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Abstract. Multi-Criteria Decision Analysis (MCDA) is an interdisci-
plinary field that addresses decision-making problems that involve mul-
tiple conflicting criteria. MCDA methods are widely applied in various
domains, including medicine, management, energy, and logistics. De-
spite their widespread use, MCDA techniques continuously evolve to
address emerging challenges. This paper presents a new method called
Stochastic Expected Solution Point SPOTIS (SESP-SPOTIS), for re-
identifying MCDA models. SESP-SPOTIS conducts a stochastic search
for the Expected Solution Point (ESP) which is then utilized within the
Stable Preference Ordering Towards Ideal Solution (SPOTIS) frame-
work. The study delves into comprehensive investigations of MCDA
model re-identification and examines how the updated model influences
the ranking of analyzed alternatives. Furthermore, the experiments were
divided into training sets and tests to evaluate the similarity of the pro-
posed approach, using two rank correlation coefficients, namely Weighted
Spearman (rw) and Weighted Similarity (WS). The results demonstrate
that SESP-SPOTIS effectively re-identifies updated models and pro-
vides additional information from analysis as an ESP, thereby broaden-
ing knowledge and understanding in the decision-making process of the
analyzed problem. By integrating machine learning models and stochas-
tic optimization techniques, SESP-SPOTIS contributes to advancing the
methodologies for MCDA model re-identification.

Keywords: MCDA · Re-identification · SPOTIS · PSO · Reference
point

1 Introduction

Multi-Criteria Decision Analysis (MCDA) is an interdisciplinary field that solves
decision-making problems with multiple criteria, often in conflict with each
other. These methods are used in various areas of science and practice, such
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as medicine [10], energy [7], or logistics [24]. The relatively widespread use of
MCDA techniques leads to the continuous development of new approaches that
respond to emerging challenges. A Rank Reversal (RR) phenomenon occurs when
one alternative is removed or added from a decision problem, leading to a change
in the ranking of some other alternatives. This is one of the challenges in such
classic methods as Technique for Order of Preference by Similarity to Ideal Solu-
tion (TOPSIS) [6] and VIseKriterijumska Optimizacija I Kompromisno Resenje
(VIKOR) [5].

In 2014, a method known as the Characteristic Objects Method (COMET)
was developed to deal with the rank reversal phenomenon by using characteristic
objects and fuzzy logic to evaluate alternatives [19]. In 2016, the Reference Ideal
Method (RIM) was created to evaluate various decision-making alternatives us-
ing a reference point (Reference Ideal) [2]. Like COMET, the RIM method was
designed to be robust to the problem of reverse rankings. This was followed
in 2020 by the Stable Preference Ordering Towards Ideal Solution (SPOTIS)
method, characterized by its simplicity and resilience to reverse rankings [4].
However, these methods shared a common factor with the SPOTIS method be-
cause they were also based on reference points. In [4], Dezert et al. proposed, in
addition to the classical approach used in many MCDA methods, that decision-
makers determine a reference point rather than just inferring based on ideal point
alternatives. This point was called the Expected Solution Point (ESP). However,
due to such a point, another challenge arises in re-identifying such models.

Re-identification involves trying to re-map an existing model. It is based
on a learning procedure to rank the considered decision variants [17]. For this
purpose, machine learning models or optimization methods are used allowing to
adjust the optimal parameters for MCDA methods to get the model as close
to the original one as possible. The process of re-identifying decision models
involves training the models. This process aims to find a new set of parameters
that minimize prediction error or maximize the similarity of rankings. In this
way, it is possible to effectively rebuild an unknown model to evaluate previously
unconsidered alternatives in the context of a given decision problem. In addition,
retrieving the lost parameters of the decision model, such as the weights of the
criteria, will allow a more accurate analysis of the results obtained.

There are several previous works in which the focus was on the re-identification
of MCDA models. In [13], the authors used an approach based on the re-
identification of criteria weights using stochastic methods such as Genetic Al-
gorithm (GA), Differential Evolution (DE), and Particle Swarm Optimization
(PSO). On the other hand, the study [11] presented the possibility of re-identifying
the MCDA model using the Stochastic IdenTifiCation Of Models (SITCOM) ap-
proach, which determined preference values for characteristic objects. The SIT-
COM method was further developed into the Dynamic SITCOM (D-SITCOM)
approach [12], which additionally considered the search for characteristic values
when creating characteristic objects. In addition, machine learning models such
as MultiLayer Perceptron (MLP) [14] are also used for the re-identification pro-
cess. However, no research has been conducted on the re-identification process
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using the expected solution point, which reflects the desired outcome gathered
from decision-makers. Notably, the ESP concept has demonstrated high efficacy
in addressing multi-criteria problems through its personalized assessment ap-
proach [21]. Consequently, the recognition of this information gap served as the
primary motivation for undertaking the present study.

This paper combines a stochastic method named Particle Swarm Optimiza-
tion (PSO) to search for a single reference point determined as ESP defined in
the SPOTIS method. This approach becomes an alternative to the ISP-SPOTIS
method, where difficulties are encountered in re-identifying the decision-makers
preferences due to how the ISP is determined based on the boundaries of the
decision problem. By combining the PSO and ESP-SPOTIS methods, it is pos-
sible to direct the re-identification process toward personalized decision-making,
increasing the effectiveness of the decision models’ determination. Moreover, the
novelty of our study is the demonstration of the possibility of updating an al-
ready re-identified model, which does not apply to the previously introduced
approaches. The work’s main contribution is the possibility of finding an ex-
pectation point to create an analogous reference model. Moreover, the proposed
approach provides additional information as an ESP that can help interpret the
decision-maker’s preferences.

The paper is organized as follows. The 2 Section presents a literature review
on how decision-makers convey their preferences to MCDA methods. The 3 Sec-
tion presents preliminaries of the SPOTIS approach used and the correlation
coefficients of the rankings. The 4 Section presents a proposed approach for re-
identifying MCDA models called SESP-SPOTIS and research on this approach.
The 5 Section presents conclusions and future research directions.

2 Literature review

Increasingly, research on Multi-Criteria Decision Analysis (MCDA) methods
has focused on approaches related to processing decision-makers’ preferences.
In practice, the most commonly used technique is to assign weights to criteria
that add up to unity. However, arbitrarily determining these values by decision-
makers can be problematic. Consequently, criteria comparison methods are used
to process their knowledge. The classic technique is the Analytic Hierarchy Pro-
cess (AHP) method, which compares criteria using Saaty’s scale. However, this
approach is fraught with the paradox of reverse rankings, which can make its
application unstable with constantly changing sets of alternatives.

However, the technique of comparing criteria is being developed in new ap-
proaches. The Best Worst Method (BWM) [18] focuses on comparing the best
(best) and worst (worst) criteria in the context of the Multi-Criteria Decision
Analysis problem under consideration. A similar approach is used in the Full
Consistency Method (FUCOM) [15], which uses linear programming to deter-
mine criterion weights. However, these methods of determining weights only
partially solve the problem of communicating the decision-maker’s preferences.
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Preference function modeling is an alternative method for conveying a decision-
maker’s preferences. One of the classic approaches that focuses on this method-
ology is the Preference Ranking Organization METHod for Enrichment of Eval-
uations (PROMETHEE) [1]. It allows the use of a variety of preference func-
tions that can better reflect the specific preferences of the decision-maker. The
PROMETHEE method evaluates alternatives based on the decision-maker’s pre-
defined preference functions, which allows for a more nuanced analysis than a
simple assignment of weights. However, as in the case of transferring preferences
through weights, the use of preference functions also does not guarantee that
the MCDA technique is entirely immune to reverse rankings of alternatives.

Given the ability of decision makers to express preferences, the problem of re-
identifying Multi-Criteria Decision Analysis (MCDA) models arises. There are
many approaches to conveying preferences by the decision maker, such as using
weights, pairwise comparisons, preference functions, or characteristic scores. This
paper will focus on one aspect of re-identifying MCDA models, specifically the
search for a reference point.

Table 1: Overview of MCDA methods based on reference points.
Name Acronym Reference point Ref.
Evaluation based on Distance EDAS Average solution [8]
from Average Solution for each criterion (AV )
Measurement of Alternatives and MARCOS Ideal solution (AI) [23]
Ranking according to COmpromise Solution Anti-ideal solutuion (AAI)
COmbinative Distance-based ASsessment CODAS Negative Ideal [9]

Solution (NS)
Stable Preference Ordering Towards SPOTIS Ideal Solution Point (ISP ) [4]
Ideal Solution Expected Solution Point (ESP )
Technique for Order of Preference TOPSIS Positive Ideal Solution (PIS) [6]
by Similarity to Ideal Solution Neagative Ideal Solution (NIS)
VIekriterijumsko KOmpromisno Rangiranje VIKOR Maximum criteria values (f∗) [5]

Minimum criteria values (f−)
Characteristic Objects METhod COMET Characteristic objects (CO) [19]
Preference Ranking On the Basis PROBID Average solution (A) [26]
of Ideal-average Distance Positive ideal solutions (PISs)

Negative ideal solutions (NISs)
Compromise Ranking of Alternatives CRADIS Ideal Solution (TI) [16]
from Distance to Ideal Solution Anti-ideal Solution (TAI)
Election based on Relative ERVD Reference points (µ) [22]
Value Distances Positive ideal solution (PIS)

Negative ideal solution (NIS)
Reference Ideal Method RIM Reference ideal (sj) [2]

More recent research has focused on exploring the possibilities offered by the
decision maker’s transfer of one or more reference points aimed at optimizing
and better adjusting the decision model. Introducing a reference point enables
the implementation of nonlinear preference modeling, which is a significant step
forward in personalizing the decision-making process. Among the most promi-
nent methods using reference points are the approaches already mentioned, such
as Reference Ideal Method (RIM), Stable Preference Ordering Towards Ideal
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Solution (SPOTIS), and Characteristics Objects Method (COMET). In addi-
tion, it is worth noting that there is a wide range of methods based on reference
points, as illustrated by the Table 1.

3 Preliminaries

3.1 SPOTIS

The SPOTIS method, which stands for Stable Preference Ordering Towards
Ideal Solution, differs from other MCDA approaches by incorporating the notion
of reference objects. While methods like TOPSIS and VIKOR establish these
objects based on a decision matrix, SPOTIS requires explicitly defined data
boundaries. By employing this strategy to outline the domain of the decision
problem, it becomes feasible to stabilize the ranking of alternatives towards the
Ideal Solution Point (ISP), thus mitigating the occurrence of the Rank Reversal
(RR) paradox. Typically, the ISP is determined based on the values associated
with each criterion type (e.g., cost or profit). Establishing data boundaries is a
crucial step in the initial phase of applying this method. For each criterion Cj ,
it’s essential to select the maximum Smax

j and minimum Smin
j bounds. The Ideal

Solution Point S∗
j is defined as S∗

j = Smax
j for profit criteria and S∗j = Sjmin

for cost criteria.
Additionally, as illustrated in [4], the SPOTIS approach allows for the uti-

lization of any Expected Solution Point (ESP) in place of ISP. When employed,
ESP generates a ranking specific to the subjectively chosen solution, proving
beneficial when decision-makers seek a solution tailored precisely to a particular
problem rather than a general ideal solution within the problem domain. The
Expected Solution Point values S∗

j should be chosen within the defined bounds
of the decision problem [Smin

j , Smax
j ]. Subsequently, the ESP vector S∗ should

replace ISP in Equation (2) during the SPOTIS calculation procedure [21]. Be-
low, the subsequent steps of the SPOTIS method are outlined.

Step 1. Definition of decision matrix.

The decision matrix describes the characteristics of considered alternatives
under selected criteria. The formal notation of the decision matrix could be
defined as (1):

X =



x11 x12 · · · x1j · · · x1m

x21 x22 · · · x2j · · · x2m

...
... · · ·

... · · ·
...

xi1 xi2 · · · xij · · · xim

...
... · · ·

... · · ·
...

xn1 xn2 · · · xnj · · · xnm


(1)

where xij is the attribute value of the i-th alternative for j-th criterion.
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Step 2. Calculation of the normalized distances from ISP (2):

d(Ai, S
∗
j ) =

|Sij − S∗
j |

|Smax
j − Smin

j |
(2)

Step 3. Calculation of weighted normalized distances d(Ai, S
∗) ∈ [0, 1] as (3):

d(Ai, S
∗) =

N∑
j=1

wjdij(Ai, S
∗
j ) (3)

Step 4. Ranking calculation.

The final ranking of alternatives should be determined based on the value
of d(Ai, S

∗). Better evaluated decision variants have smaller values of d(Ai, S
∗),

thus should be placed higher in the ranking.

3.2 Weighted Spearman’s correlation coefficient

The Weighted Spearman’s correlation coefficient (rW ), proposed by [3], extends
the traditional Spearman coefficient by integrating weights. It computes the
correlation between two rankings, both of size N , where xi represents the position
in the first ranking and yi indicates the position in the second ranking (4).

rW = 1− 6·
∑

(xi−yi)
2((n−xi+1)+(n−yi+1))

n·(n3+n2−n−1)
(4)

3.3 WS rank similarity coefficient

The Weighted Similarity (WS), proposed by [20], presents itself as an asym-
metric measure of ranking similarity. In contrast to conventional methods, it
places particular emphasis on alterations occurring at the top of rankings. Con-
sequently, the correlation undergoes a significant decrease if, for example, there
is an interchange between the first and last positions. The WS rank similarity
coefficient is confined within the interval [0, 1], where zero indicates uncorre-
lated rankings, while a value of one signifies identical rankings. Computed for
two rankings, xi and yi, both with a size of N , the similarity value is determined
as (5):

WS = 1−
∑(

2−xi |xi−yi|
max |xi−1|,|xi−N |

)
(5)

4 The proposed approach

This section will present a proposed approach called Stochastic Expected So-
lution Point SPOTIS (SESP-SPOTIS). This approach aims to identify the ex-
pected solution point using a stochastic method. It incorporates both the sim-
plicity of the SPOTIS method, as discussed in the Section 3.1, and the re-
identification capabilities of the decision model. In the context of possible nonlin-
earity associated with selecting the expected solution point, the re-identification
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approach becomes the answer to the problem of identifying nonlinear decision
models. In the case of the present work, the stochastic technique used for this
purpose is Particle Swarm Optimization (PSO). The main steps of this approach
can be presented as follows:
Step 1. Select a dataset. The dataset should include the decision matrix of
the given decision problem. Additionally, it should contain information such as
weights criteria vectors (W ), a criteria types vector (T ), and a ranking vec-
tor (R).
Step 2. Select a stochastic optimization method. In this step, choose a
stochastic method for solving the optimization problem and select its parameters.
In this paper, Particle Swarm Optimization (PSO) was selected as the stochastic
optimization method. PSO is a popular technique for stochastic optimization
problems and allows for modeling flexible objective functions [27]. Its algorithm
is presented in Algorithm 1.

Algorithm 1 Particle Swarm Optimization (PSO)
1: Initialize X,V, P, Pvalue, G,Gvalue

2: for iteration← 1 to max_iterations do
3: for each particle i do
4: Update velocity and position
5: Clip position to within bounds
6: Evaluate objective function
7: if fi > Pvalue[i] then
8: Update personal best
9: end if

10: end for
11: Update global best
12: if convergence_criteria_met() then
13: break
14: end if
15: end for
16: Output: G,Gvalue

Step 3. Model training. Training the model is done using the stochastic
optimization algorithm and the fitness function, which can be determined as
presented in Algorithm 2.

Algorithm 2 Fitness Function
1: procedure Fitness(solutions):
2: base.esp← solutions
3: preference← base(C, solutions, T )
4: return rw(base.rank(preference), R)
5: end procedure
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4.1 Re-identification - exemplary study case

This paper presents a simple example of expert model re-identification in the
context of multi-criteria decision analysis. Suppose a particular set of evaluated
samples is evaluated by a multi-criteria decision analysis model. However, the
multi-criteria decision analysis model itself and its parameters are unknown. In
this case, when wanting to re-identify such a model, the SPOTIS method can be
used. The SPOTIS method has two possible modeling routes. The first is to use
an ISP point created based on the values derived from the model boundaries for
each criterion. In such a model, the only possible representation of the decision-
maker’s preferences is expressed in terms of weights. The second way of modeling
is to use the ESP point, which the decision-maker chooses. This point determines
the most preferred alternative that we would like to obtain. Therefore, by taking
the second route, it is possible to find an ESP point that can produce a similar
model to the reference one.

Assume that there is a multi-criteria evaluation problem, where a decision
matrix containing attribute values for 10 alternatives against two criteria is avail-
able. Suppose the evaluation model, which has not yet been applied, runs from
0 (smallest cutoff value) to 1 (largest cutoff value) for each criterion. In order
to find an Expected Solution Point that will help us create a similar evaluation
model, a PSO method will be used. This method is widely used for optimization
problems and involves simulating the behavior of a swarm of particles in the
solution search space to find the optimal point. To implement the PSO algo-
rithm, an implementation of the MealPy library will be used, which provides
ready-made tools for solving optimization problems. The version of the MealPy
library used in this implementation of the library is 2.5.4 [25]. For this particular
problem at hand, it is necessary to define a fitness function that will evaluate the
quality of solutions in the context of ESP search. A detailed description of the
PSO method and the fitness function can be found above. It is also worth men-
tioning the selected parameters for the PSO algorithm, such as the number of
particles (popsize = 20), weight coefficients (c1 = c2 = 2.05), maximum number
of iterations (epoch = 1000), which have been adjusted for our specific problem
in order to achieve optimal results.

Using Figure 1, the unidentified reference model and the SEPS-SPOTIS de-
rived model are shown. It can be seen that in the case of the re-identification of
such a model, the distribution of preferences was similarly mapped. In the case
of the present re-identification, the rankings of the alternatives are very close to
each other, where a Weighted Spearman correlation coefficient value of 0.96915
and a WS coefficient value of 0.94152 were obtained. On the other hand, referring
to the distance of the found ESP from the extremum of the present unknown
model, it is 0.20341 . Such re-identification makes it possible to obtain similar
evaluations to the reference evaluations, by which it is also possible to evaluate
a new set of alternatives.
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Fig. 1: Reference model and model re-identified using the SESP-SPOTIS ap-
proach.
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Fig. 2: Reference model and updated SEPS-SPOTIS model with 3 additional
alternatives.

In the case of re-identification, it is also possible to update the SESP us-
ing the newly evaluated samples. Suppose that in addition to the set on which
working also obtained additional evaluated alternatives. In this case, another
re-identification of the reference model is possible. The SEPS retrieved in the
previous re-identification is set as the search’s starting point. Then the whole
process looks identical, however, in the case of this training, the training set is a
set of 13 alternatives, not 10 alternatives. The Figure 2 shows the result of the re-
identification of the model. The shift of the retrieved ESP relative to the old ESP
can be seen. The distance between the two is 0.02232. In addition, the distance
between the extremum of the unknown reference model and the retrieved new
ESP has been reduced and is 0.20159. This means that re-identifying the model
using the SESP-SPOTIS approach makes it possible to increase the accuracy.

Using Figure 3, a comparison of the re-identified models on a test set of 10
alternatives is presented. Figure 3a shows the comparison of the re-identified
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model on the 10 test alternatives with the reference model, while Figure 3b
shows the comparison of the updated re-identified model by 3 test alternatives
with the reference model. It can be observed that for the updated re-identified
model with 3 alternatives, the correlation is higher with the ranking obtained
with the reference model than for the re-identified model with 10 alternatives.
For the model updated with 3 alternatives, the correlation of the ranking with
the reference model was based on the index rw, a value of 0.93829, while using
the coefficient WS, a value of 0.95179. Referring to the re-identified model on 10
alternatives without updating, its ranking correlation with the reference model
is rw = 0.88540 and WS = 0.91429.
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(a) Re-identification on 10 alternatives.
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(b) Re-identification update with 3 al-
ternatives.

Fig. 3: Comparison on a test set of rankings from the unknown and re-identified
model (SESP-SPOTIS).

4.2 Effectiveness

This section will focus on a simulation study related to testing the proposed
SESP-SPOTIS approach. The unknown MCDA model shown in the previous
section is the reference model in this section. Figure 4 shows a two-dimensional
histogram through which the distribution of ESP values for the two considered
criteria can seen. This distribution was obtained from simulations for 1000 ran-
dom training sets of size 10 alternatives. However, it can observed that the values
of searched ESPs concentrated around the extremum of the unknown MCDA
model. Extremes are often searched for due to the distribution of alternatives
existing in the training set. The mean values of ESPs that were searched are for
the criterion ESPMean

C1
= 0.19164 and the criterion ESPMean

C2
= 0.30834. The

standard deviation among values for criterion ESPSTD
C1

= 0.11450 and criterion
ESPSTD

C2
= 0.13275.
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Fig. 4: Two-dimensional histogram of ESP values for the two considered criteria.

The SESP-SPOTIS approach was also compared with the ISP-SPOTIS ap-
proach, which uses an ideal point formed from the model’s outliers. The Figure 5
shows the distributions of the values of correlation coefficients for comparisons
of rankings derived from the reference model and the SESP-SPOTIS and ISP-
SPOTIS models. A significant difference in the accuracy of the approaches can
be observed. The SESP-SPOTIS model searches for the expected point based
on the evaluated alternatives, and its accuracy is much higher than that of the
ISP-SPOTIS model, which is based only on the model boundaries. The average
values of WS and rw obtained by the SESP-SPOTIS model are 0.95492 and
0.94101, while the average values of WS and rw obtained by the ISP-SPOTIS
model are 0.46773 and -0.24206, respectively.

0.2 0.4 0.6 0.8 1.0
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Fig. 5: Distributions of obtained values of correlation coefficients from compar-
isons of rankings with the reference model and SPOTIS models.
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Algorithm 3 Demonstration of the experimental procedure.
1: Input: N ← 1000
2: Input: criteria← 2
3: for num_alt in [5, 10, 25, 50, 100] do
4: coefficients_train,coefficients_test ← Coefficients()
5: for i = 1 to N do
6: 1) Train results:
7: alternatives_train ← generate_alternatives(num_alt, criteria)
8: weights ← equal_weights(alternatives_train)
9: reference_train ← ref(alternatives_train)

10: model ← sesp_spotis(alternatives_train, reference_train, weights)
11: result ← model.pred(alternatives_train)
12: coefficients_train.add(WS(result, reference_train))
13: coefficients_train.add(rw(result, reference_train))
14: 2) Test results:
15: alternatives_test ← generate_alternatives(10, criteria)
16: result ← model.pred(alternatives_test)
17: reference_test ← ref(alternatives_test)
18: coefficients_test.add(WS(result, reference_test))
19: coefficients_test.add(rw(result, reference_test))
20: end for
21: save_coefficients(coefficients_train)
22: save_coefficients(coefficients_test)
23: end for

Simulation studies were also performed for 1000 random sets of alternatives,
where the number of alternatives 5, 10, 25, 50, 100 was taken as the training set,
while the test set of alternatives had a fixed size of 10 alternatives. The possi-
bility of re-identifying the reference model was tested using the SESP-SPOTIS
approach, where the comparison of the accuracy of the re-identified model with
the reference model was verified using the correlation coefficients of WS and rw
rankings. The Algorithm 3 shows the procedure of the conducted study.

5 10 25 50 100
Number of train size

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

r w

Set type:
train
test

Fig. 6: Distribution of weighted Spearman rank correlation coefficient values (rw)
for reference model comparisons and SESP-SPOTIS for training and test sets.
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Figure 6 displays results from the reference and re-identified models using the
SESP-SPOTIS approach, represented by the weighted Spearman coefficient (rw).
Across test datasets, the average rw was 0.689 to 0.842, and for training datasets,
it was 0.899 to 0.978. Standard deviation varied from 0.161 to 0.309 for tests and
0.044 to 0.076 for training, with smaller datasets showing higher variability. The
rw range was -0.877 to -0.069 (test) and 0.479 to 1.000 (training). The analysis
indicates strong correlation between models and reference, but smaller datasets
had increased variability and reduced correlation.

Figure 7 presents results from the reference and re-identified models using
the SESP-SPOTIS approach, shown by the WS correlation coefficient. For test
sets, the mean WS ranged from 0.789 to 0.880, and for training sets, from 0.905
to 0.982. Standard deviation was between 0.084 to 0.163 for tests and 0.048 to
0.054 for training, with higher variability in smaller sets. Minimum WS values
were 0.137 to 0.461 (test) and 0.643 to 0.672 (training), and maximum values
were 0.884 to 1.000 (test) and 0.986 to 1.000 (training). The re-identified models
showed high correlation with the reference, but smaller datasets had increased
variability and decreased correlation.
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W
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Fig. 7: Distribution of weighted rank correlation coefficient values (WS) for ref-
erence model comparisons and SESP-SPOTIS for training and test sets.

5 Conclusions

This paper introduces a novel re-identification approach for Multi-Criteria De-
cision Analysis (MCDA) models using the stochastic Expected Solution Point
search method in SPOTIS. It explores updating re-identified models with new
evaluations and evaluates accuracy through training and test sets using rank
correlation coefficients rw and WS. Results show the SESP-SPOTIS method
identifies models close to the reference and provides valuable expected solution
points for interpreting decision maker preferences.

Future research should consider developing this approach, taking into account
uncertainty based on fuzzy sets and their generalizations. Other stochastic search
methods should also be explored in the context of re-identifying MCDA models.
In addition, it is worth considering the possibility of searching for multiple points
of the expected solution under ESP.
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