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Abstract. This work investigates the feasibility of applying Neural Ra-
diance Fields (NeRFs) for reconstructing 3D representations of damaged
structures caused by the ongoing aggression of Russia against Ukraine.
The drone footage depicting the devastation was utilized and three NeRF
models, Instant-NGP, Nerfacto, and SplatFacto, were employed. The
models were evaluated across various damage levels (0: no damage, 4:
high damage) using visual quality metrics like Structural Similarity Index
Measure (SSIM), Learned Perceptual Image Patch Similarity (LPIPS),
Peak Signal-to-Noise Ratio (PSNR) and rendering speed metrics like
frames per second (FPS) and the number of rays per second (NRS). All
input data (videos frames) and evaluation results (rendered visualiza-
tions) are available as a Kaggle dataset (http://tiny.cc/srasxz). No clear
correlation was observed between damage level and reconstruction qual-
ity metrics, suggesting these metrics might not be reliable indicators of
damage severity. SplatFacto consistently achieved the highest rendering
speed (FPS, NRS) and exhibited the best visual quality (SSIM, PSNR,
LPIPS) across all damage levels. The findings suggest that NeRFs, par-
ticularly SplatFacto, hold promise for rapid reconstruction and visual-
ization of damaged structures, potentially aiding in damage assessment,
documentation, and cultural heritage preservation efforts. Moreover, the
study sheds light on the potential applications of such advanced model-
ing techniques in archiving and documenting conflict zones, providing a
valuable resource for future investigations, humanitarian efforts, and his-
torical documentation. However, further research is needed to explore the
generalizability and robustness of NeRFs in diverse real-world scenarios.
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1 Introduction

Recent advancements in technology demonstrate the feasibility of restoring de-
teriorated artworks and cultural artifacts to their former glory. Employing ad-
vanced 3D reconstruction methodologies, these artifacts can be visually resur-
rected, even if they have been lost or irreparably damaged. Leveraging pho-
tographic documentation or 3D scanning data, it becomes possible to generate
accurate three-dimensional models of cultural assets, thereby enabling viewers to
engage with them once more. This restoration process extends to various forms
of cultural heritage, including rediscovered ruins, damaged historical texts, an-
cient Egyptian and Greek temples, monumental structures, medieval frescoes,
and other significant artifacts, all reconstructed with the aid of state-of-the-art
techniques.

The ongoing aggression and war of Russia against Ukraine has left a profound
mark on the landscape, particularly evident in the widespread destruction of
cities [1,2]. The consequential impact of this aggression underscores the critical
need to monitor, visualize, and document the extent of devastation with a depth
that surpasses traditional methodologies.

Recently, several studies effectively demonstrated the potential of Neural
Radiance Fields (NERFs) for reconstructing 3D representations [3,4]. NERF
allows to create 3D models of objects and scenes from images of some scene from
different angles. NERF “learns” the scene from these images (“remembering” the
object’s shape and details) and use this information to generate a realistic 3D
model from any viewpoint, even one you didn’t take images from before. This
can be used for reconstructing damaged structures, capturing historical sites, or
even creating immersive virtual experiences.

In this work, the feasibility of application of NERF models for reconstruction
of 3D representations for damaged structures caused by Russian aggression in
Ukraine is considered. Section 2 contains description of the state of the art,
section 3 describes dataset, models, experiments, and the whole workflow, section
4 gives the results obtained during the experiments, section 5 contains discussions
of results and resumes them in section 6.

2 Background and Related Work

Neural Radiance Fields (NeRFs) have revolutionized the field of 3D scene rep-
resentation by offering a novel deep learning approach. NeRFs operate under a
paradigm of learning a continuous volumetric representation of a scene from a
collection of 2D images captured from various viewpoints [3]. This representa-
tion allows for the synthesis of novel views, enabling visualization of the scene
from any desired perspective, even those not present in the original capture set.

NeRFs have experienced remarkable progress since their inception [3], ef-
fectively addressing initial limitations and paving the way for promising future
applications. The Mip-NeRF approach employs a multiscale representation, sig-
nificantly improving image detail and rendering speed while mitigating aliasing
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artifacts [5]. Mip-NeRF 360 tackles the challenge of unbounded scenes by en-
abling the reconstruction of large and intricate environments with 360-degree
camera views [6]. Instant Neural Graphics Primitives utilizes multiresolution
hash encoding for efficient training and real-time rendering, significantly im-
proving the speed and efficiency of NeRF models [4]. High-Fidelity Reconstruc-
tion combines multi-resolution 3D hash grids with rendering, achieving superior
surface reconstruction detail, leading to high-fidelity scene representations [7]. K-
Planes presents a ”white-box” model using k-planes to represent dynamic scenes
like videos [8]. This approach enables efficient optimization and incorporation of
specific priors, making it suitable for dynamic scene representation. 3D Gaussian
Splatting leverages pre-computed 3D Gaussians and visibility-aware rendering,
achieving real-time rendering at high quality, opening doors for interactive ap-
plications [9].

These advancements collectively demonstrate the rapid development of NeRF
technology. By addressing initial limitations, these innovations push the capa-
bilities of NeRFs towards real-time applications, detailed scene reconstruction,
and handling complex scenes with diverse material properties and dynamics.

While NeRFs have seen significant advancements, several key challenges re-
main. For example, training NeRFs on large datasets with high resolution can
be computationally expensive and time-consuming. Ongoing research explores
techniques for improving training efficiency and reducing memory footprints.
NeRFs can struggle with scenes containing complex materials with non-diffuse
BRDF (Bidirectional Reflectance Distribution Function) properties or challeng-
ing lighting conditions that deviate from the typical assumptions made during
training. Real-world data often contains noise, occlusions, or missing informa-
tion. Improving the robustness of NeRFs to handle such data remains an ongoing
area of research that can potentially improve generalization and reconstruction
quality for integrating NeRFs into real-world applications. Addressing these chal-
lenges is crucial for further advancing the practical applications and capabilities
of NeRF technology. That is why the main of the work is to investigate the fea-
sibility of application of NERF models for reconstruction of 3D representations
for damaged structures caused by Russian aggression in Ukraine.

3 Methodology

3.1 Data

The data for this project consisted of drone footage depicting the aftermath of
Russian aggression in Ukraine. Due to the ongoing conflict, the initial step in-
volved collecting existing videos from various sources, primarily YouTube. While
this approach provided a starting point, the preferred method for future data
acquisition would be to utilize drone cameras directly. This would enable high-
resolution video capture and ensure comprehensive coverage of all key details
and angles. All input data (videos frames) and evaluation results (rendered vi-
sualizations) are available as a Kaggle dataset 3.

3 http://tiny.cc/srasxz
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To effectively analyze and categorize the scenes within the dataset, a method
of differentiation based on ”damage levels” was employed. This categorization
was crucial for understanding the varying degrees of destruction observed in
each scene. Annotators were instructed to assign damage level scores ranging
from 0 to 5 to each scene, representing the extent of destruction. This scoring
system enabled a quantitative representation of the severity of damage, ensur-
ing consistency and accuracy in the evaluation process. Initially, the damage
level classification was based on the existing dataset, which provided a range of
damage levels. However, it is important to note that this classification system
can be extended to encompass a broader range of destruction scenarios with
the inclusion of new data. For instance, level 5 classifications could represent
scenes where structures are completely obliterated, leaving only ruins with no
discernible remnants of their original form. Incorporating such detailed classifica-
tions aims to provide a more nuanced understanding of the extent of devastation
caused by the conflict. These efforts contribute to the comprehensive analysis
and visualization of the aftermath captured in the drone footage.

Borodyanka residential area, damage level 4. This dataset focuses on the
aftermath of conflict in Borodyanka, characterized by a lack of varied perspec-
tives (Fig.1). The footage reveals a high level of destruction, providing intricate
details and figures. The camera path is complex, offering a nuanced view of the
affected area. However, the presence of many background objects introduces a
challenge, as limited information is available about these elements, potentially
impacting the overall interpretability of the dataset.

Fig. 1. Examples of drone imagery for Borodyanka, damage level 4.

Chernihiv Hotel “Ukraine”, damage level 3. This dataset features drone
footages capturing the aftermath of Russian aggression on the Chernihiv hotel
“Ukraine” (Fig.2). The camera follows a 360-degree path, capturing the scene
from all angles and perspectives. The medium to high level of destruction is
emphasized, with minimum background objects, focusing primarily on the hotel.

Chernihiv residential area, damage level 2. This dataset captures drone
footages of a residential area in Chernihiv (Fig.3). The footage follows 360-degree
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Fig. 2. Examples of drone imagery for Chernihiv Hotel “Ukraine”, damage level 3.

camera path but with several jumps. The level of destruction is medium to low,
and the main scene contains numerous objects. There are many background
objects, which may impact the clarity of the footage.

Fig. 3. Examples of drone imagery for Chernihiv residential area, damage level 2.

Chernihiv Bridge, damage level 1,3. The Chernihiv Bridge dataset show-
cases drone footage with a forward-flying camera path, providing a singular
perspective of the scene (Fig.4). The scene exhibits a low level of destruction on
one half and a high level on the other. There are minimum background objects,
with the main focus on the Bridge.

Fig. 4. Examples of drone imagery for Chernihiv Bridge, damage level ’mixed’.

Chernihiv cathedral, damage level 0. This dataset showcases drone footage
captured using a 360-degree camera path, featuring the Chernihiv Cathedral
(Fig.5) with occasional zoom adjustments. The scene focuses primarily on the
cathedral and does not depict any destruction.
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Fig. 5. Examples of drone imagery for Chernihiv cathedral, damage level 0.

3.2 Models

This section outlines the NeRF models employed in our research, trained and
evaluated using the user-friendly NerfStudio framework [10]. NerfStudio pro-
vides various implementations of popular NeRF-based methods, including those
directly relevant to this work4.

SplatFacto. The SplatFacto implementation within NerfStudio was used to
explore the 3D Gaussian Splatting (3D GS) approach [9]. The model uses default
parameters to achieve a balance between speed, rendering quality, and the size
of the generated splat file. One noteworthy parameter is cull-alpha-thresh (0.1)
that defines the opacity threshold used for culling Gaussians, effectively removing
those with minimal contribution to the final rendering.

Instant-NGP. For comparison purposes, NerfStudio’s implementation of the
Instant Neural Graphics Primitives (Instant-NGP) model [4] was used also and
utilizes the following key parameters: grid-resolution (128), resolution of the grid
used for the field; grid-levels (4), levels of the grid used for the field; and max-res
(2048), maximum resolution of the hashmap for the base multi-layer perceptron
(MLP).

Nerfacto. Nerfacto is a unified approach within NerfStudio that combines ele-
ments from various research papers to create a fast and high-quality rendering
method [11]. It incorporates several key components:

– Pose refinement: This improves the accuracy of the camera poses, leading to
a more realistic rendered scene.

– Piecewise sampler: This sampling strategy allocates samples throughout the
scene, prioritizing areas with more objects and detail.

– Proposal sampler: This sampler further refines the sample locations by fo-
cusing on areas that significantly impact the final image. It utilizes a density
function, implemented with a small fused MLP and hash encoding, to iden-
tify these crucial regions.

4 https://github.com/nerfstudio-project/nerfstudio/
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– Density field: This field represents a coarse estimation of the scene’s density,
guiding the sampling process. It is also implemented with a small fused MLP
and hash encoding.

Similar to the previous models, Nerfacto utilizes the following common pa-
rameters: grid-resolution (128), resolution of the grid used for the field; grid-
levels (4), the number of levels within the hierarchical grid structur; and max-res
(2048), maximum resolution of the hashmap for the base MLP.

All models share additional default parameters for training:

– the number of steps between saves (default: 2000), i.e. frequency at which
the model checkpoints are saved during training,

– the maximum number of iterations (default: 30000), i.e. training iterations,
– the number of steps between batches (default: 500), i.e. the number of train-

ing steps before updating the model with a new batch of data.

3.3 Metrics

The paper presents various metrics to evaluate the performance of NERF mod-
els in reconstructing 3D representations of damaged buildings. These metrics
include:

– SSIM (Structural Similarity Index Measure): measures the visual quality of
the reconstructed scene compared to the ground truth. A higher SSIM value
indicates better visual quality.

– PSNR (Peak Signal-to-Noise Ratio): measures the peak signal power relative
to the noise power, with higher values indicating better fidelity to the original
image.

– LPIPS (Learned Perceptual Image Patch Similarity): measures the percep-
tual similarity between the reconstructed image and the ground truth. A low
LPIPS score means that image patches are perceptual similar.

– FPS (Frames Per Second): represents the rendering speed of the model,
indicating how many frames can be generated per second.

– NRS (Number of Rays per Second): indicates the computational efficiency of
the model, capturing the number of rays the model can process per second.

3.4 Workflow

The initial step involved collecting drone footage capturing the aftermath of
Russian aggression in Ukraine. Due to the ongoing conflict, the primary method
for acquiring this data was utilizing existing videos from diverse sources, mainly
from YouTube. However, in practical scenarios, capturing high-resolution videos
using drone cameras would be preferable to ensure comprehensive coverage of
all relevant angles and details.

Once the video data is acquired, frames are extracted at a predetermined
frame rate. In this work, a frame rate of 2 frames per second (fps) was chosen to
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achieve a balance between capturing sufficient scene information and maintaining
dataset size within manageable limits.

While all extracted frames contribute to the dataset, they vary in informa-
tional value. To optimize representation and computational efficiency, frames
capturing unique viewpoints or revealing crucial scene details were prioritized.
Prioritized frames were those that maintained clarity and focus on the main
object, discarding blurred frames or those not primarily focused on the main
objects. This selection process aimed to ensure the dataset’s quality and rel-
evance for subsequent analyses and model training. Additionally, frames from
multiple videos were combined to increase dataset size and viewpoint diversity,
enhancing model robustness. This comprehensive approach aimed to create a
rich and diverse dataset capable of supporting various analyses and training
tasks effectively.

The next step involved processing the prepared frames with the COLMAP
which is an open-source general-purpose Structure-from-Motion (SfM) and Multi-
View Stereo (MVS) pipeline with a graphical and command-line interface5. It
serves two primary purposes:

1. Camera Parameter Estimation: COLMAP helped estimate the intrinsic and
extrinsic camera parameters associated with each extracted frame. These
parameters are crucial for NeRF training, as they relate pixel locations within
the images to their corresponding 3D world coordinates.

2. Feature Extraction and Matching: COLMAP was also employed to extract
distinctive features from each frame and establish robust matches between
corresponding features across different viewpoints. These feature matches
provide valuable information about the scene’s geometry and facilitate the
subsequent NeRF training process.

Though COLMAP scripts usually require model-specific adjustments, NeRF-
Studio allows a single script for all models within the framework, improving
efficiency and simplifying data preparation. Following COLMAP processing,
the NeRFStudio framework was used for training. This framework offers var-
ious NeRF model implementations, facilitating the exploration of different ap-
proaches. Three specific models were employed in this work:

– Instant-NGP. This model was chosen for its fast training speed, achieved
through efficient multi-resolution representations.

– SplatFacto. This model emphasizes rendering efficiency, utilizing pre-computed
3D Gaussians for real-time rendering capabilities.

– NeRFacto. This model combines multi-resolution encoding with neural sur-
face rendering, aiming to achieve high-fidelity reconstructions.

Each of these models was trained on all prepared datasets within the NeRF-
Studio environment. This multi-model approach allowed the comparison of per-
formance and characteristics of each method in the context of reconstructing the
specific scene captured in the drone footage.

5 https://colmap.github.io/
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The tools provided within the NeRFStudio framework were leveraged to eval-
uate the performance of trained models. Before initiating training, each dataset
was split into dedicated training and testing sets. This ensured a fair evaluation
process where models were assessed on previously unseen frames.

Various evaluation metrics are provided by NeRFStudio and calculated on a
per-frame basis. These metrics typically include standard image quality measures
like PSNR, SSIM, and LPIPS, offering different perspectives on reconstruction
accuracy and visual fidelity. After calculating these metrics for all frames, the
mean and standard deviation are computed across the entire test set. This ag-
gregation provides a summary of the overall model performance, indicating both
the central tendency and the variability across frames. The training and testing
trials were performed in Google Colab environment6 with access to a graphics
processing unit NVIDIA Tesla T4 with 16 GB of video random access memory
and 12 GB of system random access memory.

4 Results

After several attempts the mean and standard deviation values of metrics were
measured for Instant-NGP (Table 1), Nerfacto (Table 2), and SplatFacto (Table
3) models and visualized in the plots below (Fig.6-7). The maximal values for
SSIM, PSNR, LPIPS, FPS, NRS, and minimal values for LPIPS are emphasized
by bold font.

Based on these results (Table 1, 2, and 3), one can make the following obser-
vations regarding the correlations between metrics and damage levels. There is
no clear trend between the damage level and the values of SSIM, PSNR, LPIPS,
FPS, or NRS across the different objects. While there might be slight variations
in the means for each damage level, the standard deviations suggest significant
overlap between different damage categories for each metric. This indicates that
reconstruction quality metrics alone might not be reliable indicators of damage
severity.

Table 1. Mean and standard deviation values of metrics for Instant-NGP model.

Object Damage SSIM PSNR LPIPS FPS NRS

Borodyanka 4 0.38±0.09 15.4±1.8 0.79±0.06 0.10±0.01 9.3E4±1.1E4

Hotel 3 0.66±0.08 20.8±2.1 0.31±0.07 0.07±0.01 6.7E4±0.8E4

Residential 2 0.45±0.09 18.2±1.5 0.55±0.10 0.064±0.004 5.9E4±0.4E4

Bridge mixed 0.49±0.12 21.6±1.5 0.56±0.06 0.08±0.02 7.5E4±1.9E4

Cathedral 0 0.63±0.08 20.6±2.3 0.44±0.10 0.13±0.02 11.9E4±1.7E4

6 https://colab.research.google.com/
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Table 2. Mean and standard deviation values of metrics for Nerfacto model.

Object Damage SSIM PSNR LPIPS FPS NRS

Borodyanka 4 0.38±0.13 15.4±2.4 0.50±0.14 0.13±0.01 11.4E4±8.3E4

Hotel 3 0.55±0.07 18.8±1.4 0.28±0.06 0.21±0.02 19.2E4±1.9E4

Residential 2 0.38±0.09 16.9±1.8 0.51±0.11 0.13±0.01 11.6E4±6.6E4

Bridge mixed 0.37±0.14 18.8±1.6 0.56±0.05 0.13±0.01 11.9E4±7.3E4

Cathedral 0 0.50±0.10 18.5±2.2 0.44±0.11 0.12±0.01 11.4E4±9.6E4

Table 3. Mean and standard deviation values of metrics for SplatFacto model.

Object Damage SSIM PSNR LPIPS FPS NRS

Borodyanka 4 0.42±0.11 16.1±2.4 0.50±0.07 0.55±0.09 49.0E4±8.8E4

Hotel 3 0.93±0.01 29.0±1.4 0.06±0.01 0.63±0.08 57.6E4±7.5E4

Residential 2 0.75±0.18 23.3±4.1 0.18±0.11 0.55±0.08 50.8E4±8.0E4

Bridge mixed 0.78±0.08 23.9±3.2 0.28±0.14 0.56±0.10 51.6E4±9.1E4

Cathedral 0 0.76±0.13 23.1±3.6 0.24±0.09 0.60±0.10 55.0E4±8.6E4
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Fig. 6. Graphic visualization of some metrics for the objects with various damage levels
for Instant-NGP model from Table 1 (left) and Nerfacto model from Table 2 (right).
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Fig. 7. Graphic visualization of some metrics for the objects with various damage levels
for SplatFacto model from Table 3.

5 Discussion

This chapter delves deeper into the performance of the three rendering models:
Splatfacto, Nerfacto, and Instant-NGP. The models were assessed under varying
object damage levels (0: no damage, 4: high damage) using both visual qual-
ity metrics (SSIM, LPIPS, PSNR) and rendering speed metrics (FPS, rays per
second).

Based on the results (Table 1, 2, and 3), one can make the following observa-
tions regarding the correlations between metrics and damage levels for various
models that are summarized in Tables 4-8 and visualizations (Fig.8-10).

Table 4. Mean and standard deviation values of metrics for damage level 0 (“No
Damage”).

Model SSIM PSNR LPIPS FPS NRS

Instant-NGP 0.63±0.08 20.6±2.3 0.44±0.10 0.13±0.02 11.8E4±1.7E4

Nerfacto 0.50±0.10 18.5±2.2 0.44±0.11 0.12±0.01 11.4E4±9.6E4

SplatFacto 0.76±0.13 23.1±3.6 0.24±0.09 0.60±0.09 55.0E4±8.6E4

Table 5. Mean and standard deviation values of metrics for the damage level 2.

Model SSIM PSNR LPIPS FPS NRS

Instant-NGP 0.45±0.09 18.2±1.5 0.54±0.10 0.064±0.004 5.9E4±3.9E4

Nerfacto 0.38±0.09 16.9±1.8 0.51±0.11 0.126±0.007 11.6E4±6.6E4

SplatFacto 0.75±0.18 23.3±4.1 0.18±0.11 0.55±0.09 50.9E4±8.0E4
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Table 6. Mean and standard deviation values of metrics for the damage level 3.

Model SSIM PSNR LPIPS FPS NRS

Instant-NGP 0.66±0.08 20.8±2.1 0.31±0.07 0.07±0.01 6.7E4±7.9E4

Nerfacto 0.55±0.07 18.8±1.4 0.27±0.06 0.21±0.02 19.2E4±1.9E4

SplatFacto 0.93±0.01 29.0±1.4 0.06±0.01 0.63±0.08 57.6E4±7.5E4

Table 7. Mean and standard deviation values of metrics for the damage level 4.

Model SSIM PSNR LPIPS FPS NRS

Instant-NGP 0.38±0.09 15.5±1.8 0.79±0.06 0.10±0.01 9.3E4±1.1E4

Nerfacto 0.39±0.13 15.4±2.4 0.50±0.14 0.13±0.01 11.4E4±8.3E4

SplatFacto 0.42±0.11 16.1±2.4 0.50±0.07 0.55±0.01 49.0E4±8.9E4

SplatFacto achieves the highest SSIM and PSNR scores for all damage levels.
This indicates that SplatFacto generally produces reconstructions that best pre-
serve the structural similarity between the original scene and the reconstructed
one. Nerfacto is the worst one and Instant-NGP is intermediate between Splat-
Facto and Nerfacto.

SplatFacto demonstrates the most consistent and best performance in terms
of the lowest LPIPS (perceptual similarity) scores across all damage levels. This
indicates that for all damage scenarios SplatFacto generally produces reconstruc-
tions with the highest perceptual similarity to the ground truth.

FPS performance of models across damage levels demonstrate that Splat-
Facto achieves the highest FPS consistently across all damage levels. This indi-
cates that SplatFacto can generate reconstructions at a significantly faster rate
compared to other models. Nerfacto has the lowest FPS across all damage levels
and it might be computationally expensive and unsuitable for real-time applica-
tions. Instant-NGP falls between SplatFacto and Nerfacto and shows a moderate
improvement over Instant-NGP but doesn’t reach the speed of SplatFacto.

Finally, SplatFacto consistently outperforms other models, Instant-NGP and
Nerfacto, in both visual quality and rendering speed across all damage levels. It
excels at preserving fine details and achieves impressive rendering speeds com-
pared to Nerfacto and Instant-NGP.

Table 8. Mean and standard deviation values of metrics for the damage level “mixed”.

Model SSIM PSNR LPIPS FPS NRS

Instant-NGP 0.49±0.12 21.6±1.5 0.56±0.06 0.08±0.02 7.5E4±1.9E4

Nerfacto 0.37±0.14 18.8±1.6 0.56±0.05 0.13±0.01 11.9E4±7.3E4

SplatFacto 0.78±0.08 23.9±3.2 0.28±0.14 0.56±0.10 51.7E4±9.1E4
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Fig. 8. Graphic visualization of some metrics for various models for the damage level
“No Damage” (left) from Table 4 and 2 (right) Table 5.

SSIM LPIPS FPS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Instant-NGP

Nerfacto

Splatfacto

SSIM LPIPS FPS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Instant-NGP

Nerfacto

Splatfacto

Fig. 9. Graphic visualization of some metrics for various models for the damage level
3 (left) from Table 6 and the damage level 4 (right) from Table 7.
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Fig. 10. Graphic visualization of some metrics from Table 8 for various models for the
damage level “mixed”.

6 Conclusions

The study extensively tests and compares three modern NERF models on a
dataset of drone footages capturing the aftermath of Russian attacks in Ukraine.
Each model is tasked with reconstructing 3D representations of destroyed build-
ings, offering insights into the spatial and structural aspects of the damage.
The study successfully demonstrates the potential of NERF models for 3D re-
construction of damaged structures in conflict zones. The findings suggest that
Splatfacto offers a compelling combination of high-quality reconstructions (mea-
sured by SSIM, PSNR, and LPIPS), fast rendering speed and computational ef-
ficiency. The paper acknowledges that the current research is in its initial stages,
and further development is needed to improve the accuracy and efficiency of
NERF models for real-world applications.

The research highlights several potential areas for future research. The im-
pact of training data variations should be investigated, especially, sensitivity of
the model performance with different datasets capturing diverse damage scenar-
ios, lighting conditions, and viewpoints. The usage of various advanced NERF
models, such as K-planes [8], TensoRF [12], Neuralangelo [7], and others, could
be explored to understand how different model architectures could improve the
reconstruction quality while maintaining efficiency. Also additional modalities
(auxiliary data such as depth maps or semantic segmentation) should be consid-
ered for incorporation to enhance the reconstruction accuracy. The very impor-
tant aspect is related to integration of this approach in real-time reconstruction
systems, especially, in the context of optimisation of NERF models for real-
time applications, enabling faster generation of 3D representations for immediate
damage assessment or monitoring purposes.

By addressing these future research directions, one can further refine NERF
technology for comprehensive documentation and analysis of conflict zones, po-
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tentially aiding humanitarian efforts and historical preservation. Overall, the
study highlights the promising potential of NERF technology for revolutionizing
the way one can use to document and analyze conflict zones, offering valuable
insights for future research and real-world applications.
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2. Paulo Pereira, Ferdo Bašić, Igor Bogunovic, and Damia Barcelo. Russian-ukrainian
war impacts the total environment. Science of The Total Environment, 837:155865,
2022.

3. Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for
view synthesis. Communications of the ACM, 65(1):99–106, 2021.

4. Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Trans.
Graph., 41(4):102:1–102:15, July 2022.

5. Ting-Hu Yu, Yu Feng, Sida Lai, Mengqi Li, Jinxiang Zhou, and Hui Bao. Mip-nerf:
A multiscale representation for anti-aliasing neural radiance fields. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 12868–
12877, 2021.

6. Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter
Hedman. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5470–5479, 2022.

7. Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Taylor, Mathias Unberath,
Ming-Yu Liu, and Chen-Hsuan Lin. Neuralangelo: High-fidelity neural surface
reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8456–8465, 2023.

8. Sara Fridovich-Keil, Giacomo Meanti, Frederik RahbækWarburg, Benjamin Recht,
and Angjoo Kanazawa. K-planes: Explicit radiance fields in space, time, and ap-
pearance. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12479–12488, 2023.

9. Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
3d gaussian splatting for real-time radiance field rendering. ACM Transactions on
Graphics, 42(4), 2023.

10. Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Terrance Wang,
Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, et al. Nerf-
studio: A modular framework for neural radiance field development. In ACM
SIGGRAPH 2023 Conference Proceedings, pages 1–12, 2023.

11. Nerfstudio Team. Nerfacto, 2022. https://docs.nerf.studio/nerfology/

methods/nerfacto.html.
12. Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tenso-

rial radiance fields. In European Conference on Computer Vision, pages 333–350.
Springer, 2022.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_23

https://docs.nerf.studio/nerfology/methods/nerfacto.html
https://docs.nerf.studio/nerfology/methods/nerfacto.html
https://dx.doi.org/10.1007/978-3-031-63751-3_23
https://dx.doi.org/10.1007/978-3-031-63751-3_23

