

0 2 4 6 8 10
0

5

10

x 3

0 2 4 6 8 10
t [sec. ]

20

10

0

x 4

Original system space

e)
x0

0.6 0.4 0.2 0.0 0.2 0.4

x 1

0.00
0.05

0.10
0.15

0.20
0.25

x 2

0.10
0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30

system
approx.
initial
goal

Original system space

f)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.5

0.0

0.5

x 0
, u

0 system
approx.
control

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.1

0.2

x 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.25

0.00

0.25

x 2
, u

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.2

0.0

x 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t [sec. ]

0.0

0.5

x 4

Original system space

Fig. 3. Illustration of the proposed approach with the car-trailers system (11); a), c),
e) projection of system’s trajectory to 3D subspace (x0 = x, x1 = y, x2 = α). b), d),
f) systems’ trajectories in separate coordinates. Black-dashed lines represent behavior
of approximated system in original system’s coordinates, red lines are original system
trajectories. Control signals u0, u1 are presented in first and third subplots.
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Numerical details. Now we state some remarks about numerical details of
the experiments. A proper numerical representation for control signal and state
variables is an important issue. In our experiments we arbitrary choose repre-
sentations based on Chebyshev polynomials. First, we assume that the control
signal is a polynomial of degree n written in the Chebyshev basis of the first
kind Ti, i = 0, . . . , n

fn(t) =
1

2
a0 +

n∑
i=1

aiTi(t).

We do not use it directly, but we use the barycentric interpolation on the Cheby-
shev points of the second kind (or the Chebyshev extreme points) instead [3]. In-
terpolation on Chebyshev nodes is equivalent to the Chebyshev expansion. Both
representations are widely used in practice, e.g. packages Chebfun [7] and PaCal
[11] are based on barycentric interpolation, package numpy.polynomial.chebyshev
provides common operations on Chebyshev expansion. The transformation be-
tween both representations (called Chebyshev transformation), i.e. transition
from the interpolation using Chebyshev nodes to coefficients of expansion in
the Chebyshev basis, can be effectively performed using Fast Fourier Trans-
form [12, ch. 4.]. Representation using interpolation is convenient for most oper-
ations like algebraic operations of function evaluation. However, the cumulative
integration is better to perform using Chebyshev expansion [12, ch. 2.], where

Table 1. Comparison of accuracy of homogeneous approximation. Here ∥X(0)∥ denotes
the norm of initial point, ∥Xh(tf )∥ – the norm of the final point (i.e. closeness of the
solution to the goal), etf , e1 – global measures of quality of approximation defined
by (18) and (19). Each trial represents the average of ten repetitions of the experiment

∥X(0)∥ ∥Xh(tf )∥ etf e1 etf /∥X0∥ e1/∥X0∥
Model Trial

art1 0 0.209 0.082 0.012 0.001 0.061 0.006
1 0.410 0.095 0.052 0.013 0.128 0.031
2 0.729 0.296 0.136 0.113 0.163 0.114
3 1.225 0.134 0.272 0.550 0.187 0.353

art2 0 0.277 0.248 0.008 0.000 0.028 0.001
1 0.517 0.568 0.036 0.008 0.057 0.011
2 1.133 0.787 0.162 0.187 0.129 0.141
3 1.649 1.314 0.634 1.074 0.373 0.608

car 0 0.301 0.172 0.027 0.019 0.088 0.068
1 0.517 0.400 0.069 0.441 0.125 0.786
2 1.271 0.411 0.104 28.000 0.094 17.138
3 1.650 0.377 0.211 9.954 0.133 7.103
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we have a direct formula:∫ t

0

fn(τ)dτ =
1

2
c0 +

n∑
i=1

ciTi(t),

where constant c0 is determined from the initial condition.
Recalling that the homogeneous system has a special feedforward form, we

can easily solve it directly using a presented Chebyshev framework. Under the
assumption that control is polynomial in Chebyshev expansion, we use only ba-
sic algebraic operations (addition, subtraction and multiplication), cumulative
integrals, and feedforward substitutions to solve subsequent equations. Each step
of procedure is closed with respect to Chebyshev representation used. Compu-
tations with this representation are fast and numerically very stable, accuracy
is typically close to the machine precision.

To find the control, we use the optimization procedure with goal function:

g(u01, . . . , u1n;u11, . . . , u1n) = ∥xh(tf )− 0∥2 +
n∑

j=0

α∥xj∥∞

where uij are values of control signals ui, i = 0, 1 in Chebyshev nodes tj , j =
0, 1, . . . , nc scaled to the interval [0, tf ], tf is a fixed time of controls, α is a (small)
parameter. As the optimization procedure we use l-bfgs-b from scipy [14], with
additional restrictions on maximal values of nodes of the control signals.

To compare the quality of the homogeneous approximation we apply the
same control signals to the original system. To solve the original system we have
to use a general ODE solver. In our case we use odeint function from scipy. For
the homogeneous system direct integration using Chebyshev framework is more
accurate and much faster. In the experiments we use interpolators with nc = 50
nodes to represent control, in such case scipy’s ODE solver was about 4 times
slower. For higher degrees this difference will be even bigger.

We prepared experimental part using Python language with numpy [9] li-
braries mainly for arrays, scipy [19] for optimization and ODE solvers, and
sympy [13] for symbolic computing – mainly differentiation and computing of
Lie brackets.

5 Summary

In this paper we presented the procedure of determining of a homogeneous ap-
proximation from a computational point of view, and we provide the numerical
experiments with some nonlinear control systems and their homogeneous ap-
proximations. After comparing the system trajectories, we briefly discussed the
quality of such approximations. The experiments confirmed that the theoreti-
cal results concerning homogeneous approximations of nonlinear systems can be
used in practice, and the need to construct suitable software libraries to be used
in possible applications – e.g. in control design – is evident.
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