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Abstract. Computational electromagnetics plays a crucial role across
diverse domains, notably in fields such as antenna design and radar sig-
nature prediction, owing to the omnipresence of electromagnetic phe-
nomena. Numerical methods have replaced traditional experimental ap-
proaches, expediting design iterations and scenario characterization. The
emergence of GPU accelerators offers an efficient implementation of nu-
merical methods that can significantly enhance the computational ca-
pabilities of partial differential equations (PDE) solvers with specific
boundary-value conditions. This paper explores parallelization strate-
gies for implementing a Finite-Difference Time-Domain (FDTD) solver
on GPUs, leveraging shared memory and optimizing memory access pat-
terns to achieve performance gains. One notable innovation presented
in this research involves utilizing strategies such as exploiting tempo-
ral locality and avoiding misaligned global memory accesses to enhance
data processing efficiency. Additionally, we break down the computa-
tion process into multiple kernels, each focusing on computing different
electromagnetic (EM) field components, to enhance shared memory uti-
lization and GPU cache efficiency. We implement crucial design opti-
mizations to exploit GPU’s parallel processing capabilities fully. These
include maintaining consistent block sizes, analyzing optimal configura-
tions for field-updating kernels, and optimizing memory access patterns
for CUDA threads within warps. Our experimental analysis verifies the
effectiveness of these strategies, resulting in improvements in both re-
ducing execution time and enhancing the GPU’s effective memory band-
width. Throughput evaluation demonstrates performance gains, with our
CUDA implementation achieving up to 17 times higher throughput than
CPU-based methods. Speedup gains and throughput comparisons illus-
trate the scalability and efficiency of our approach, showcasing its po-
tential for developing large-scale electromagnetic simulations on GPUs.

Keywords: Numerical Computational Electromagnetics · GPU Accel-
erators · Finite-Difference Time-Domain Solver · Partial Differential Equa-
tions · Geometric Discretization
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1 Introduction

Electromagnetics, the study of electrical and magnetic fields and their interac-
tion, has been a cornerstone technology since the twentieth century and con-
tinues to be vital in the twenty-first. Maxwell’s equations are at the heart of
modern electromagnetic engineering, typically solved using computational elec-
tromagnetics (CEM) [19]. CEM has undergone significant advancement in the
last decade, enabling highly accurate predictions for various electromagnetic phe-
nomena such as wave scattering analysis, radar target scattering and the precise
design of antennas and microwave devices, and analysis of electromagnetic in-
terference (EMI) and electromagnetic compatibility (EMC) issues in electronic
devices [11]. Commonly used CEM methods fall into two categories: those based
on differential equation (DE) methods and those based on integral equation (IE)
methods, leveraging Maxwell’s equations and appropriate boundary conditions.
IE methods typically offer approximations using finite sums, while DE methods
employ finite differences. Previously, numerical EM analysis primarily occurred
in the frequency domain due to its suitability for obtaining analytical solutions
and limited experimental hardware. However, recent advancements in computa-
tional resources have led to a shift towards more advanced time-domain CEM
models, mainly focusing on DE time-domain approaches like the finite-difference
time-domain (FDTD) method [13, 8]. The FDTD method solves problems in
time while providing frequency-domain responses via Fourier transform and is
applicable across a wide range of fields [4, 5, 15].

Implementing the Finite-Difference Time-Domain (FDTD) algorithm on Graph-
ics Processing Units (GPUs) offers a promising avenue for accelerating numerical
simulations [20]. GPUs, originally designed for graphics rendering, excel at par-
allel computation, making them well-suited for tasks like CEM models solver
that involve heavy computational loads. By leveraging CUDA (Compute Uni-
fied Device Architecture), NVIDIA’s parallel computing programming model,
developers can harness the massive parallelism of various NVIDIA GPUs (e.g.,
Tesla architecture [12]) to significantly speed up FDTD computations. The im-
plementation typically involves partitioning the space domain into smaller cells
assigned to individual GPU threads. Each thread performs calculations for a
specific portion of the domain in parallel with other threads. By carefully opti-
mizing memory access patterns, developers can exploit the GPU’s architecture to
achieve high throughput and efficiency. One key advantage of GPU-accelerated
FDTD computations is its ability to handle larger and more complex geome-
tries with finer spatial resolution in a reasonable time frame. Such scalability is
particularly beneficial for large-scale applications such as antenna design, elec-
tromagnetic compatibility analysis, and photonics research, where intricate ge-
ometries and high-fidelity computations are standard requirements. As a result,
GPU-based FDTD implementations offer researchers and engineers a powerful
tool for exploring and analyzing electromagnetic phenomena with unprecedented
speed and accuracy.

This paper introduces an innovative approach for GPU-accelerated FDTD
implementation, focusing on leveraging shared memory, optimizing memory ac-
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cess patterns, and minimizing divergence paths. We ensure streamlined execution
by maintaining consistent block sizes and employing coalesced memory access to
maximize floating-point operations per second. Additionally, we introduce key
strategies such as exploiting temporal locality and breaking down computation
into multiple kernels. Through rigorous experimentation, we identify optimal
configurations for updating electromagnetic fields and determine the number of
cells assigned to each GPU thread. This optimization effectively balances execu-
tion time reduction and GPU memory bandwidth enhancement. Furthermore,
we compare the performance of our GPU implementation with a CPU-based
approach using the Meep software package. Our extensive experimental analy-
sis across various simulation sizes and configurations demonstrates substantial
speedup gains and throughput improvements compared to CPU methods.

The remainder of this paper is structured as follows: Section 2 provides an
overview of the background concepts relevant to our study, including Finite-
Difference Time-Domain (FDTD) methods and GPU acceleration techniques.
Following this, Section 3 details the methodology adopted in our study, encom-
passing the design and implementation of our GPU-accelerated FDTD solver. In
Section 4, we outline the experimental setup used to evaluate the performance
of our implementation, discussing hardware, software, parameter configurations,
benchmark scenarios, and the results of our experiments. Finally, Section 5 con-
cludes the paper, highlighting avenues for future research.

2 FDTD Framework for Numerical CEM

The FDTD method, introduced by Yee in 1966, discretizes Maxwell’s equations
in both space and time, enabling their solution within the time domain. Electric
and magnetic field components are positioned at discrete spatial points, progress-
ing through discrete time steps by approximating derivatives to model field evo-
lution. In FDTD, fields are sampled at discrete time intervals, with electric and
magnetic components sampled at distinct intervals, offset by ∆t/2. The FDTD
algorithm starts with Maxwell’s time-domain equations, which are discretized
using second-order accurate central difference formulas. The 3D geometry is di-
vided into cells, forming a grid with rectangular Yee cells for stepped surface
approximation. Field components within Yee cells are positioned with electric
vectors at edge centers and magnetic vectors at face centers, representing Fara-
day’s and Ampere’s laws, respectively. Four electric field vectors surround each
magnetic field vector, and vice versa, depicting law simulations. Field sampling
in FDTD occurs at discrete time intervals, with electric components sampled at
integer time intervals and magnetic components at half-integer intervals, offset
by ∆t/2. This necessitates spatial and temporal indices to differentiate compo-
nents.

The foundation of constructing an FDTD-based CEM algorithm lies in Maxwell’s
time-domain equations. These differential equations describe the field behavior
over time. The equations are as follows [7]:
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∇ ·D = ρe

∇ ·B = ρm = 0

∇×E = −∂B

∂t
−M

∇×H = J+
∂D

∂t

Here, E represents the electric field strength vector (in Volts per meter), D
represents the electric displacement vector (in Coulombs per square meter), H
represents the magnetic field strength vector (in Amperes per meter), B repre-
sents the magnetic flux density vector (in Webers per square meter), J represents
the electric current density vector (in Amperes per square meter), M represents
the magnetic current density vector (in Volts per square meter), ρe represents
the electric charge density (in Coulombs per cubic meter), and ρm represents
the magnetic charge density (in Webers per cubic meter), equal to zero every-
where. Additionally, constitutive relations complement Maxwell’s equations to
characterize the material media [7]. Constitutive relations for linear, isotropic,
and non-dispersive materials can be expressed as D = ϵE and B = µH, where
ϵ and µ represent the permittivity (in Farad/meter) and the permeability (in
Henry/meter) of the material.

When deriving Finite-Difference Time-Domain (FDTD) equations, we can
focus on the curl equations as the divergence equations can be fulfilled by the
developed FDTD updating equations [7, 19]. The electric current density J com-
prises the sum of the conduction current density Jc = σeE and the impressed
current density Ji such that J = Jc + Ji. For the magnetic current density M,
we have M = Mc+Mi, where Mc = σmH. Here, σe represents the electric con-
ductivity in Siemens per meter, and σm represents the magnetic conductivity
in Ohms per meter. By decomposing the current densities into conduction and
impressed components and employing the constitutive relations, we can rewrite
Maxwell’s curl equations as:

ϵ
∂E
∂t

= ∇× H − σeE − Ji,

µ
∂H
∂t

= −∇× E − σmH − Mi.

This formulation treats only the electromagnetic fields E and H. All four consti-
tutive parameters ε, µ, σe, and σm are the input parameters so that any linear
isotropic material can be specified. Treatment of electric and magnetic sources
is included through the impressed currents. Each vector equation can be fur-
ther decomposed into three scalar equations for three-dimensional space, i.e.,
E = (Ex,Ey,Ez) and H = (Hx,Hy,Hz).
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Central Difference Approximation Schemes

The central difference formula approximates derivatives through finite differences
and is a foundational technique within numerical analysis, especially concern-
ing the resolution of differential equations. These formulas estimate a function’s
derivative at a specific point by assessing the function at neighboring points.
Specifically, for a first-order derivative, the central difference formula calculates
the disparity between function values at symmetrically positioned points around
the point of interest and divides by the spacing between these points. This
method offers several benefits, including straightforward implementation and
relatively high accuracy compared to alternative finite difference approaches.
Nonetheless, it’s crucial to recognize that the selection of grid spacing and the
order of the difference formula can significantly influence the accuracy and sta-
bility of the numerical solution.

The central difference formula to approximate the derivative f ′(x) involves
averaging the forward and backward difference formulas. This technique yields:

f ′(x) =
f(x+∆x)− f(x−∆x)

2∆x
− (∆x)2

6
f ′′(x) +O(∆x2)

Therefore, the central difference formula for f ′(x) exhibits second-order ac-
curacy. This level of accuracy implies that the dominant term in the error intro-
duced by a second-order accurate formula is proportional to the square of the
sampling period. For example, halving the sampling period reduces the error by
a factor of four. Consequently, a second-order accurate formula like the central
difference formula provides greater precision than a first-order accurate formula.

Updating Procedures in FDTD Method

The FDTD method, introduced by Yee in 1966 [21], discretizes Maxwell’s equa-
tions in both space and time, enabling their solution in the time domain. It
places electric and magnetic field components at discrete spatial points within
a grid, advancing through discrete time steps to simulate field evolution. In
FDTD, fields are sampled at discrete time instants, with electric and magnetic
components sampled at different intervals offset by ∆t/2. While the algorithm
calculates the fields at discrete time points, electric and magnetic components
are not sampled simultaneously. Electric field components are sampled at in-
teger time steps (0, ∆t, 2∆t, . . .), while magnetic field components are sampled
at half-integer time steps ( 12∆t,

(
1 + 1

2

)
∆t, . . .), introducing an offset of ∆t/2

between them. Figure 1 showcases a single Yee cell within the grid utilized in
the FDTD method.

As outlined previously, the FDTD updating process approximates derivatives
using the central difference formula. Here, field components are referenced by
spatial and temporal indices, denoted with superscript notation. For example,
En

z (i, j, k) represents the z component of an electric field vector sampled at
time instant n∆t, positioned at ((i − 1)∆x, (j − 1)∆y, (k − 0.5)∆z). Similarly,
Hn+ 1

2
y (i, j, k) represents the y component of a magnetic field vector positioned
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(0,0,0) (∆x, 0, 0)

(∆x, 0,∆z)

(0,∆y,∆z) (∆x,∆y,∆z)

Ex

Ey

Ez

Hx

Hy

Hz

Fig. 1: Arrangement of electric and magnetic field vector components within a
single Yee cell (Inspired by the diagrams in [19, 22]).

at ((i− 0.5)∆x, (j− 1)∆y, (k− 0.5)∆z) and sampled at time instant
(
n+ 1

2

)
∆t.

Remarkably, for a computational domain with the number of cells (Mx,My,Mz),
the total spatial problem size is M = Mx ×My ×Mz. Hence, The storage space
required for this is approximately 24×M bytes for 32-bit precision and 48×M
bytes for 64-bit precision [1].

3 Our Proposed Implementation of the FDTD Method

Recent advancements in GPU accelerators promise efficient numerical method
implementations, significantly boosting the computational efficiency of EM solvers.
Ongoing progress in GPU technology, with increased computational power, mem-
ory bandwidth, and specialized hardware features like tensor cores, continues to
advance numerical simulations. This section emphasizes designing and imple-
menting a GPU-accelerated FDTD solver, showcasing its effectiveness in solving
EM equations with enhanced computational speed. This paper primarily focuses
on NVIDIA’s GPU platform [17] and the associated CUDA programming model
[16, 6]. While a similar approach can be developed for GPUs supporting the
OpenCL standard, we center our discussion on NVIDIA’s technology. In the
following section, we provide readers with a concise overview of modern GPU
processor architecture, including its memory hierarchy and the programming
model utilized to map thread blocks onto the GPU streaming processors effec-
tively. This foundational knowledge is essential for readers to grasp the design
considerations before implementing the FDTD method on modern GPUs.
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GPU Architecture and CUDA Programming Model

A GPU comprises Streaming Multiprocessors (SMs) containing processing cores
and shared low-latency memory. SMs execute kernel functions in parallel with
variable core counts. Global DRAM memory is partitioned and managed by an
interconnection network for read/write requests. The speed difference between
shared and global memory motivates minimizing data transfers for efficiency.
Thread blocks can use local/shared memory as a manual cache, compensating
for the lack of automatic caching in the older models of NVIDIA GPUs. Accessing
shared memory is faster than global memory, mitigating latency with numerous
threads emphasizing arithmetic operations.

CUDA, developed by NVIDIA, allows C/C++ code to run directly on GPUs,
exploiting parallel processing. Programs consist of host code on the CPU and
device code on the GPU, organized into kernel functions executed by multi-
ple threads in parallel. CUDA manages parallelism and memory, with barrier
instructions ensuring synchronized operations among threads. CUDA streams
allow asynchronous execution of commands on NVIDIA GPUs, enabling con-
current operations and facilitating overlap of computation with data transfers
[16]. Conditional branching significantly impacts stream performance, particu-
larly in kernels with numerous threads intended to hide global memory access
latency, which can range from 400 to 600 cycles [2].

Parallelization Strategies of FDTD Implementation

The field-updating kernel’s parallelization in CUDA is feasible since the up-
date equation is independently applied at each Yee’s cell at every time step. In
traditional CPU-based computations, the sequential nature of processing lim-
its the speed and scalability of simulations involving large-scale electromagnetic
problems. However, the parallelization of the field-updating kernel in CUDA is
highly advantageous due to the inherent independence of the update equation at
each Yee cell and time step. This independence allows for efficient exploitation
of parallel processing capabilities offered by NVIDIA GPUs. CUDA enables the
execution of thousands of threads in parallel on GPU cores, thereby significantly
accelerating the computation process.

CUDA harnesses the massive parallelism of GPU architectures to update
multiple Yee cells simultaneously at each time step by distributing the workload
across multiple threads. This strategy significantly reduces the computational
time needed for complex electromagnetic simulations. The CUDA programming
model also offers developers fine-grained control over thread management and
memory allocation. This level of control guarantees efficient parallelization of
the field-updating kernel, leading to substantial performance enhancements com-
pared to traditional CPU-based methods.

To optimize performance on GPUs, it is crucial to reduce global memory ac-
cess latency. This entails following specific architectural guidelines, such as lever-
aging shared memory to minimize latency. We employ strategies like exploiting
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temporal locality and avoiding misaligned global memory accesses to reduce ad-
ditional memory transactions. Additionally, minimizing divergence paths, where
threads within a warp take different control flow paths, ensures efficient data
processing. Furthermore, breaking down the computation process into multi-
ple kernels, each focusing on computing different components of the EM field,
can enhance shared memory utilization and GPU cache efficiency, which is the
approach we have adopted in this work.

As highlighted below, we have implemented several crucial design decisions
and optimizations to exploit the GPU’s parallel processing capabilities fully.

– For executing the field-updating kernels, we maintain a consistent number
of blocks per grid. This approach ensures that the workload is evenly dis-
tributed across the GPU cores, preventing the overloading of individual GPU
cores and minimizing idle resources. This approach also simplifies mem-
ory management and synchronization, as each block operates independently
without dependencies on other blocks. This enables seamless coordination
between threads within the same block, facilitating efficient execution of the
field-updating kernels.

– We conduct a thorough experimental analysis across various block sizes to
ascertain the optimal configurations for all kernels that update the electric
and magnetic fields. This evaluation involves systematically varying the num-
ber of threads per block and the total number of blocks per grid to explore
the performance impact on different GPU architectures and computational
workloads. Our experimental methodology includes profiling each kernel’s
memory access patterns and computational intensity to gain insights into
their performance characteristics under varying block configurations. This
analysis helps us understand how different block sizes affect memory band-
width usage, register pressure, and arithmetic throughput, enabling us to
uncover the most efficient block configurations that balance computational
efficiency, memory bandwidth utilization, and resource utilization on the
GPU.

– The most effective performance is consistently achieved with a block size of
B1 × B2, where B1 is set to a relatively large value, such as greater than
256, on our GeForce 4070 Ti GPU. Meanwhile, B2 remains relatively small,
for example, less than 8. This configuration optimizes the utilization of the
GPU’s resources while minimizing potential overhead. A large value for B1

allows for a high degree of parallelism within each block, enabling efficient
utilization of the GPU’s streaming multiprocessors (SMs) and maximizing
the number of threads running concurrently. On the other hand, keeping
B2 small helps mitigate potential memory contention and resource conflicts
within each block. With a smaller B2, the threads within a block have ac-
cess to a more localized and efficient shared memory space, reducing the
likelihood of memory access conflicts and improving overall memory access
latency.

– Such configurations consistently yield the shortest execution times for field-
updating kernels, thereby maximizing the number of floating-point opera-
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tions per second (FLOPS) for each kernel. By meticulously optimizing the
block size parameters, we ensure that the GPU’s computational resources
are fully utilized, enabling the kernels to achieve peak performance. The
reduction in execution times directly translates to a higher throughput of
FLOPS, as more operations can be completed within a given time frame.
This enhanced efficiency allows for faster simulation runs and enables us to
tackle larger and more complex electromagnetic problems within a reason-
able timeframe.

– In our CUDA implementation, data arrays are typically accessed from global
memory, while integer constants are accessed from constant memory. To op-
timize the usage of global memory, we employ coalesced access strategy.
Coalesced access involves ensuring that consecutive threads within a thread
block access consecutive memory addresses when reading or writing data.
This approach allows for the efficient transfer of whole data sets in a single
transaction, maximizing memory bandwidth utilization and reducing mem-
ory access latency. By arranging threads to access contiguous memory lo-
cations, we can streamline memory transfers and minimize the number of
transactions required to load or store data in shared memory. This, in turn,
enhances memory access efficiency and the overall performance of memory-
bound kernels.

– In our CUDA implementation, we adopt a one-dimensional (1D) indexing
scheme to define block and thread numbers, aiming to optimize memory
access patterns and enhance overall performance. By organizing blocks and
threads in a 1D manner, we facilitate memory coalescing and streamline
access operations, both for reading data from and writing data to global
memory. The decision to use 1D indexing is rooted in its effectiveness in max-
imizing memory coalescing. With 1D indexing, consecutive threads within
a block access contiguous memory locations, enabling efficient data transfer
in a single transaction and minimizing memory access latency. Furthermore,
column-major order ensures that data elements along the same column are
stored contiguously in memory, aligning with the memory access patterns of
CUDA kernels. This organization is particularly advantageous during com-
putations involving a time-consuming partial FDTD solver, where efficient
memory access is essential for performance optimization.

– The strategy we have adopted involves assigning multiple Yee’s cells to each
thread, enabling direct access from shared memory for neighboring values
within each warp. This approach minimizes memory access overhead by re-
ducing the frequency of global memory accesses per thread. By allowing inner
threads of a warp block to read from shared memory instead of global mem-
ory, our strategy eliminates the need for additional global memory reads
within the warp. Moreover, when data is arranged in global memory, our
strategy leverages the on-chip caching mechanism in the latest NVIDIA
GPUs, further optimizing memory access and reducing latency. To deter-
mine the most effective performance, we conducted extensive experimental
analysis across various sizes of cells per thread computation. For example,
in our in-house system, we have identified that the optimal value for the

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_24

https://dx.doi.org/10.1007/978-3-031-63751-3_24
https://dx.doi.org/10.1007/978-3-031-63751-3_24


10 M.Reza HoseinyFarahabady, Albert Y. Zomaya

cell size per thread computation is 8. This optimal configuration maximizes
the efficiency of thread utilization and memory access, resulting in improved
performance and overall computational throughput.

4 Results

This section presents the results of the electromagnetic differential equation so-
lutions analysis conducted using the developed GPU-accelerated FDTD method.
We begin by showcasing the experimental results designed to validate the imple-
mented FDTD method through two simple scenarios. Subsequently, we present
the performance evaluation results, comparing them to the outcomes of other
FDTD implementations running on the CPU.

Platform Setup: The numerical simulations described in this study were con-
ducted on a desktop computer featuring an Intel Core i7-13700 CPU, boasting
24 cores and 64GB of memory, alongside a single NVIDIA GTX 4070 Ti Graph-
ics card equipped with 8GB of global memory. The desktop operates on Ubuntu
22.04, and the kernels were developed using the CUDA Toolkit v12.2.

Accuracy Assessment

To validate the numerical solver, we compared our GPU-implemented FDTD
method and other FDTD implementations primarily running on the CPU. This
evaluation was performed using two distinct scenarios, as outlined below.

Scenario 1: In our evaluation, we simulated the reflection coefficient of a
frequency-selective surface composed of a dipole array at normal incidence. Us-
ing a 3D FDTD method within free space, the dipole array was arranged in the
XY plane with a size of 8 mm and evenly spaced intervals of 30 mm in all X, Y,
and Z directions. The FDTD simulation was executed twice: once on the CPU
using the Meep software package [18] – an open-source FDTD implementation
for electromagnetism simulation on CPU many-core processors – and once on
the GPU using our proposed implementation. Both simulations employed mesh
sizes of 0.1 mm in each direction. To ensure accurate results, we applied bound-
ary conditions at the regional boundary. Additionally, we set the time step to
∆t = 0.004 ns to maintain the stability and convergence of the FDTD method.
This approach enabled us to assess the performance and effectiveness of our im-
plementation precisely. We calculated the 250-time step E and H fields in each
direction under identical parameter settings by comparing the results obtained
from both the Meep implementation and our proposed method. The simulation
results revealed consistency between the two methods, with a maximum error of
0.8% in computational differences.
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Scenario 2: We further conducted a second experimental evaluation to cal-
culate the Radar Cross Section (RCS) of a Perfect Electric Conductor (PEC)
sphere, which serves as a fundamental benchmark for electromagnetic simulation
methods due to its well-understood analytical solution. Using our proposed im-
plementation of the FDTD method, we simulated the electromagnetic scattering
from a sphere to compare the computed RCS values against the analytically de-
rived RCS values. The simulation setup consisted of a cubic domain with a PEC
sphere at its center, spanning 25 cells in radius within a calculation domain of
600 × 600 × 600 cells. The domain was filled with free-space, and the temporal
resolution was set to ∆t = 0.004 ns. The sphere, with a radius of r = 0.2λ, was
subjected to an incident electric field at 0 degrees in the x direction and had
PEC boundaries with Perfect Magnetic Conductor (PMC) boundary conditions.
Throughout the simulation of 300 steps, we computed the absorption efficiency
of the sphere and meticulously compared it with analytical results. We observed
a degree of agreement between the two methods exceeding 99.4%.

Efficiency Evaluation of GPU-implemented FDTD Method

In this section, we compare the performance of our proposed GPU massive par-
allel implementation of the FDTD method with the parallel vectorized CPU
implementation using the Meep software package for the two scenarios men-
tioned above. While there are many other GPU implementations of the FDTD
method in the literature, such as those referenced in [14, 9, 20, 10, 3], the source
code for various other GPU implementations is not publicly available. Hence,
direct comparisons of performance evaluations between our method and these
implementations are not feasible in this study.

Speedup Gain: Figure 2 (a) plots the speedup of our implementation com-
pared to the Meep implementation on CPU cores. The GPU version’s speedup
demonstrates our approach’s potential and the consistency of such speedup as
the simulation size increases. It is evident that GPU implementation is more
efficient when more extensive simulations are accommodated in GPU global
memory. However, when the simulation space exceeds the capacity of the GPU
global memory (i.e., more than 8GB in our setup), the speedup declines. Such
a decline is attributed to the challenges in hiding the context switching with
a small number of active warps, compounded by the mandatory data transfer
between the main memory in the host and the GPU global memory per each
simulation step.

Furthermore, maximizing the concurrent execution of a large number of
threads on the GPU proves to be more efficient, given that the primary bottle-
neck for FDTD computation lies in the availability of data in the global/shared
memory of the GPU. Additionally, the cache memory of the GPU plays a non-
significant role in influencing speedup performance. For smaller simulation sizes,
even where data fits within the SM caches, the speedup can reach values near
8x, as for smaller simulation sizes; the time costs of this memory management
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become more significant with respect to the whole execution time as the commu-
nication time of data movement between host and device is dominated. Similarly,
as the simulation size increases beyond the capacity of GPU global memory, the
occurrence of communication time between host and device becomes more sig-
nificant again. This results in heightened communication time between host and
device memory, as well as the global and shared memory within the GPU, conse-
quently leading to severe degradation in performance. Consequently, the speedup
diminishes significantly to as low as 2x when the simulation size surpasses the
GPU’s global memory capacity by one order of magnitude.

Throughput: Throughput refers to the number of finite difference cells updated
per second. Figure 2 (b) plots the average performance throughput (in Millions
of Cells per Second) and the throughput gain of our implementation compared
to the CPU-based Meep implementation as the side length of the cubic domain
increases from 200 to 1000. This calculation excludes the wasted communication
time transferring data from the host’s main memory to GPU global memory. Re-
sults show that the throughput of the CPU-based Meep solver of the FDTD code
remains constant at approximately 50 Mega Cells/s, while our CUDA implemen-
tation ranges from 130 to 877 Mega Cells/s, maintaining around 100 when the
simulation size exceeds the capacity of the GPU’s global memory by one order
of magnitude. Furthermore, our method demonstrates a 17x higher throughput
performance than the CPU-based method when the entire simulation data fits
into the GPU global memory. The consistent speedup and throughput gain trend
observed in Scenario 2 experiments across varying simulation sizes aligns with
earlier reported results. Therefore, we omit the repetition of these findings.
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Fig. 2: Comparative analysis of (a) speedup gain, and (b) throughput with in-
creasing simulation size: our GPU implementation versus Meep (CPU) method.
Evaluation conducted with varying model sizes and a consistent time step in
FDTD simulations for Scenario 1.
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5 Conclusions

This paper illuminates the promising potential of employing GPU-accelerated
FDTD methods to implement large-scale PDE solvers. By harnessing advanced
features of the CUDA framework, such as CUDA streams, we have developed a
GPU-accelerated FDTD solver and extensively evaluated its performance across
NVIDIA’s GPUs. Comparative analyses against the parallelized CPU solver have
revealed substantial performance advantages. Notably, our GPU solver achieved
throughput rates of up to 877 Mega Cells per second, marking up to a 17-fold
improvement over the open-source Meep CPU solver on standard desktops. This
affordability renders cutting-edge GPU technology accessible to a wide range
of individuals utilizing commodity workstations in partial differential equations
solver. While GPUs inherently offer superior computational performance com-
pared to traditional CPUs, owing to their heightened floating-point capabilities
and memory bandwidth, future investigations will explore alternative FDTD im-
plementations tailored for diverse contexts alongside their scalability on multi-
GPU cluster platforms.

Acknowledgments. Professor Zomaya would like to acknowledge the support of the
Australian Research Council Discovery Project (DP200103494). Dr. M. Reza Hoseiny-
Farahabady acknowledges the continued support of The Center for Distributed and
High-Performance Computing at The University of Sydney for giving access to ad-
vanced high-performance computing and cloud facilities, digital platforms, and neces-
sary tools.

References

1. Andersson, U.: Time-Domain Methods for the Maxwell Equations. Doctoral dis-
sertation, Royal Institute of Technology, Stockholm (2001)

2. Ansorge, R.: Programming in Parallel with CUDA: A Practical Guide. Cambridge
University Press (2022)

3. Baumeister, P.F., Hater, T., Kraus, J., Pleiter, D., Wahl, P.: A performance
model for gpu-accelerated fdtd applications. In: 2015 IEEE 22nd Interna-
tional Conference on High Performance Computing (HiPC). pp. 185–193 (2015).
https://doi.org/10.1109/HiPC.2015.24

4. Carcione, J.M., Valle, S., Lenzi, G.: Gpr modelling by the fourier method: improve-
ment of the algorithm. Geophysical Prospecting 47(6), 1015–1029 (1999)

5. Cassidy, N.J., Millington, T.M.: The application of finite-difference time-domain
modelling for the assessment of gpr in magnetically lossy materials. Journal of
Applied Geophysics 67(4), 296–308 (2009)

6. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs. Morgan Kaufmann (November 2012)

7. Elsherbeni, A., Demir, V.: The Finite-difference Time-domain for Electromagnet-
ics: With MATLAB Simulations. ACES series on computational electromagnetics
and engineering, Institution of Engineering and Technology (2016)

8. Feng, D.S., Dai, Q.W.: Gpr numerical simulation of full wave field based on upml
boundary condition of adi-fdtd. NDT & E International 44(6), 495–504 (2011)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_24

https://dx.doi.org/10.1007/978-3-031-63751-3_24
https://dx.doi.org/10.1007/978-3-031-63751-3_24


14 M.Reza HoseinyFarahabady, Albert Y. Zomaya

9. Francés, J., Bleda, S., Neipp, C., Márquez, A., Pascual, I., Beléndez, A.: Perfor-
mance analysis of the fdtd method applied to holographic volume gratings: Multi-
core cpu versus gpu computing. Computer Physics Communications 184(3), 469–
479 (2013)

10. Francés, J., Otero, B., Bleda, S., Gallego, S., Neipp, C., Márquez, A., Beléndez,
A.: Multi-gpu and multi-cpu accelerated fdtd scheme for vibroacoustic applications.
Computer Physics Communications 191, 43–51 (2015)

11. Giannakis, I., Giannopoulos, A., Warren, C.: A realistic fdtd numerical modeling
framework of ground penetrating radar for landmine detection. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 9(1), 37–51
(2016)

12. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: Nvidia tesla: a unified graph-
ics and computing architecture. IEEE Micro 28(2), 39–55 (2008)

13. Liu, J., Shen, L.: Numerical simulation of subsurface radar for detecting buried
pipes. IEEE Transactions on Geoscience and Remote Sensing 29(5), 795–798
(1991)

14. Livesey, M., Stack, Jr, J.F., Costen, F., Nanri, T., Nakashima, N., Fujino, S.:
Development of a cuda implementation of the 3d fdtd method. IEEE Antennas
and Propagation Magazine 54(5), 186–195 (2012)

15. Lopez, J., Carnicero, D., Ferrando, N., Escolano, J.: Parallelization of the finite-
difference time-domain method for room acoustics modelling based on cuda. Math-
ematical and Computer Modelling 57(7), 1822–1831 (2013)

16. NVIDIA Corporation: NVIDIA CUDA Toolkit Documentation, CUDA Streams:
Asynchronous Concurrent Execution (2023), accessed on Nov. 2023

17. NVIDIA Corporation: NVIDIA’s GPU Platform (2023), accessed on Nov. 2023
18. Oskooi, A., Roundy, D., Ibanescu, M., Bermel, P.A., Joannopoulos, J.: Meep: A

flexible free-software package for electromagnetic simulations by the fdtd method.
Computer Physics Communications 181(3), 687–702 (2010)

19. Taflove, A.: Computational Electrodynamics: The Finite-Difference Time-Domain
Method. Artech House, Norwood, MA, USA, 3rd edn. (2005)

20. Warren, C., Giannopoulos, A., Gray, A., et al.: A cuda-based gpu engine for
gprmax: Open source fdtd electromagnetic simulation software. Computer Physics
Communications 237, 208–218 (2019)

21. Yee, K.S.: Numerical solution of initial boundary value problems involving
maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagat. 14(3),
302–307 (March 1966)

22. Yu, W., Yang, X., Liu, Y., Mittra, R., Muto, A.: Advanced FDTD Method: Par-
allelization, Acceleration, and Engineering Applications. Artech House, Norwood,
MA (2011)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_24

https://dx.doi.org/10.1007/978-3-031-63751-3_24
https://dx.doi.org/10.1007/978-3-031-63751-3_24

