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Abstract. We propose a technique to circumvent the direct computation of sin-

gular surface integrals in parametric integral equation system (PIES) employed 

for solving three-dimensional potential problems.  It is based on the regulariza-

tion of the original singular PIES formula, resulting in the simultaneous elimi-

nation of both strongly and weakly singular integrals. As a result, there is the 

possibility of numerically calculating the values of all integrals in the obtained 

formula using standard Gaussian quadrature. The evaluation of accuracy for the 

proposed approach is examined through an illustrative case, specifically focus-

ing on the steady-state temperature field distribution problem. 

Keywords: Regularized PIES, Singular Integrals, Three-Dimensional Bounda-

ry Value Problems, Bézier Surfaces 

1 Introduction 

Simulation studies typically involve formulating the considered problem as a bounda-

ry value problem (BVP) and describing it using partial differential equations (PDEs). 

Beyond selecting appropriate PDE, it becomes imperative to define the geometric 

configuration of the computational domain and establish boundary conditions. While 

formulating a boundary problem may seem relatively simple, obtaining a direct ana-

lytical solution is feasible only for a limited set of problems characterized by simple 

domain shapes and boundary conditions. In the case of practical problems with more 

complex geometry and complicated boundary conditions, obtaining a solution be-

comes a task that requires the application of numerical computational methods. Ex-

amples of such methods include the finite difference method (FDM) [1], the finite 

element method (FEM) [2], the boundary element method (BEM) [3] and meshless 

methods [4]. 

Parametric integral equatiom system (PIES) is a computational method for solving 

two and three-dimansional BVPs, where the necessity of subdividing the boundary 

and domain into conventional finite and boundary elements has been eliminated [5]. 

This is made possible through the analytical inclusion of the shape of the considered 

problem directly in the mathematical formula of PIES, along with the introduction of 
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alternative methods to describe this geometry. Particularly promising is the descrip-

tion of the shape of three-dimensional boundary problems using parametric surface 

patches [6]. Consequently, instead of employing a mesh of boundary elements with 

declared nodes, which is characteristic of BEM, the shape of the boundary in the PIES 

can be defined using a smaller number of parametric surface patches, determined by a 

relatively small set of control points. 

One of the primary challenges encountered in PIES is the computation of weakly 

and strongly singular integrals. Their presence results from the fact that PIES is an 

analytical modification of boundary integral equations (BIEs). This modification, 

previously employed in various differential equation contexts [5,6], is designed to 

analytically account for the shape of the boundary problem without the necessity of 

using elements. PIES transforms the considered problem, originally described by its 

corresponding differential equation as a boundary-based problem in the case of BIEs, 

into a parameterized reference domain that maps this boundary. In 2D problems, this 

involves integrating along a parameterized straight line corresponding to the parame-

terized boundary contour, and in 3D problems, it requires integration over a two-

dimensional parameterized plane representing the boundary surface. 

Recognizing the importance of computing singular integrals, a substantial body of 

literature has been devoted to thoroughly addressing and advancing this subject. 

These methods are largely dedicated to BEM, among which we can mention adaptive 

element subdivision [7], distance transformation [8], variable transformation [9], po-

lar coordinate transformation [10], analytical and semi-analytical methods [11-12], 

and quadrature methods [13]. One of the most promising approaches is regularization 

methods [14-16]. 

The paper presents a regularization technique for PIES in 3D problems, aiming to 

eliminate both weak and strong singularities. This approach extends a previous regu-

larization method developed for 2D problems [17-19]. The proposed method involves 

regularization of the original singular PIES formula by introducing an auxiliary regu-

larization functions, incorporating unknown coefficients, and applying appropriate 

transformations. The effectiveness of this strategy is demonstrated through the analy-

sis of the steady-state temperature field distribution governed by Laplace's equation. 

2 PIES for the Laplace equation in 3D and its numerical 

solution 

We consider the analysis of the steady-state temperature field within a three-

dimensional domain 𝛺 bounded by the boundary 𝛤. Mathematically, the problem is 

described as a boundary value problem for the Laplace equation 

 
𝜕2𝑢

𝜕𝑥1
2 +

𝜕2𝑢

𝜕𝑥2
2 +

𝜕2𝑢

𝜕𝑥3
2 = 0, (1) 

with prescribed Dirichlet boundary conditions 𝑢𝛤 and Neumann conditions 𝑝𝛤. In the 

case of practical problems related to more complex shapes of the domain, such as the 

one illustrated in Figure 1a, computational methods are employed to determine the 
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temperature field distribution. Figure 1b illustrates the boundary element modeling of 

the boundary 𝛤, commonly used in BEM. A similar discretization strategy applies to 

FEM, but it is confined to the domain defined by finite elements. While such model-

ing has gained popularity, it often results in a large number of elements and a substan-

tial size of algebraic equations to be solved in practice. 

a)   b)  c) 

 

Fig. 1. Sample domain 𝛺 with corresponding boundary conditions (a), discretization of the 

boundary using boundary elements in BEM (b), an alternative representation of the boundary 

with surface patches in PIES (c). 

To overcome the limitations of FEM and BEM, the PIES method can be employed, 

enabling a mathematical simplification of the problem by one dimension. Analogous 

to BIE, the field within the domain 𝛺 is determined by analyzing the boundary 𝛤 of 

this domain. However, PIES introduces an analytical modification of BIE, transform-

ing the problem from being directly defined on the boundary to one defined on a pa-

rameterized reference domain. In the case of 3D problems, this entails mapping the 

boundary of the problem onto a parameterized plane. A visual representation of this 

process can be found in Figure 2. 

 

Fig. 2. Mapping of the boundary 𝛤 onto a parameterized plane with the approximation of 

boundary functions Chebyshev series. 
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The presented approach allows for a general description of the boundary using vari-

ous mathematical functions. By 𝜞𝑗(𝑣, 𝑤), we define a general parameterized function 

dependent on parameters 𝑣 and 𝑤 from the parameterized reference plane, describing 

the shape of the 𝑗-th segment of the boundary. These functions are analytically inte-

grated into the PIES formula, which, for Laplace's equation, is expressed as [5] 

0.5𝑢𝑙(�̅�, �̅�) = ∑ ∫ ∫ {𝑈𝑙𝑗
∗ (�̅�, �̅�, 𝑣, 𝑤)𝑝𝑗(𝑣, 𝑤) −

𝑤𝑗

𝑤𝑗−1

𝑣𝑗

𝑣𝑗−1

𝑁
𝑗=1

                                      �̅�𝑙𝑗
∗ (�̅�, �̅�, 𝑣, 𝑤)𝑢𝑗(𝑣, 𝑤)}𝐽𝑗(𝑣, 𝑤)𝑑𝑣𝑑𝑤,  (2) 

where              𝑣𝑗−1 < �̅�, 𝑣 < 𝑣𝑗, 𝑤𝑗−1 < �̅�, 𝑤 < 𝑤𝑗 , 𝑙 = 1,2,3, … . , 𝑛. 

 

Compared to BIE, the sub-integral functions 𝑈𝑙𝑗
∗ (�̅�, �̅�, 𝑣, 𝑤) and �̅�𝑙𝑗

∗ (�̅�, �̅�, 𝑣, 𝑤) from 

formula (2) are not directly defined on the boundary but within the parameterized 

domain of 𝜞𝑗(𝑣, 𝑤). For the Laplace equation, they are defined as follows 

 𝑈𝑙𝑗
∗ (�̅�, �̅�, 𝑣, 𝑤) =

1

4𝜋

1

(𝜂1
2+𝜂2

2+𝜂3
2)

0.5,  (3) 

 �̅�𝑙𝑗
∗ (�̅�, �̅�, 𝑣, 𝑤) =

1

4𝜋

𝜂1𝑛𝑗
(1)

(𝑣,𝑤)+𝜂2𝑛𝑗
(2)

(𝑣,𝑤)++𝜂3𝑛𝑗
(3)

(𝑣,𝑤)

(𝜂1
2+𝜂2

2+𝜂3
2)

1.5 ,  (4) 

where

 
𝜂1 = 𝛤𝑙

(1)(�̅�, �̅�) − 𝛤𝑗
(1)(𝑣, 𝑤), 𝜂2 = 𝛤𝑙

(2)(�̅�, �̅�) − 𝛤𝑗
(2)(𝑣, 𝑤),  

 𝜂3 = 𝛤𝑙
(2)(�̅�, �̅�) − 𝛤𝑗

(3)(𝑣, 𝑤), (5) 

where 𝛤𝑗
(1)

, 𝛤𝑗
(2)

 and 𝛤𝑗
(3)

 are the scalar components of the function 𝜞𝑗(𝑣, 𝑤). Addi-

tionally, 𝑛𝑗
(1)

, 𝑛𝑗
(2)

 and 𝑛𝑗
(3)

 denote the normal derivatives to the boundary, while 

𝐽𝑗(𝑣, 𝑤) represents the Jacobian of the mapping between the Cartesian coordinate 

system and the parameterized reference plane dependent on parameters 𝑣 and 𝑤. 

Formula (2) eliminates the need to use boundary elements to describe the shape of the 

boundary, as is the case in BEM, which is a numerical implementation of BIEs. In 

this work, we employ parametric Bézier surfaces for 𝜞𝑗(𝑣, 𝑤). Figure 1c illustrates 

the definition of the boundary, showcasing an example that utilizes six first-degree 

and seven third-degree Bézier surface patches. 

PIES also allows for the separation of the boundary declaration, defined by 

𝜞𝑗(𝑣, 𝑤), from the approximation on this boundary of the boundary functions denoted 

in equation (2) by 𝑢𝑗(𝑣, 𝑤) and 𝑝𝑗(𝑣, 𝑤). Boundary functions may take a different 

form than the functions 𝜞𝑗(𝑣, 𝑤). In this context, we assume that the boundary func-

tions on each Bézier surface denoted by by 𝑗 are expressed as Chebyshev series, tak-

ing the following form 

 𝑢𝑗(𝑣, 𝑤) = ∑ ∑ 𝑢𝑗
(𝑝𝑟)

𝑇𝑗
(𝑝)

(𝑣)𝑇𝑗
(𝑟)(𝑤)𝑅−1

𝑟=0
𝑃−1
𝑝=0 ,  (6) 

 𝑝𝑗(𝑣, 𝑤) = ∑ ∑ 𝑝𝑗
(𝑝𝑟)

𝑇𝑗
(𝑝)

(𝑣)𝑇𝑗
(𝑟)(𝑤)𝑅−1

𝑟=0
𝑃−1
𝑝=0 ,  (7) 
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where 𝑢𝑗
(𝑝𝑟)

 and 𝑝𝑗
(𝑝𝑟)

 represent the values of successive coefficients in these series. 

Separating the approximation of boundary functions from the declaration of the 

boundary shape provides control over the accuracy of solutions obtained on the 

boundary without affecting the pre-defined functions 𝜞𝑗(𝑣, 𝑤) characterizing the 

boundary shape. When utilizing Chebyshev series, accuracy improvement is achieved 

by increasing the number of terms, denoted by 𝑃 and 𝑅. This approach contrasts with 

BEM, where the same boundary elements both model the boundary shape and deter-

mine the field distribution on the boundary, necessitating a re-discretization of the 

boundary shape when increasing the number of elements to enhance accuracy in 

boundary solutions. 

3 Elimination of singulatities from PIES through regularization 

In the case where 𝑙 = 𝑗 and 𝑣 → �̅�, 𝑤 → �̅�, the sub-integral function �̅�𝑙𝑗
∗ (�̅�, �̅�, 𝑣, 𝑤) is 

weakly singular, while �̅�𝑙𝑗
∗ (�̅�, �̅�, 𝑣, 𝑤) is strongly singular. Utilizing Gaussian quadra-

ture directly for computing integrals in formula (2), without isolating singular points, 

leads to significant errors that directly impact the accuracy of the solutions. The aim 

of this study is to eliminate singularities from this formula through regularization. To 

achieve this, in the first step of the proposed procedure, we rewrite (2) with a modi-

fied form of boundary functions, denoted as �̌�𝑗(𝑣, 𝑤) and �̌�𝑗(𝑣, 𝑤), which is present-

ed as 

 0.5�̌�𝑙(�̅�, �̅�) = ∑ ∫ ∫ {𝑈𝑙𝑗
∗ (�̅�, �̅�, 𝑣, 𝑤)�̌�𝑗(𝑣, 𝑤) −

𝑤𝑗

𝑤𝑗−1

𝑣𝑗

𝑣𝑗−1

𝑁
𝑗=1

                                     �̅�𝑙𝑗
∗ (�̅�, �̅�, 𝑣, 𝑤)�̌�𝑗(𝑣, 𝑤)}𝐽𝑗(𝑣, 𝑤)𝑑𝑣𝑑𝑤.    (8) 

In our considerations, we assume that �̌�𝑗(𝑣, 𝑤) takes the following form 

           �̌�𝑗(𝑣, 𝑤) = 𝐴𝑙(�̅�, �̅�)[(𝛤𝑙
(1)(�̅�, �̅�) − 𝛤𝑗

(1)(𝑣, 𝑤) + 𝛤𝑙
(2)(�̅�, �̅�) − 𝛤𝑗

(2)(𝑣, 𝑤) +

                                𝛤𝑙
(3)(�̅�, �̅�) − 𝛤𝑗

(3)(𝑣, 𝑤)] + 𝐵𝑙(�̅�, �̅�), (9) 

along with its directional derivative with respect to the normal vector to the boundary, 

in the form 

 �̌�𝑗(𝑣, 𝑤) = 𝐴𝑙(�̅�, �̅�)[𝑛𝑗
(1)(𝑣, 𝑤) + 𝑛𝑗

(2)(𝑣, 𝑤) + 𝑛𝑗
(3)(𝑣, 𝑤)], (10) 

where 𝐴𝑙(�̅�, �̅�) and 𝐵𝑙(�̅�, �̅�) represent regularization coefficients defined as 

 𝐴𝑙(�̅�, �̅�) =
𝑝𝑗(𝑣,𝑤)

𝑛𝑙
(1)

(�̅�,�̅�)+𝑛𝑙
(2)

(�̅�,�̅�)+𝑛𝑙
(3)

(�̅�,�̅�)
, (11) 

 𝐵𝑙(�̅�, �̅�) = 𝑢𝑙(�̅�, �̅�). (12) 

The functions (11, 12) are selected to satisfy the Laplace equation. By subtracting (8) 

from (2), the final formula for the regularized PIES is derived 
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∑ {∫ ∫ 𝑈𝑙𝑗
∗ (�̅�, �̅�, 𝑣, 𝑤)[𝑝𝑗(𝑣, 𝑤) − 𝑑𝑙𝑗(�̅�, �̅�, 𝑣, 𝑤)𝑝𝑙(�̅�, �̅�)]

𝑤𝑗

𝑤𝑗−1

𝑣𝑗

𝑣𝑗−1
−𝑁

𝑗=1

∫ ∫ �̅�𝑙𝑗
∗ (�̅�, �̅�, 𝑣, 𝑤)[𝑢𝑗(𝑣, 𝑤) − 𝑢𝑙(�̅�, �̅�) −

𝑤𝑗

𝑤𝑗−1

𝑣𝑗

𝑣𝑗−1

                                𝑔𝑙𝑗(�̅�, �̅�, 𝑣, 𝑤)𝑝𝑙(�̅�, �̅�)]} 𝐽𝑗(𝑣, 𝑤)𝑑𝑣𝑑𝑤 = 0, (13) 

where  

 𝑑𝑙𝑗(�̅�, �̅�, 𝑣, 𝑤) =
𝑛𝑗

(1)
(𝑣,𝑤)+𝑛𝑗

(2)
(𝑣,𝑤)+𝑛𝑗

(3)
(𝑣,𝑤)

𝑛𝑙
(1)

(�̅�,�̅�)+𝑛𝑙
(2)

(�̅�,�̅�)+𝑛𝑙
(3)

(�̅�,�̅�)
, (14) 

 𝑔𝑙𝑗(�̅�, �̅�, 𝑣, 𝑤) =
(𝛤𝑗

(1)
(𝑣,𝑤)−𝛤𝑙

(1)
(�̅�,�̅�))+(𝛤𝑗

(2)
(𝑣,𝑤)−𝛤𝑙

(2)
(�̅�,�̅�))+(𝛤𝑗

(3)
(𝑣,𝑤)−𝛤𝑙

(3)
(�̅�,�̅�))

𝑛𝑙
(1)

(�̅�,�̅�)+𝑛𝑙
(2)

(�̅�,�̅�)+𝑛𝑙
(3)

(�̅�,�̅�)
.  (15) 

The use of functions 𝑑𝑙𝑗(�̅�, �̅�, 𝑣, 𝑤) and 𝑔𝑙𝑗(�̅�, �̅�, 𝑣, 𝑤) eliminates the presence of 

weak and strong singularities. To find the solution for the formula (13), the colloca-

tion method can be employed. Collocation points are be distributed in the parametric 

domain of PIES and defined by the parameter values �̅� and �̅�. Evaluating (13) at the 

collocation points will yield a system of algebraic equations which can be expressed 

in general terms as 

 [𝐺]{𝑢} = [𝐻]{𝑝}. (16) 

Its size depends on the number of Bézier patches modeling the boundary and the 

number of terms in the Chebyshev approximation series. The off-diagonal elements in 

(16) are determined based on the following non-singular integrals 

[𝑔𝑙𝑗
(𝑐,𝑑,𝑝,𝑟)

] = ∫ ∫ �̅�𝑙𝑗
∗ (�̅�(𝑐,𝑑), �̅�(𝑐,𝑑), 𝑣, 𝑤)𝑇𝑗

(𝑝)
(𝑣)𝑇𝑗

(𝑟)
(𝑤)𝐽𝑗(𝑣, 𝑤)𝑑𝑣𝑑𝑤

𝑤𝑗

𝑤𝑗−1

𝑣𝑗

𝑣𝑗−1
,  (17) 

[ℎ𝑙𝑗
(𝑐,𝑑,𝑝,𝑟)

] = ∫ ∫ 𝑈𝑙𝑗
∗ (�̅�(𝑐,𝑑), �̅�(𝑐,𝑑), 𝑣, 𝑤)𝑇𝑗

(𝑝)
(𝑣)𝑇𝑗

(𝑟)
(𝑤)𝐽𝑗(𝑣, 𝑤)𝑑𝑣𝑑𝑤

𝑤𝑗

𝑤𝑗−1

𝑣𝑗

𝑣𝑗−1
.  (18) 

The practical application of the presented regularization relies on the introduction of 

auxiliary matrices [�̃�], [�̂�], [𝐻] incorporating regularization functions (14) and (15) 

 [𝐺 − 𝑑𝑖𝑎𝑔{∑ [�̃�]𝑟𝑜𝑤 }]{𝑢} = [𝐻 − 𝑑𝑖𝑎𝑔{∑ [𝐻]𝑟𝑜𝑤 } − 𝑑𝑖𝑎𝑔{∑ [�̂�]𝑟𝑜𝑤 }]{𝑝}. (19) 

The elements of the matrices [�̃�], [�̂�], [�̃�] are as follows 

[�̃�𝑙𝑙
(𝑐,𝑑,𝑝,𝑟)

] = ∫ ∫ �̅�𝑙𝑗
∗ (�̅�(𝑐,𝑑), �̅�(𝑐,𝑑), 𝑣, 𝑤)𝑇𝑗

(𝑝)
(𝑣)𝑇𝑗

(𝑟)
(𝑤)𝐽𝑗(𝑣, 𝑤)𝑑𝑣𝑑𝑤

𝑤𝑗

𝑤𝑗−1

𝑣𝑗

𝑣𝑗−1
, (20) 

[�̂�𝑙𝑙
(𝑐,𝑑,𝑝,𝑟)

] = ∫ ∫
(𝛤𝑗

(1)
(𝑣,𝑤)−𝛤𝑙

(1)
(�̅�,�̅�))+(𝛤𝑗

(2)
(𝑣,𝑤)−𝛤𝑙

(2)
(�̅�,�̅�))+((𝛤𝑗

(3)
(𝑣,𝑤)−𝛤𝑙

(3)
(�̅�,�̅�))

𝑛𝑙
(1)

(�̅�(𝑐,𝑑),�̅�(𝑐,𝑑))+𝑛𝑙
(2)

(�̅�(𝑐,𝑑),�̅�(𝑐,𝑑))+𝑛𝑙
(3)

(�̅�(𝑐,𝑑),�̅�(𝑐,𝑑))

𝑤𝑗

𝑤𝑗−1

𝑣𝑗

𝑣𝑗−1
∗  

                                 �̅�𝑗𝑙
∗ (�̅�(𝑐,𝑑), �̅�(𝑐,𝑑), 𝑣, 𝑤)𝑇𝑗

(𝑝)
(𝑣)𝑇𝑗

(𝑟)
(𝑤)𝐽𝑗(𝑣, 𝑤)𝑑𝑣𝑑𝑤, (21) 

[ℎ̂𝑙𝑙
(𝑐,𝑑,𝑝,𝑟)

] = ∫ ∫
𝑛𝑗

(1)
(𝑣,𝑤)+𝑛𝑗

(2)
(𝑣,𝑤)+𝑛𝑗

(3)
(𝑣,𝑤)

𝑛𝑙
(1)

(�̅�(𝑐,𝑑),�̅�(𝑐,𝑑))+𝑛𝑙
(2)

(�̅�(𝑐,𝑑),�̅�(𝑐,𝑑))+𝑛𝑙
(3)

(�̅�(𝑐,𝑑),�̅�(𝑐,𝑑))
∗

𝑤𝑗

𝑤𝑗−1

𝑣𝑗

𝑣𝑗−1
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                                          𝑈𝑗𝑙
∗ (�̅�(𝑐,𝑑), �̅�(𝑐,𝑑), 𝑣, 𝑤)𝑇𝑗

(𝑝)
(𝑣)𝑇𝑗

(𝑟)
(𝑤)𝐽𝑗(𝑣, 𝑤)𝑑𝑣𝑑𝑤. (22) 

All integrals in (19) can be numerically computed through standard Gaussian quadra-

ture. The comprehensive algorithm for solving the regularized PIES is presented be-

low. 

Algorithm for Regularized PIES 

________________________________________________________________ 

Read boundary input data (control points of 𝑛 Bézier surfaces), Read boundary conditions 

for 𝑙 ← 1, 𝑁 do //loop over Bézier surfaces 

 for 𝑗 ← 1, 𝑁 do  

  if 𝑙 == 𝑗  then 

    for 𝑝 ← 0, 𝑃 − 1 do //loop over Chebyshev series 

     for 𝑟 ← 0, 𝑅 − 1 do  

      for 𝑐 ← 0, 𝐶 − 1 do //loop over collocation points 

       for 𝑑 ← 1, 𝐷 − 1 do  

        for 𝑒 ← 1, 𝑁 do //loop over Bézier surfaces 

             [𝑔𝑙𝑙
(𝑐,𝑑,𝑝,𝑟)

] ← 𝑖𝑛𝑡[�̅�𝑙𝑙
∗(�̅�(𝑐,𝑑), �̅�(𝑐,𝑑), v, 𝑤)𝑇𝑙

(𝑝)(𝑣)𝑇𝑙
(𝑟)(𝑤)𝐽𝑙(𝑣, 𝑤) −

                                �̅�𝑙𝑒
∗ (�̅�(𝑐,𝑑), �̅�(𝑐,𝑑), 𝑣, 𝑤)𝑇𝑒

(𝑝)(𝑣)𝑇𝑒
(𝑟)(𝑤)𝐽𝑒(𝑣, 𝑤)] 

                    [ℎ𝑙𝑙
(𝑐,𝑑,𝑝,𝑟)

] ← 𝑖𝑛𝑡[𝑈𝑙𝑙
∗ (�̅�(𝑐,𝑑), �̅�(𝑐,𝑑), 𝑣, 𝑤)𝑇𝑙

(𝑝)(𝑣)𝑇𝑙
(𝑟)(𝑤)𝐽𝑙(𝑣, 𝑤) −

                                
𝛤𝑒

(1)
(𝑣,𝑤)−𝛤𝑙

(1)
(�̅�,�̅�)+𝛤𝑒

(2)
(𝑣,𝑤)−𝛤𝑙

(2)
(�̅�,�̅�)+𝛤𝑒

(3)
(𝑣,𝑤)−𝛤𝑙

(3)
(�̅�,�̅�)

𝑛𝑙
(1)

(�̅�(𝑐,𝑑),�̅�(𝑐,𝑑))+𝑛𝑙
(2)

(�̅�(𝑐,𝑑),�̅�(𝑐,𝑑))+𝑛𝑙
(3)

(�̅�(𝑐,𝑑),�̅�(𝑐,𝑑))
�̅�𝑙𝑒

∗ (�̅�(𝑐,𝑑), �̅�(𝑐,𝑑), 𝑣, 𝑤)𝑇𝑒
(𝑝)(𝑣)𝑇𝑒

(𝑟)(𝑤)𝐽𝑒(𝑣, 𝑤) −

                               
𝑛𝑒

(1)
(𝑣,𝑤)+𝑛𝑒

(2)
(𝑣,𝑤)+𝑛𝑒

(3)
(𝑣,𝑤)

𝑛𝑙
(1)

(�̅�(𝑐,𝑑),�̅�(𝑐,𝑑))+𝑛𝑙
(2)

(�̅�(𝑐,𝑑),�̅�(𝑐,𝑑))+𝑛𝑙
(3)

(�̅�(𝑐,𝑑),�̅�(𝑐,𝑑))
𝑈𝑙𝑒

∗ (�̅�(𝑐,𝑑), �̅�(𝑐,𝑑), 𝑣, 𝑤)𝑇𝑒
(𝑝)(𝑣)𝑇𝑒

(𝑟)(𝑤)𝐽𝑒(𝑣, 𝑤)]  

        end for 

       end for 

      end for 

     end for 

    end for 

    insert submatrix [𝑔𝑙𝑙
(𝑐,𝑑,𝑝,𝑟)

] to [𝑔𝑙𝑙 ] and [ℎ𝑙𝑙
(𝑐,𝑑,𝑝,𝑟)

] to [ℎ𝑙𝑙 ] 

  else  

    for 𝑝 ← 0, 𝑃 − 1 do //loop over Chebyshev series 

     for 𝑟 ← 0, 𝑅 − 1 do  

      for 𝑐 ← 0, 𝐶 − 1 do // loop over collocation points 

       for 𝑑 ← 1, 𝐷 − 1 do  

             [𝑔𝑙𝑗
(𝑐,𝑑,𝑝,𝑟)

] ← 𝑖𝑛𝑡[�̅�𝑙𝑗
∗ (�̅�(𝑐,𝑑), �̅�(𝑐,𝑑), v, 𝑤)𝑇𝑗

(𝑝)(𝑣)𝑇𝑗
(𝑟)(𝑤)𝐽𝑗(𝑣, 𝑤)] 

             [ℎ𝑙𝑗
(𝑐,𝑑,𝑝,𝑟)

] ← 𝑖𝑛𝑡[𝑈𝑙𝑗
∗ (�̅�(𝑐,𝑑), �̅�(𝑐,𝑑), v, 𝑤)𝑇𝑗

(𝑝)
(𝑣)𝑇𝑗

(𝑟)(𝑤)𝐽𝑗(𝑣, 𝑤)] 

       end for 

      end for 

     end for 

    end for 

    insert submatrix [𝑔𝑙𝑗
(𝑐,𝑑,𝑝,𝑟)

] to [𝑔𝑙𝑗 ] and [ℎ𝑙𝑗
(𝑐,𝑑,𝑝,𝑟)

] to [ℎ𝑙𝑗 ] 

      end if 

    end for 

  end for 

  transform [𝑯]{𝒖} = [𝑮]{𝒑} into [𝑨]{𝒙} = {𝒃}, solve system of equations [𝑨]{𝒙} = {𝒃}  

_____________________________________________________________________ 
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4 Numerical examples 

The proposed approach is validated through examples featuring analytical solutions. 

Specifically, the investigation focuses on evaluating the impact of the relative positio-

ning of collocation points and quadrature nodes on the accuracy of solutions. 

4.1 Example 1 

We consider the problem of temperature distribution in the domain depicted in Figure 

3, with the boundary modeled using 6 Bézier patches. Among them, 5 are degree-1 

patches defined by 4 corner points each, and one is a degree-3 patch defined by 16 

control points, allowing for the specification of the upper curvilinear part of the boun-

dary. It is assumed that the expected temperature field distribution on the boundary 

and in the domain would be defined by the following analytical function, dependent 

on Cartesian coordinates and satisfying Laplace's equation 

 𝑢(𝑥1, 𝑥2, 𝑥3) = 𝑥1
2 + 𝑥2 − 𝑥3

2. (23) 

Based on this function, Dirichlet conditions are specified on each surface patch defin-

ing the boundary. Additionally, the normal derivative of this function with respect to 

the boundary in the form of 

 
𝜕𝑢(𝑥1,𝑥2,𝑥3)

𝜕𝑛
= 2𝑥1𝑛1 + 𝑛2 − 2𝑥3𝑛3,  (24) 

represents the analytical solution on the boundary. 

To utilize equations (2) and (13) for simulating a stationary temperature field, we 

apply the collocation method. Collocation points are positioned within the parametric 

domain of individual Bézier surfaces and are represented by points �̅�, �̅�. By express-

ing equations (2) and (13) at these collocation points, we derive a system of algebraic 

equations that approximate the PIES. The size of this system is determined by the 

number of parametric surfaces modeling the boundary and the number of terms in the 

approximating series (6,7) on individual surface patches. 

To find solutions on the boundary, 5×5 collocation points are specified, arranged 

according to the distribution of roots of Chebyshev polynomials of the second kind. In 

turn, for numerical integration, a Gauss quadrature of degree 25×25 are applied per 

Bézier parch, and its nodes are distributed in the same parametric domain. The para-

meterization of the boundary in PIES allows flexibility in positioning both collocation 

points and quadrature nodes, identified respectively by �̅�, �̅� and 𝑣, 𝑤.  

Below, we explore two algorithms for evaluating singular integrals in PIES: 

 Isolation of singularities in weakly and strongly singular integrals using 

G-L quadratures, referred to as isolation; 

 The proposed regularization, known as non-singular. 

In all instances, non-singular integrals are computed using G-L quadrature. As 

previously mentioned, the proposed regularization employs standard G-L quadrature, 

with the quadrature nodes uniformly distributed along all boundary segments. This 

streamlines the node generation process, which may otherwise become recursive. 
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While higher-degree quadrature can enhance precision, it comes at the cost of increa-

sed computational time, as demonstrated in the latter part of the example. 

The second algorithm, which isolates singularities, also relies on G-L quadrature. 

However, it necessitates dividing the integration interval containing singular points 

into subintervals. This substantially complicates the integration process and necessita-

tes two distinct quadrature distributions for boundary segments housing regular and 

singular integrals, respectively. 

In the case of applying formula (2) to calculate the integral where the collocation 

point is treated as a singular point, it is common to isolate this point, as illustrated in 

Figure 3a. 

a) 

 
b) 

 

Fig. 3. Mapping of the boundary 𝛤 of the problem onto a parameterized plane with isolating the 

singular point (a), in the context of the proposed regularization without the need for isolation 

(b). 
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In this case, for each Bézier surface, we need to isolate each colocation point by divi-

ding the integration domain into four sections and applying independent Gaussian 

quadrature to each of them. The drawback of this approach is the necessity to modify 

the integration intervals for each collocation point. In Figure 4a,b, two exemplary 

divisions are presented for two of the considered 5×5 collocation points, where 25×25 

Gaussian quadratures were applied for each of the 4 integration intervals. As we can 

see in this case, we have an uneven distribution of Gaussian quadrature nodes. On the 

other hand, applying a varying number of quadrature points tailored to the sizes of the 

four sub-intervals requires additional intervention in the computational program. 

a)   b) 

 
  c) 

 

Fig. 4. Two selected distributions of nodes for a 25×25 Gaussian quadrature when dividing the 

integration domain into 4 parts during the isolation of collocation points �̅�, �̅�, with coordinates 

(0.5, 0.5) (a) and (0.27, 0.27) (b), in the context of the proposed regularization without the need 

for isolation (c). 

When employing the regularized formula (13), isolation is unnecessary, as depicted in 

Figure 3b. In this scenario, both collocation points and numerical integration quadra-

ture nodes are within the same interval in the parametric domain of each Bézier patch. 

This observation is further illustrated in Figure 4c, showcasing a representative con-

figuration of 5×5 and Gauss quadrature 25×25, without the need to subdivide integra-

tion intervals. In Table 1, we investigate how the distance between collocation points 

and quadrature node points affects the accuracy of boundary solutions. 
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Table 1. Influence of the distance between collocation points and Gauss quadrature node on the 

accuracy of solutions at the boundary. 

The coordinates of the cen-

tral collocation point �̅� = �̅� 

 

The distance between the 

collocation point and the 

nearest quadrature node 

𝐿2 norm of the error of solu-

tions at the boundary of the 

problem (compared to (24)) 

0.501 1e-3 0.029273 

0.5001 1e-4 0.023153 

0.50001 1e-5 0.023221 

0.500001 1e-6 0.023234 

0.5000001 1e-7 0.023197 

0.50000001 1e-8 0.146456 

0.500000001 1e-9 0.147884 

 

The results from Table 1 indicate the stability of obtained solutions at the boundary 

depending on the different distances between the positions of quadrature nodes and 

collocation points. The presented results refer to the vicinity of one selected point 

among the total of 25 defined. For the remaining points, the presented dependencies 

are analogous. The obtained results demonstrate the agreement with analytical solu-

tions (24), confirming the effectiveness of the applied strategy. 

4.2 Example 2 

In the second example, we conducted an analysis of solution accuracy by varying the 

number of specified collocation points and Gauss quadrature points. The study focu-

sed on the domain depicted in Figure 1a, with the boundary defined by 6 Bézier pa-

tches of degree 1 and 7 patches of degree 3. Specifying the shape of these patches 

involved specifying 112 control points. Dirichlet boundary conditions are imposed on 

the entire boundary and are defined based on the following function 

 𝑢(𝑥1, 𝑥2, 𝑥3) = 𝑥1
3 + 2𝑥2

3 + 3𝑥3
3 − 3𝑥1𝑥3

2 − 6𝑥2𝑥1
2 − 9𝑥3𝑥2

2. (25) 

Meanwhile, the normal derivative of (25) represents the analytical solution at the 

boundary of this problem 

 
𝜕𝑢(𝑥1,𝑥2,𝑥3)

𝜕𝑛
= 𝑛1(3𝑥1

2 − 3𝑥3
2 − 12𝑥2𝑥1) + 𝑛2(6𝑥2

2 − 6𝑥1
2 − 18𝑥3𝑥2) +

                                𝑛3(9𝑥3
2 − 6𝑥1𝑥3 − 9𝑥2

2).  (26) 

In the analysis, the number of collocation points is varied from 2×2 to 5×5, while 

the number of Gauss quadrature nodes is set at 30×30 and 40×40 assigned to each 

Bézier patches. Similar to example 1, the application of formula (13) does not neces-

sitate the isolation of a singular point. Figure 5 illustrates two exemplary combina-

tions of collocation points and quadrature nodes that are under examination. 
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a) b)  

 

Fig. 5. Two exemplary analyzed combinations of collocation points (in red) and nodes (in 

black): 4×4 collocation points and 30×30 quadrature nodes (a), and 5×5 collocation points and 

40×40 quadrature nodes (b). 

Figure 6 illustrates the 𝐿2 norm of the error in solutions on the boundary as a function 

of the number of introduced collocation points and Gauss quadrature nodes. 

 

Fig. 6. Influence of the number of collocation points and Gauss quadrature nodes on the accu-

racy of solutions at the boundary of the problem. 

The results again confirm the stability of solutions, even for a more complex domain 

compared to the first example. 

5 Conclusions 

The paper demonstrated the possibility of solving PIES without the need to calculate 

the values of singular integrals. The compiled results indicate a high accuracy of solu-

tions even for a small number of solved algebraic equations. The presented approach 
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can be applied to problems modeled by other differential equations, such as the 

Navier-Lame or Stokes equations. 
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