
Cascade training as a tree search with Dijkstra’s
algorithm

Dariusz Sychel1[0000−0001−9835−869X], Aneta Bera1[0000−0002−0456−9451], and
Przemysław Klęsk1[0000−0002−5579−187X]

Faculty of Computer Science and Information Technology, West Pomeranian
University of Technology, ul. Żołnierska 49, 71-210 Szczecin, Poland

{dsychel,abera,pklesk}@zut.edu.pl

Abstract. We propose a general algorithm that treats cascade train-
ing as a tree search process working according to Dijkstra’s algorithm in
contrast to our previous solution based on the branch-and-bound tech-
nique. The reason behind the algorithm change is reduction of training
time. This change does not affect in anyway the quality of the final clas-
sifier. We conduct experiments on cascades trained to become face or
letter detectors with Haar-like features or Zernike moments being the
input information, respectively. We experiment with different tree sizes
and different branching factors. Results confirm that training times of
obtained cascades, especially for large heavily branched trees, were re-
duced. For small trees, the previous technique can sometimes achieve
better results but the difference is negligible in most cases.

Keywords: Cascade of classifiers · Dijkstra’s algorithm · Training Time
Reduction · Tree search.

1 Introduction

Dijkstra’s algorithm is a useful tool for finding the shortest paths between nodes
in a graph. Many practical applications of this algorithm or its modifications
can be found, e.g. airport automated guided vehicles (AGV) path optimization
[16], evacuation route optimization under real-time toxic gas dispersion through
computational fluid dynamics (CFD) simulation and Dijkstra’s algorithm [15]
or judgment of railway transportation path presented in [4].
Cascades of classifiers [13][14] were designed to work as classifying systems

operating under two conditions: (1) very large number of incoming requests,
(2) significant classe imbalance. A cascade should vary its computational effort
depending on the contents of an object to be classified. Objects that are obvi-
ous negatives (non-targets) should be recognized fast, using only a few features
extracted. Targets, or objects resembling them, are allowed to employ more fea-
tures and time for computations. We remark that the optimization problem we
try to solve in this research (and the previous one [9]) is to build such a cascade
that minimize the expected number of features applied by the cascade (formal
definition show in Section 2.3).

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

2 D. Sychel, and A. Bera, and P. Klęsk

Despite the development of deep learning, recent literature shows that cas-
cades of classifiers are still applied in detection systems or batch classification
jobs e.g. GPGPU-based (General-Purpose Graphics Processing Unit) parallel
version of eyes detecting cascade was used for driving an intelligent wheelchair
[7]. Cascade with improved memory consumption was applied for remote sensing
tasks [12]. Cascades of classifiers were also used for kitchen safety monitoring [2]
or for object detection for robot cars [6]. Moreover authors of [1] show that classi-
fier cascade can be significantly faster than YOLO (you only look once) classifier
without substantial reduction of accuracy. Their comparison was conducted on
the driver drowsiness detection problem.

In our previous work [10] we provided and proved a theoretical result demon-
strating that the presence of slack between the constant per-stage requirements
(on accuracy measures) used in the original cascade algorithm and actual rates
observed while learning, allows to introduce new relaxed requirements for each
successive stage and still complete the training procedure successfully. The re-
laxed requirements can be met more easily, using fewer features. This creates a
potential possibility to reduce the expected number of features used by an oper-
ating cascade. Taking advantage of the relaxation, we proposed new stage-wise
training algorithms that apply two approaches: uniform or greedy. They differ
in the way the slack accumulated so far becomes “consumed” later on. Results
obtained by the greedy algorithm (UGM-G) were better in most cases and this
variant became the default one for further research.

This leads us to a new general algorithm that treats cascade training as a
tree search process working according to the branch-and-bound technique [9].
Successive tree levels correspond to successive cascade stages. Sibling nodes rep-
resent variants of the same stage with different number of features applied. We
provided suitable formulas for lower bounds on the expected value to be opti-
mized. While searching, we observe suitable lower bounds on partial expectations
and prune tree branches that cannot improve the best-so-far result. Once the
search is finished, one of the paths from the root to some terminal node indi-
cates the cascade with the smallest expected number of features. Both exact and
approximate variants of the approach were formulated in [9]. Our results con-
firmed shorter operating times of cascades obtained owing to the reduction in
the number of extracted features. The main contribution of this paper is a new
training algorithm for cascade training. It is performed via a tree search proce-
dure that uses Dijkstra’s algorithm in order to reduce the training time compared
to the branch-and-bound technique that was used in the previous work. For our
purposes we consider the single-source single-destination variant of Dijkstra’s al-
gorithm [5] (rather than the single-source all shortest paths). Additionally, the
reduction of training time does not have any negative impact on the expected
number of features in obtained final cascades. Both approaches the new and the
old one (exact branch-and-bound version) result in exactly the same cascades.
The new technique is recommended for large heavily branched trees. In case of
small trees, the previous technique can sometimes achieve better results in terms
of training time but the difference is in fact negligible in most cases.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

Cascade training as a tree search with Dijkstra’s algorithm 3

2 Preliminaries

2.1 Notation

Throughout this paper we use the following notation:

– K — number of cascade stages,
– n = (n1, n2, . . . , nK) — numbers of features used on successive stages,
– (a1, a2, . . . , aK) — FAR (false alarm rates) values on successive stages,
– (d1, d2, . . . , dK) — sensitivities (detection rates) on successive stages,
– A — required FAR for the whole cascade,
– D — required detection rate (sensitivity) for the whole cascade,
– amax = A1/K — per-stage FAR requirement,
– dmin = D1/K — per-stage sensitivity requirement,
– F = (F1, F2, . . . , FK) — ensemble classifiers on successive stages (the cas-
cade),
– Ak — FAR observed up to k-th stage of cascade (Ak =

∏
1⩽i⩽k ai),

– Dk — sensitivity observed up to k-th stage of cascade (Dk =
∏
1⩽i⩽k di),

– θk — decision threshold for classifier Fk, it should be set to the minimal
value that satisfies dk ⩾ dmin,
– (p, 1− p) — true probability distribution of classes (unknown in practice),
– D,V — training and validation data sets,
– # — set size operator (cardinality of a set),
– ∥ — concatenation operator (to concatenate cascade stages).

The probabilistic meaning of relevant quantities is as follows. The final require-
ments (A,D) demand that: P (F (x)= + |y=−)⩽A and P (F (x)= + |y=+)⩾D,
whereas false alarm and detection rates observed on particular stages are, re-
spectively, equal to:

ak = P (Fk(x)= + |y=−, F1(x)= · · ·=Fk−1(x)=+) ,
dk = P (Fk(x)= + |y=+, F1(x)= · · ·=Fk−1(x) = +) . (1)

2.2 Classical cascade training algorithm (Viola-Jones style)

The classical cascade training algorithm with constant per-stage requirements
can be presented with the pseudo-code below (Algorithm 1).

2.3 Expected number of extracted features

Cascade performance is directly dependent on the average number of features
used per window regardless of the learning method, therefore there is a direct
connection between the expected number of features and detection time. To sup-
port this claim Table 1 show impact of expected number of features on detection
time for three example classifiers obtained in our previous work [10].

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

4 D. Sychel, and A. Bera, and P. Klęsk

Algorithm 1 VJ-style training algorithm for cascade of classifiers
procedure TrainVJCascade(D, A, D, K, V)
From D take subsets P, N with positive and negative examples, respectively.
F := () ▷ initial cascade — empty sequence
amax := A1/K , dmin := D1/K , A0 := 1, D0 := 1, k := 0.
while Ak > A do
nk+1 := 0, Fk+1 := 0, Ak+1 := Ak, ak+1 := Ak+1/Ak.
while ak+1 > amax do
nk+1 := nk+1 + 1.
Train new weak classifier f using P and N
Fk+1 := Fk+1 + f .
Adjust decision threshold θk+1 for Fk+1 to satisfy dmin requirement.
Use cascade F∥Fk+1 on validation set V to measure Ak+1 and Dk+1.
ak+1 := Ak+1/Ak.

F := F∥Fk+1.
if Ak+1 > A then
N := ∅.
Use cascade F to populate set N with false detections
sampled from non-target images.

k := k + 1
return F = (F1, F2, . . . , Fk).

Table 1. “Face detection” — impact of expected number of features on detection time
(A = 0.001, D = 0.95).

Cascade Expected value FAR Sensitivity Detection time
image [ms]window [µs]

nk
ak

9
0.2468,

16
0.2548,

21
0.2234,

22
0.2635,

39
0.2606 14.7220 0.000964 0.9510 88 0.675

nk
ak

9
0.2468,

18
0.2214,

26
0.2299,

30
0.2468,

38
0.2370 15.3571 0.000735 0.9520 89 0.680

nk
ak

9
0.2468,

17
0.2516,

32
0.2450,

29
0.2303,

29
0.2798 15.7243 0.000980 0.9510 90 0.687

Definition-based formula A cascade stops operating after a certain number
of stages. Therefore the possible outcomes of the random variable of interest,
describing the disjoint events, are: n1, n1 + n2, . . . , n1 + n2 + · · ·+ nK . Hence,
by the definition of expected value, the expected number of features can be
calculated as follows:

E(n) =
∑
1⩽k⩽K

(∑
1⩽i⩽k

ni

)(
p
(∏
1⩽i<k

di
)
(1−dk)[k<K]+(1−p)

(∏
1⩽i<k

ai
)
(1−ak)[k<K]

)
,

(2)
where [·] is an indicator function.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

Cascade training as a tree search with Dijkstra’s algorithm 5

Incremental formula and its approximation By grouping the terms in (2)
with respect to nk the following alternative formula can be derived:

E(n) =
∑
1⩽k⩽K

nk

p ∏
1⩽i<k

di + (1− p)
∏
1⩽i<k

ai

 . (3)

In practical applications the true probability distribution underlying the data
is unknown. Since the probability p of the positive class is very small, the ex-
pected value can be accurately approximated using only the summands related
to the negative class as follows:

Ê(n) =
∑
1⩽k⩽K

nk
∏
1⩽i<k

ai ≈ E(n). (4)

In our previous works [10][9] we focused on creating an algorithm that tries
to decrease this quantity compared to the original Viola and Jones algorithms.
Because the solution proposed in this paper is a modification of [9], the expected
value also plays a critical role in it, as is used to establish the priority of nodes
in the priority queue used in Dijkstra’s algorithm.

2.4 Relaxed per-stage requirements

Instead of constant per-stage requirements proposed in the original approach we
continue to use the greedy variant of relaxed per-stage requirements, proposed
by us in [10], since applying them results in cascades with lower expected number
of features. As a reminder:

Theorem 1 The presence of slack between constant per-stage requirements
(amax, dmin) and actual rates (ak, dk), k = 1, . . . ,K, observed during cascade
training —

ak = (1− ϵk)amax, dk = (1 + δk)dmin, (5)

where ϵk, δk represent slack variables denoting small numbers — allows to intro-
duce new relaxed requirements for each successive stage and carry out a training
procedure that still satisfies the final requirements (A,D) for the whole cascade.
In particular, when the k-th stage is done, the following two pairs of relaxed
bounds (uniform and greedy) can be applied for the (k + 1)-th stage:

ak+1 ⩽
amax

(1− ϵ⩽k)1/(K−k)
, dk+1 ⩾

dmin

(1 + δ⩽k)
1/(K−k) , (6)

or

ak+1 ⩽
amax
1− ϵ⩽k

, dk+1 ⩾
dmin
1 + δ⩽k

, (7)

where 1− ϵ⩽k =
∏
1⩽i⩽k

(1− ϵi) and 1 + δ⩽k =
∏
1⩽i⩽k

(1 + δi).

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

6 D. Sychel, and A. Bera, and P. Klęsk

For proof see [10].
The greedy per-stage requirements (UGM-G) can be expressed in terms of

A,D constants and ai, di rates observed so far, that is for i ⩽ k, as follows:

amax,k+1 =
A
k+1
K∏

1⩽i⩽k ai
, dmin,k+1 =

D
k+1
K∏

1⩽i⩽k di
. (8)

2.5 Cascade training as a tree search

When cascade training is treated as a tree search process, the root of the tree
represents an empty cascade. Successive tree levels correspond to successive cas-
cade stages. Each non-terminal tree node have an odd number of children nodes.
They represent variants of a subsequent stage with slightly different number of
features. The children are processed from left to right until the stop condition is
met.
The size of the tree can be controlled by two integer parameters L and C,

predefined by the user. To keep the tree fairly small, the branching of variants
shall take place only at L top-most levels, e.g. L = 2. At those levels the branch-
ing factor is equal to C, an odd number, e.g. C = 5 (mandatory middle node,
C−1
2 nodes created by removing features from it,

C−1
2 nodes created by adding

new features). At deeper levels the branching factor is one.

Pruning search tree using current partial expectations — exact branch-
and-bound
During an ongoing tree search (combined with cascade training) one can observe
partial values for the expected value of interest — formula (4). Suppose a new
(k + 1)-th stage has been completed, revealing nk+1 features. The formula (9)

Ê
(
(n1, . . . , nk+1)

)
=
∑
1⩽j⩽k

nj
∏
1⩽i<j

ai+nk+1
∏

1⩽i<k+1

ai = Ê
(
(n1, . . . , nk)

)
+nk+1

∏
1⩽i<k+1

ai.

(9)
expresses the partial expectation for the extended cascade in an incremental
manner. It should be clear that whenever a partial expectation for some tree
branch is greater than (or equal to) the best-so-far exact expectation, say

Ê
(
(n1, . . . , nk+1)

)
⩾ Ê∗,

then there is no point in pursuing that branch further down the tree1. In other
words, pruning can be applied because formula (9) provides a lower bound on
the final unknown expectation. Fig. 1 provides a symbolic illustration of a search
tree with pruning.

1 Initial value of Ê∗ is set to ∞, after first cascade satisfying (A,D) requirements
finish its training, Ê∗ represents its expected number of features.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

Cascade training as a tree search with Dijkstra’s algorithm 7

Fig. 1. Cascade training as a tree search with pruning — example illustration.

Algorithm 2 Training cascade of classifiers via tree search with exact pruning

procedure TrainTreeCascade(D, A, D, K, k, V, F , C, L, F ∗, Ê∗)
From D take subset P with all positive examples, and subset N with all negative

examples.
Train stage for middle child: Fk+1,0 :=TrainStage(P, N , K, k, V, F).
Use cascade F∥Fk+1,0 on validation set V to measure Ak+1,0 and Dk+1,0.
if k > L then
C := 1.

for c := −1,−2, . . . ,−⌊C/2⌋ do ▷ left children
Create Fk+1,c by cloning Fk+1,c+1.
Remove most recent weak classifier from Fk+1,c.
Adjust decision threshold θk+1,c for Fk+1,c to satisfy dmin,k+1 requirement.
Use cascade F∥Fk+1,c on validation set V to measure Ak+1,c and Dk+1,c.

for c := 1, 2, . . . , ⌊C/2⌋ do ▷ right children
Create Fk+1,c by cloning Fk+1,c−1.
Train new weak classifier f using P and N
Fk+1,c := Fk+1,c + f .
Adjust decision threshold θk+1,c for Fk+1,c to satisfy dmin,k+1 requirement.
Use cascade F∥Fk+1,c on validation set V to measure Ak+1,c and Dk+1,c.

for c := −⌊C/2⌋, . . . , 0, . . . , ⌊C/2⌋ do ▷ all children
Calculate expectation Ê for cascade F∥Fk+1,c using (9).
if Ak+1,c > A and Ê < Ê∗ then
Prepare new training set Dk+1,c and new validation set Vk+1,c.
(F ∗, Ê∗):=TrainTreeCascade(Dk+1,c, A,D,K, k+1, Vk+1,c, F∥Fk+1,c,

L, C, E∗, F ∗)
else if Ak+1,c ⩽ A and Ê < Ê∗ then
Ê∗ := Ê, F ∗ := F∥Fk+1,c.
return (F ∗, Ê∗).

return (F ∗, E∗).

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

8 D. Sychel, and A. Bera, and P. Klęsk

The outermost recursion call (initial call) for Algorithm 2 is

TrainTreeCascade(D, A,D,K, 0,V, (), C, L, null,∞).

The TrainStage function in Algorithm 2 correspond to a single execution
of external while loop inside Algorithm 1. It results in a single ensemble trained
using per-stage requirements. The requirements can be calculated as standard
geometric means (classical VJ-style), leading to constant per-stage requirements
for the whole training, or as updated geometric means (UGM).

Pruning search tree using expectation predictions — approximate
branch-and-bound
As we have shown in [9] the training time can be reduced even more by the
following approximate branch-and-bound approach. When the stage k + 1 is
completed, we get to know two new pieces of information: nk+1 and ak+1. That
second piece is not needed to calculate formula (9) for stage k+1, but it is needed
for stage k+2. Therefore, the only unknown preventing us from calculating the
exact partial expectation for stage k + 2 is nk+2. We propose a formula that
allows to approximate this value: nk+2 ⩾ αnk+1.

Dijkstra’s algorithm (single-source single-destination) for cascade tree
search
As can be noticed, the approach presented so far is based on a depth-first traver-
sal accelerated by the branch-and-bound technique. One should realize that when
the search process is conducted recursively from left to right, the training time
can in some cases be significantly longer (e.g. if the solution is in the far right
part of tree).
In order to overcome the above disadvantage, we postulate to replace the

previous traversal order with the Dijkstra’s algorithm in which the priority of
each node is equal to its partial expected value on the number of features. This
means that tree nodes with lower Ê values shall be visited sooner, and therefore
the most promising nodes shall be always evaluated first regardless of their po-
sition the cascade search tree. The new training procedure is presented below as
Algorithm 3.
Object node in Algorithm 3 represents a single tree node. Every node object

contains the following fields: C — number of children created after the node’s
training is finished, k — tree level (equivalent to the cascade stage), Ak, Dk —
FAR/sensitivity for the cascade ended at that node.
The way of creating new children nodes is the same as in Algorithm 2. Once

the middle child is created, the left siblings are created by removing weak clas-
sifiers from the middle child, whereas the right siblings must undergo further
training in order to add new weak classifiers (and features).

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

Cascade training as a tree search with Dijkstra’s algorithm 9

Algorithm 3 Training cascade of classifiers via tree search with Dijkstra’s al-
gorithm
procedure TrainTreeCascadeDijkstra(D, A, D, K, V, C, L)
From D take subset P with all positive examples, and subset N with all negative

examples.
Insert root (empty node with Ê = 0) into priority queue open.
while open not empty do
Take node with the smallest Ê from open.
node.C := 1.
if node.k < L then
node.C := C.

if node.Ak > A or node.Dk < D then
if node.k < K then
Train C children of current node according to TrainTreeCascade

procedure.
for all c ∈ children do
if node.k + 1 < K then
Prepare new training set Dk+1,c and new validation set Vk+1,c.

Calculate expectation Ê for cascade F∥Fk+1,c using (9).
Insert child c into priority queue open.

Insert node into list closed.
else if node.Ak < A and node.Dk > D then
return node

3 Experiments

Similar to our previous work [9][10] research was conducted on machine with
Intel Core i7-4790K 4/8 cores/threads, 8MB cache. In all experiments we apply
RealBoost+bins [8] as the main learning algorithm, producing ensembles of weak
classifiers as successive cascade stages. Each weak classifier is based on a single
selected feature. In letter ”A” detection task we used computer fonts prepared
by T.E. de Campos et al. [3]. In face detection task for training purpose we used
faces cropped from 3000 images, looked up using Google Images search engine.
Test set contains faces from Essex facial images collection [11]. More details
about experimental setup can be found in mentioned articles.

3.1 Average time per node

As our previous work has shown, the further a weak classifier is in a cascade the
more time it takes to train it. This is mainly due to the time needed to perform
the resampling of the training and validation sets. With each weak classifier
added to a cascade its FAR value decreases. Because of this, it becomes more
and more difficult to find an image window misclassified as a positive.
Table 2 shows how the node average training time and the average resampling

times at given stages looked like in experiments. Average times were calculated
based on cascades trained to satisfy final requirement equal to A = 0.001 (FAR)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

10 D. Sychel, and A. Bera, and P. Klęsk

and D = 0.95 (sensitivity). The decrease in the node average training time for
higher K values is associated with a smaller number of features per stage for
more extensive cascades (that satisfy same final requirements), which can be
observed in the Table 5. When it comes to resampling times, the average times
shown in the Table 2 confirm a significant increase of time needed for successive
stages.

Table 2. Average node training and resampling times per tree level (A = 0.001, D =
0.95)

Avg. Training Time [s] Avg. Resampling Time per Stage [s]
Stages per Stage Total 1 2 3 4 5 6 7 8 9

HAAR-like features

K = 5 280 1 400 36 332 2 011 7 286
K = 10 164 1 639 6 34 106 271 537 913 1 916 4 553 8 087

Zernike moments

K = 10 2 19 16 41 52 129 224 430 848 1 739 3 701

3.2 Training times

The conducted research shows that the proposed approach works especially well
for large cascades. In the case of experiments with face detection (Table 3) we
can see that for a high value of FAR A = 0.01 even for relatively small cascades
with only 5 stages Dijkstra’s algorithm allowed to reduce the training time, but
for more demanding settings A = 0.001 the obtained results are similar or worse
to the ones achieved by pruning technique with high α factor. With the increase
of the tree size the effectiveness of Dijkstra’s algorithm (in terms of training
time reduction) rises significantly. It is also worth recalling at this point that
the pruning algorithm proposed in [9] approximates the partial expected value,
therefore setting a high value of α increases the risk of omitting the cascade with
the lowest expected value. On the other hand, Dijkstra’s algorithm guarantees
finding the optimal solution (i.e. the cascade with the minimal expected value
contained in the current tree).
In the case of the second group of experiments (Table 4) — detection of

letter ’A’, we can notice that the results are similar. Because only few Zernike
moments per stage were needed in order to detect letter ’A’ with A = 0.001, we
could not test trees with higher values of C,L and K parameters. Instead we
decided to train more demanding classifiers with A = 0.0001 in order to show
the impact of the proposed solution.
The approach proposed in this paper works particularly well for large multi-

level trees with a high number of nodes. In practice, this allows a larger combi-
nation of cascades to be searched, without significantly increasing the training
time compared to the classical cascade learning approach.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

Cascade training as a tree search with Dijkstra’s algorithm 11

Table 3. Training time comparison (Face Detection — HAAR-like features)

Training Children Trained Nodes Training time
algorithm K Splits (L) per Nodes A D DFS + pruning Dijkstra DFS + pruning Dijkstra

split (C) α = 0.0α = 1.2 open close α = 0.0 α = 1.2

Face Detection (HAAR-like features)

UGM-G 5 1 3 15 0.01 0.95 13 13 11 9 3 130s 2 925s 2 564s

UGM-G 5 1 3 15 0.001 0.95 12 11 12 11 13 375s 11 624s 11 960s
UGM-G 5 1 5 25 0.001 0.95 16 13 17 13 12 238s 10 525s 16 543s
UGM-G 5 1 7 35 0.001 0.95 19 14 20 14 12 039s 10 061s 15 957s
UGM-G 5 2 3 39 0.001 0.95 30 25 27 22 43 642s 30 232s 96 319s

UGM-G 10 1 3 30 0.001 0.95 24 23 17 15 27 916s 25 929s 14 076s
UGM-G 10 1 5 50 0.001 0.95 40 36 25 21 50 963s 49 467s 20 075s
UGM-G 10 1 7 70 0.001 0.95 46 41 31 25 51 679s 50 406s 25 427s
UGM-G 10 2 3 84 0.001 0.95 56 48 31 23 98 053s 90 897s 23 975s

UGM-G 15 1 3 45 0.001 0.95 44 43 33 31 65 381s 58 799s 19 421s
UGM-G 15 1 5 75 0.001 0.95 65 61 47 43 94 344s 90 863s 25 231s
UGM-G 15 1 7 105 0.001 0.95 85 79 58 52 130 437s 121 311s 28 468s
UGM-G 15 2 3 129 0.001 0.95 86 78 60 53 122 668s 106 741s 31 116s

Table 4. Training time comparison (Letter ’A’ Detection — Zernike moments)

Training Children Trained Nodes Training time
algorithm K Splits (L) per Nodes A D DFS + pruning Dijkstra DFS + pruning Dijkstra

split (C) α = 0.0α = 1.2 open close α = 0.0 α = 1.2

Letter ’A’ Detection (Zernike moments)

UGM-G 10 1 3 30 0.001 0.95 21 21 14 12 14 575s 14 211s 5 349s

UGM-G 10 1 3 30 0.0001 0.95 18 12 18 17 50 054s 43 121s 47 961s
UGM-G 15 1 3 45 0.0001 0.95 32 31 20 18 196 150s 192 421s 52 912s

3.3 Prunning efficiency

The results presented in Table 5 show the number of nodes visited by each
method. This table is an extension of a table from [9] with additional results
from Dijkstra’s algorithm. In the case of Dijkstra’s algorithm, two new values
were reported: open — means how many nodes were generated and added to
the priority queue (nodes in the open queue were trained, but their descendants
were not yet created and hence data resampling was not yet needed), closed —
represents the number of nodes that have been fully processed. The values in the
closed column are always non-greater than the values of open column. It should
be remarked that closed nodes counts correspond to number of trained nodes
reported for the previous algorithms (open nodes are of lighter computational
costs). The difference between closed and open counts tells us how many children
were created but never visited.
In this experiment we decided to use three α values: α = 0.0 is equivalent

to the exact pruning method, α = 0.8 to pruning with low risk of missing the
optimal solution, α = 1.2 corresponds to a more aggressive pruning. Higher
values of α were not used because of high risk of missing the optimal solution.
As we can see, the proposed algorithm, thanks to the use of a priority queue,

allowed for a significant reduction in the number of nodes compared to the
exact pruning method. This difference is caused by the fact that in case of
the branch-and-bound method the effectiveness of the approach depends on the
order in which children nodes are visited (similar to other branch-and-bound
based methods its computational complexity is O(CK), in optimistic case it is
Ω(C

1
2K), average complexity is Θ(C

3
4K)), while in case of Dijkstra’s method we

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

12 D. Sychel, and A. Bera, and P. Klęsk

directly compare expected number of features of all reachable nodes. In most
cases the number of nodes visited was also smaller than the one obtained from
the greedy pruning with α = 1.2.

Table 5. Face detection (Haar-like features) — comparison of search tree-based ap-
proaches for different values of parameter C and L.

Training Cascade E(n) Validation Trained Nodes
algorithm FAR sens- DFS + pruning Dijkstra

itivity exact approximate open close

Requirement: α:
10−3 =
0.001 0.95 0.0 0.8 1.2

VJ
9

0.2468,
18

0.2214,
26

0.2299,
30

0.2468,
38

0.2370
15.36 0.00074 0.9520

TREE-C3-L1
VJ

8
0.2703,

16
0.2329,

22
0.2188,

35
0.2419,

55
0.2487

14.37 0.00083 0.9520 12/15 11/15 10/15 12 11

TREE-C3-L1
UGM

8
0.2703,

16
0.2329,

22
0.2188,

27
0.2601,

37
0.2439

14.21 0.00087 0.9510 12/15 11/15 10/15 12 11

TREE-C3-L1
UGM-G

8
0.2703,

16
0.2329,

22
0.2188,

25
0.2713,

40
0.2646

14.20 0.00099 0.9510 12/15 11/15 11/15 12 11

TREE-C3-L2
VJ

8
0.2703,

16
0.2329,

22
0.2188,

35
0.2419,

55
0.2487

14.37 0.00083 0.9520 30/39 26/39 23/39 27 23

TREE-C3-L2
UGM

8
0.2703,

16
0.2329,

22
0.2188,

27
0.2601,

37
0.2439

14.21 0.00087 0.9510 29/39 25/39 24/39 28 21

TREE-C3-L2
UGM-G

8
0.2703,

16
0.2329,

22
0.2188,

25
0.2713,

40
0.2646

14.20 0.00099 0.9510 30/39 26/39 25/39 27 22

TREE-C5-L1
VJ

7
0.2770,

18
0.2134,

23
0.2500,

30
0.2426,

40
0.2408

13.93 0.00086 0.9520 17/25 15/25 15/25 18 14

TREE-C5-L1
UGM

7
0.2770,

18
0.2134,

21
0.2535,

26
0.2577,

43
0.2456

13.78 0.00095 0.9510 17/25 15/25 14/25 17 14

TREE-C5-L1
UGM-G

7
0.2770,

18
0.2134,

17
0.2648,

33
0.2514,

30
0.2452

13.62 0.00097 0.9510 16/25 15/25 13/25 17 13

VJ
4
0.45,

6
0.45,

16
0.48,

13
0.42,

11
0.50,

17
0.47,

14
0.45,

21
0.49,

24
0.50,

45
0.47

12.37 0.00051 0.9560

TREE-C3-L1
VJ

4
0.45,

6
0.45,

16
0.48,

13
0.42,

11
0.50,

17
0.47,

14
0.45,

21
0.49,

24
0.50,

45
0.47

12.37 0.00051 0.9560 24/30 23/30 22/30 20 18

TREE-C3-L1
UGM

3
0.76,

6
0.34,

5
0.45,

10
0.50,

11
0.48,

14
0.45,

24
0.52,

15
0.50,

15
0.54,

18
0.51

11.51 0.00088 0.9510 19/30 17/30 17/30 20 18

TREE-C3-L1
UGM-G

4
0.45,

6
0.44,

5
0.59,

14
0.51,

8
0.49,

12
0.52,

17
0.50,

16
0.47,

14
0.54,

34
0.45

10.70 0.00090 0.9510 24/30 23/30 23/30 17 15

TREE-C3-L2
VJ

3
0.76,

6
0.34,

5
0.45,

10
0.50,

11
0.48,

15
0.45,

17
0.46,

30
0.48,

40
0.49,

19
0.50

11.59 0.00068 0.9550 49/84 44/84 42/84 42 34

TREE-C3-L2
UGM

3
0.76,

6
0.34,

5
0.45,

10
0.50,

11
0.48,

14
0.45,

24
0.52,

15
0.50,

15
0.54,

18
0.51

11.51 0.00088 0.9510 44/84 39/84 35/84 39 31

TREE-C3-L2
UGM-G

4
0.45,

6
0.44,

5
0.59,

14
0.51,

8
0.49,

12
0.52,

17
0.50,

16
0.47,

14
0.54,

34
0.45

10.70 0.00090 0.9510 56/84 55/84 48/84 31 23

TREE-C5-L1
VJ

4
0.45,

6
0.45,

16
0.48,

13
0.42,

11
0.50,

17
0.47,

14
0.45,

21
0.49,

24
0.50,

45
0.47

12.37 0.00051 0.9560 38/50 37/50 36/50 30 26

TREE-C5-L1
UGM

3
0.76,

6
0.34,

5
0.45,

10
0.50,

11
0.48,

14
0.45,

24
0.52,

15
0.50,

15
0.54,

18
0.51

11.51 0.00088 0.9510 33/50 30/50 29/50 29 25

TREE-C5-L1
UGM-G

4
0.45,

6
0.44,

5
0.59,

14
0.51,

8
0.49,

12
0.52,

17
0.50,

16
0.47,

14
0.54,

34
0.45

10.70 0.00090 0.9510 40/50 39/50 36/50 25 21

3.4 Detection examples

Figure 2 presents examples of face detection obtained by classifiers with the
lowest expected number of extracted features trained by tree search procedure
with FAR values set to A = 10−3 and A = 10−4 respectively. Sensitivity for
both classifiers was set to D = 0.95. The decision threshold for classifiers was
set to 1.0.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

Cascade training as a tree search with Dijkstra’s algorithm 13

A = 10−3

A = 10−4

Fig. 2. “Face detection”: detection examples. False alarms marked in yellow.

A =10−3

A =10−4

Fig. 3. “Synthetic A letters”: detection examples.

Similarly, Figure 3 shows examples of letter ’A’ detection obtained by clas-
sifiers with the lowest expected number of extracted features trained by tree
search procedure with FAR values set to A = 10−3 and A = 10−4 respectively.
Sensitivity for both classifiers was also set to D = 0.95. The decision threshold
for classifiers was set to 0.0.

It should be recalled that the cascades obtained by both approaches (Dijk-
stra’s algorithm and branch-and-bound method) are identical, the difference is
in the time needed to find solution.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

14 D. Sychel, and A. Bera, and P. Klęsk

4 Conclusions

Training a cascade of classifiers is a difficult optimization problem that, in our
opinion, should be always carried out with a primary focus on the expected num-
ber of extracted features. This quantity reflects directly how fast an operating
cascade is. In our previous research we propose to use a tree search-based train-
ing that allows to ‘track’ more than one variant of a cascade. This approach can
be computationally expensive, but we have managed to reduce it with suitable
branch-and-bound techniques.
The use of Dijkstra’s algorithm for a tree search allows for further reduction

of training times, especially in the case of complex trees with a large number
of nodes. In addition, the aforementioned algorithm guarantees that the final
cascade (returned as an outcome) always has the lowest expected value among
all cascades contained in a given tree for the imposed settings of branching
factor and tree depth (since priority queue in our approach sets nodes priority
based on expected number of features in associated cascade and by taking into
account that adding new stage to cascade can only increase expected value we
can notice that after finding first cascade that satisfy requirements there is no
possibility of finding other cascade that will improve the current expected value).
This property is not necessarily satisfied in our previous method that use the
approximate pruning.

References

1. Andrean, M.N., Shidik, G.F., Naufal, M., Al Zami, F., Winarno, S., Al Azies,
H., Putra, P.L.W.E.: Comparing haar cascade and yoloface for region of interest
classification in drowsiness detection. JURNAL MEDIA INFORMATIKA BUDI-
DARMA 8(1), 272–281 (2024)

2. Bernabe, J.A., Dylan O. Catapang, J., Valiente, L.D.: Application of haar cascade
classifier for kitchen safety monitoring. In: 2023 9th International Conference on
Advanced Computing and Communication Systems (ICACCS). vol. 1, pp. 343–348
(2023)

3. de Campos, T.E., et al.: Character recognition in natural images. In: Proceedings
of the International Conference on Computer Vision Theory and Applications,
Lisbon, Portugal. pp. 273–280 (2009)

4. Di, J., Gao, R.: Research on railway transportation route based on dijkstra algo-
rithm. In: 2021 International Conference on Big Data Analytics for Cyber-Physical
System in Smart City. pp. 255–260. Springer Singapore (2022)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959)

6. Gharge, S., Patil, A., Patel, S., Shetty, V., Mundhada, N.: Real-time object detec-
tion using haar cascade classifier for robot cars. In: 2023 4th International Confer-
ence on Electronics and Sustainable Communication Systems (ICESC). pp. 64–70
(2023)

7. Ghorbel, A., Ben Amor, N., Abid, M.: Gpgpu-based parallel computing of viola
and jones eyes detection algorithm to drive an intelligent wheelchair. Journal of
Signal Processing Systems (2022)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

Cascade training as a tree search with Dijkstra’s algorithm 15

8. Rasolzadeh, B., et al.: Response Binning: Improved Weak Classifiers for Boosting.
In: IEEE Intelligent Vehicles Symposium. pp. 344–349 (2006)

9. Sychel, D., Klęsk, P., Bera, A.: Branch-and-Bound Search for Training Cascades of
Classifiers. In: Computational Science – ICCS 2020. Springer International Pub-
lishing (2020)

10. Sychel, D., Klęsk, P., Bera, A.: Relaxed Per-Stage Requirements for Training Cas-
cades of Classifiers. In: Frontiers in Artificial Intelligence and Applications – ECAI
2020. vol. 325, pp. 1523–1530. IOS Press (2020)

11. University of Essex: Face Recognition Data.
https://cswww.essex.ac.uk/mv/allfaces/faces96.html (1997), [Online; accessed
11-May-2019]

12. Usilin, S.A., Slavin, O.A., Arlazarov, V.V.: Memory consumption and computation
efficiency improvements of viola–jones object detection method for remote sensing
applications. Pattern Recognition and Image Analysis 31(3), 571–579 (2021)

13. Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of
Simple Features. In: Conference on Computer Vision and Pattern Recognition
(CVPR’2001). pp. 511–518. IEEE (2001)

14. Viola, P., Jones, M.: Robust Real-time Face Detection. International Journal of
Computer Vision 57(2), 137–154 (2004)

15. Wang, J., Yu, X., Zong, R., Lu, S.: Evacuation route optimization under real-time
toxic gas dispersion through cfd simulation and dijkstra algorithm. Journal of Loss
Prevention in the Process Industries 76 (2022)

16. Zhou, Y., Huang, N.: Airport agv path optimization model based on ant colony
algorithm to optimize dijkstra algorithm in urban systems. Sustainable Computing:
Informatics and Systems 35, 100716 (2022)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_17

https://dx.doi.org/10.1007/978-3-031-63751-3_17
https://dx.doi.org/10.1007/978-3-031-63751-3_17

