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Abstract. The paper presents a methodology for building concurrent
models of decision-making systems based on knowledge extracted from
empirical data. We assume that the data is represented by a decision
table, while the decision-making system is represented by a Petri net.
Decision tables contain conditional attribute values obtained from mea-
surements or other sources. A Petri net is constructed using all true and
acceptable rules generated from a given decision table. Rule factors and
other parameters needed to build the net model are also computed from
the data table. Three operators In, Trs and Out interpreted as uni-
norms are used to describe the dynamics of the net model. The expected
behavior of the model is achieved by proper organization of its work.
The theoretical basis of the methodology is the concepts, methods and
algorithms derived from the theory of rough sets, fuzzy sets and Petri
nets.

Key words: Rough set; Fuzzy set; Petri net; Decision rule; Uninorm

1 Introduction

One of the challenges of modern arti�cial intelligence [1] and IT is building
intelligent systems that can function reliably and e�ciently, also in uncertain
conditions. It seems that in order to satisfactorily meet this task, it is no longer
enough to use the achievements of science in one �eld. In this paper, we try to
solve the problem posed in it, using an approach based on three widely recognized
theories: rough sets, fuzzy sets and Petri nets. Rough set theory is an important
mathematical and arti�cial intelligence technique proposed by Pawlak in 1982 [2].
The main feature of this theory, from the point of view of practical applications,
is the classi�cation of empirical data, and thus decision making. Rough sets and
fuzzy sets are quite closely related. The latter were introduced in 1965 by Zadeh
[3]. Both of these concepts can be regarded as generalizations of a set in the
classical sense. In turn, Petri nets were introduced by Petri in 1962 [4] as one of
the formalisms used to model and analyze the behavior of systems of concurrent
processes.
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In the paper, we assume that empirical knowledge about the modeled system
is presented in the form of a given decision table in the sense of Pawlak [5]. The
decision table DT consists of a series of rows labeled by the names of elements
from the set of objects U , represented by a vector of conditional attribute values
from the set A along with the corresponding decision d. The input data for the
construction of a decision-making system model are rules generated from a given
decision table. The resulting system model is represented by a weighted priority
uninorm Petri net (WPUP-net), which enables decision making as soon as there
are enough values of conditional attributes represented by the so-called starting
places in the net model, based on the knowledge encoded in DT (cf. [6]). We
consider two types of rules generated from DT : true and acceptable. A rule is
true in DT if and only if any object u in DT that matches the left-hand side of
the rule also matches its right-hand side, and there is an object u that matches
its left-hand side. A rule is acceptable in DT if the match of any object to the
rule is not exact, but only to some non-zero degree (cf. [7]). A rule is active when
values are speci�ed for all attributes on its left-hand side. We assume that the
net model proposed in this paper will transfer information from one attribute to
another as quickly as possible. Therefore, there is a need to generate both all true
and acceptable rules from DT [6]. Finally, our net model is an implementation of
a set of generated rules and their parameters using WPUP-nets. The proposed
net model works as follows. There are two phases in every net computation. In
the �rst phase it is checked whether the values of any conditions are known, if
so, the net tries to run decision rules, if possible, if not, then in the second phase
the net tries to generate new information about the condition values and send
them across the net. The entire computational process is carried out through
the appropriate organization of the net operation based on the prioritization of
transitions. Transitions representing conditional rules have a lower priority than
transitions representing decision rules. This gives the desired e�ect.

It is worth emphasizing that in our approach, in addition to calculating rules
from a given decision table, all rule coe�cients and other parameters needed to
build a Petri net model are also calculated from it, and they do not come from
an expert in a given �eld of application. This aspect clearly distinguishes our
approach from other approaches commonly available in the literature. This also
means that the process of modeling decision-making systems using our method-
ology can be largely automated, not only modeling, but also analyzing and ver-
ifying the correctness of its operation using specialized software such as PNeS
(Petri Net System), which is designed to assist users in modeling and analyz-
ing systems of concurrent processes with di�erent types of Petri nets [8]. In
1984, Lipp [9] published the �rst paper on fuzzy Petri nets, which work well in
modeling systems operating in imperfect information environments. Since their
introduction, they have enjoyed un�agging interest among people dealing with
arti�cial intelligence and computer science [10]. As indicated in the review lit-
erature [11],[12], these nets have some disadvantages and therefore are not fully
suitable for modeling complex decision systems. For this reason, there are many
alternative models in the literature that increase both the ability to represent
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knowledge more accurately and the ability to reason more intelligently. To the
best of our knowledge, we are not aware of studies using the Petri nets based
on uninorms that �t into the above-mentioned research trend. Uniforms were
introduced by Yager and Rybalov in 1996 [13] as a generalization of t-norms
and t-conorms, almost universally used to describe the dynamics of fuzzy Petri
nets. With uninorms, logical connectives AND and OR can be modeled more
adequately than using triangular norms. By manipulating the values of the neu-
tral element in uninorms, such an e�ect is obtained. Since their introduction,
uninorms have been used in expert systems [14],[15], decision systems [16],[17],
and others. In this paper, uninorms are used both to represent knowledge and
to describe the decision-making process implemented in WPUP-net models.

The work is theoretical in nature and contains potential applications in mod-
eling decision-making systems operating in an uncertain environment. We believe
this is an important extension of the research described in [18]. This extension
applies, among others: (1) adding information about uninorms; (2) development
of a new Petri net model based on uninorms, not triangular norms; (3) modi�ed
description of both the structure and behavior of the new net model; (4) a modi-
�ed net representation of rule knowledge, in which the In, Trs and Out operators
are now uninorms, thanks to which the logical operators And and Or appearing
in the rules can be better modeled in the environment of uncertain informa-
tion; (5) modi�cation of the operating algorithm of the developed net model; (6)
building and analyzing the operation of a net model of a decision-making system
described by a decision table based on a new type of Petri net, from which de-
cision and conditional rules were extracted along with the necessary parameter
values needed to automatically build such a model. We consciously use similar
examples in the introductory part of this work, as well as in the main example
illustrating our approach to help the potential reader see the similarities and
di�erences between the current methodology and that described in [18].

The rest of this paper is structured as follows. Sect. 2 recalls the basic con-
cepts and notations for rough sets and uninorms, and illustrates them with
examples. In Sect. 3, a new model of Petri nets based on uninorms is presented.
Sect. 4 contains net representations of rules. In Sect. 5, an algorithm that de-
scribes how the WPUP-net should work is introduced. Sect. 6 gives an example
to illustrate our methodology. In Sect. 7, conclusions and directions for further
work are presented.

2 Backgrounds and Examples

2.1. Rough sets

A pair S = (U,A) is called an information system if U is a nonempty �nite
set of objects, called the universe, A is a nonempty �nite set of attributes and
a : U → Va for every a ∈ A. The set Va is called the value set of a, and
V =

⋃
a∈A Va is called the domain of A.

A decision table is a pair DT = (U,A ∪ {d}), where A is a nonempty set
of conditional attributes, d /∈ A is a decision attribute (decision). Any decision
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table DT = (U,A ∪ {d}) can be represented by a table with a number of rows
equal to the size of the universe U and a number of columns equal to the size of
the set A ∪ {d}. The value a(u) appears at the position corresponding to row u
and column a.

Let S = (U,A) be an information system, B,C ⊆ A. A set C is dependent

to degree k on B in S if k = γ(B,C) = |POSB(C)|
|U | , where the set POSB(C) is

the positive region of the partition U/C w.r.t. B, i.e., it is the set of all elements
of U that can be uniquely classi�ed to blocks of the partition U/C by means of
B [22]. If k = 1 a set C is totally dependent on B, if k = 0 a set C is totally

independent on B and otherwise C is roughly dependent on B.

Let B,C ⊆ A, and B′ ⊆ B. We say that a set B′ is a relative reduct of B
w.r.t. C, if B′ is a minimal subset of B and γ(B,C) = γ(B′, C).

Let DT = (U,A ∪ {d}) be a decision table, B ⊆ A. We consider two natural
coe�cients of the signi�cance based on the degree of dependency between the
attribute sets B and {d}:

σ1(B, d, a) = γ(B, {d})− γ(B − {a}, {d}) = |POSB({d})|−|POSB−{a}({d})|
|U | ,

σ2(B, d, a) =
γ(B,{d})−γ(B−{a},{d})

γ(B,{d}) =
|POSB({d})|−|POSB−{a}({d})|

|POSB({d})| ,

and denoted by σ1(a) (σ2(a)), when B and {d} are understood. σ1 measures
the di�erence between γ(B, {d}) and γ(B−{a}, {d}), i.e., it determines how the
value of γ(B, {d}) changes after removing the attribute a, whereas σ2 normalizes
this di�erence. In practice, the more important the attribute a, the greater the
value of both coe�cients. It is true that: 0 ≤ σ1(a) ≤ σ2(a) ≤ 1.

LetDT = (U,A∪{d}) be a decision table,B ⊆ A∪{d}, and V =
⋃
a∈A Va∪Vd.

Expressions of the form a = v, where a ∈ B and v ∈ Va are called descriptors

over B and V . By DESC(B, V ), we denote the set of all descriptors over B
and V which is the smallest such set and closed w.r.t. classical connectives: OR
(disjunction), AND (conjunction) and NOT (negation).

Let τ ∈ DESC(B, V ). The set of all objects in U with property τ is called
the meaning of τ in the decision table DT and denoted by ‖ τ ‖.

Let DT be a decision table and DESC(A, Va), a ∈ A be the set of conditional
formulas of DT. Any expression of the form τ → d = v, where τ ∈ DESC(A, Va),
v ∈ Vd and ‖ τ ‖6= ∅ is called a decision rule r in DT . The formula τ is called
the predecessor and the formula d = v successor of the decision rule r. A non-
empty set of objects ‖ τ ‖ is matching the decision rule, and the set of objects
‖ τ ‖ ∩ ‖ (d = v) ‖ is supporting the rule. By accuracy factor of the decision

rule r we mean the number acc(r)= |‖τ‖∩‖(d=v)‖||‖τ‖| , whereas by coverage factor of

r the number cov(r)= |‖τ‖∩‖(d=v)‖||‖(d=v)‖| . The strength factor of the decision rule r is

the number str(r)= |‖τ‖∩‖(d=v)‖||U | . We say that a decision rule r is true in DT ,

if acc(r) = 1, and it is acceptable in DT , if 0 < acc(r) < 1. A decision rule r
is called minimal if it has the minimum number of descriptors on the left-hand
side. It is obvious that: 0 ≤ str(r) ≤ acc(r) ≤ 1 and 0 ≤ str(r) ≤ cov(r) ≤ 1 for
every decision rule r in DT .
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Remark. (1) All the terms de�ned above for decision rules also apply to con-
ditional rules of the form: τ → a = v, where τ, a = v ∈ DESC(A, Va). (2) In
this paper, σ2(a), acc(r) and cov(r) are the parameters used to characterize the
rules (see Section 4).

Table 1. A decision table

U / A ∪ {d} H M T F

u1 no yes high yes
u2 yes no high yes
u3 yes yes very high yes
u4 no yes normal no
u5 yes no high no
u6 no yes very high yes

Example 1. Consider the decision table DT from table 1. We have: U =
{u1, u2, u3, u4, u5, u6}; A = {H, M, T}, where H is headache, M - muscle pain,
T - temperature; d = F and means �u. The attribute d represents the expert's
decision to diagnose �u based on the patient's interview. Attribute values from
A∪ {d} are presented inside the table. We can calculate: γ({H,M,T}, {F}) = 2

3 ,
γ({T}, {F}) = 1

2 , γ({H}, {F}) = γ({M}, {F}) = 0, and two relative reducts w.r.t.
{F}, R1={H,T} and R2={M,T} of the set of conditions {H,M,T}. Using the
formulas for σ1 and σ2 for Table 1, we obtain the following measures of the sig-
ni�cance of some attributes from the set A w.r.t. the classi�cation generated by:
(1) the conditional attributes A: σ1(H) = 0, σ2(H) = 0, σ1(M) = 0, σ2(M) = 0,
σ1(T) = 1

2 , σ2(T) = 3
4 ; (2) the relative reduct R1: σ1(H) = 1

6 , σ2(H) = 1
4 ,

σ1(T) = 2
3 , σ2(T) = 1; (3) the relative reduct R2: σ1(M) = 0, σ2(M) = 1

4 ,
σ1(T) =

3
4 , σ2(T) = 1. Furthermore, using the method of generating the mini-

mal rules in DT [6], we obtain the following rules along with a list of numerical
factors corresponding to:

1. Nontrivial functional dependencies between the values of conditions T and
H in the reduct R1: r1 := (T=very high) → (H=no); [σ2(T) = 1, cov(r1) =

1
3

/ str(r1) = 1
6 ; acc(r1) = 1

2 ]; r2 := (T=very high) → (H=yes); [σ2(T) = 1,
cov(r2) =

1
3 / str(r2) =

1
6 ; acc(r2) =

1
2 ]; r3 := (T=high) → (H=no); [σ2(T) =

1, cov(r3) = 1
3 / str(r3) = 1

6 ; acc(r3) = 1
3 ]; r4 := (T=high) → (H=yes);

[σ2(T) = 1, cov(r4) = 2
3 / str(r4) = 1

3 ; acc(r4) = 2
3 ]; r5 := (T=normal) →

(H=no); [σ2(T) = 1, cov(r5) =
1
3 / str(r5) =

1
6 ; acc(r5) = 1].

2. Nontrivial functional dependencies between the values of conditions from
R1={H,T} and the decision F: r6 := (T=very high) → (F=yes); [σ2(T) = 1,
cov(r6) = 1

4 / str(r6) = 1
6 ; acc(r6) = 1]; r7 := (H=no) AND (T=high) →

(F=yes); [σ2(H) =
1
4 , σ2(T) = 1, cov(r7) =

1
4 / str(r7) =

1
6 ; acc(r7) = 1]; r8

:= (H=yes) AND (T=high) → (F=yes); [σ2(H) =
1
4 , σ2(T) = 1, cov(r8) =

1
4 /

str(r8) =
1
6 ; acc(r8) =

1
2 ]; r9 := (H=yes) AND (T=high) → (F=no); [σ2(H) =
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1
4 , σ2(T) = 1, cov(r9) = 1

2 / str(r9) = 1
6 ; acc(r9) = 1

2 ]; r10 := (T=normal) →
(F=no); [σ2(T) = 1, cov(r10) =

1
2 / str(r10) =

1
6 , acc(r10) = 1]. Note that r5,

r6, r7 and r10 are true in Table 1, while the rest are only acceptable.
Remark. These rules can also be generated from Table 1 using e.g. PNeS [8].

2.2. Uninorms

A mapping U : [0, 1]2 → [0, 1] is called a uninorm if it is commutative, asso-
ciative, nondecreasing, and there exists e ∈ [0, 1] (called neutral element) such
that U(e, x) = x for all x ∈ [0, 1].

The function U becomes a t-norm when e = 1 and an s-norm (t-conorm) when
e = 0. Both classes of triangular norms are commonly used in fuzzy logic [19]. It
is true that for every (x, y) ∈ [0, e)× (e, 1]∪ (e, 1]× [0, e), min(x, y) ≤ U(x, y) ≤
max(x, y). Moreover, U(0, 1) ∈ {0, 1} for all uninorms U [20]. If U(0, 1) = 0,
then the uninorm U is called andlike (or conjunctive), and if U(0, 1) = 1, then
U is called orlike (or disjunctive).

Fact. If U is a uninorm with e ∈ (0, 1) and the functions x → U(x, 1) and
x → U(x, 0) (x ∈ [0, 1]) are continuous, except perhaps x = e. Then U can be
determined using one of the formulas below.

(a) If U(0, 1) = 0 then

U(x, y) =


eTU (

x
e ,

y
e ) if (x, y) ∈ [0, e]2

e+ (1− e)SU (x−e1−e ,
y−e
1−e ) if (x, y) ∈ [e, 1]2 (1)

min(x, y) in other cases

(b) If U(0, 1) = 1 then

U(x, y) =


eTU (

x
e ,

y
e ) if (x, y) ∈ [0, e]2

e+ (1− e)SU (x−e1−e ,
y−e
1−e ) if (x, y) ∈ [e, 1]2 (2)

max(x, y) in other cases

In both formulas given above, TU is a t-norm and SU is an s-norm. We denote
the class of uninorms of the form (1) by Umin, and the class of uninorms of the
form (2) by Umax. The above relationships allow us to determine general formulas
for uninorms with a neutral element e. In this paper, we limit our considerations
to six uninorms, simple in the mathematical notation, which general formulas
along with names borrowed from the names of the appropriate triangular norms
used to determine them are given in Tables 2 and 3.

Table 2. Uninorms with e ∈ (0, 1) corresponding to three basic t-norms [21]

Name Formula for x, y ∈ [0, e]

Zadeh t-uninorm Ue
Zt

(x, y) = min(x, y)

Goguen t-uninorm Ue
Gt

(x, y) = xy
e

Lukasiewicz t-uninorm Ue
Lt

(x, y) = max(0, x + y − e)

Example 2. Let U ∈ Umin and U ′ ∈ Umax be uninorms de�ned as follows:
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Table 3. Uninorms with e ∈ (0, 1) corresponding to three basic s-norms [21]

Name Formula for x, y ∈ [e, 1]

Zadeh s-uninorm Ue
Zs

(x, y) = max(x, y)

Goguen s-uninorm Ue
Gs

(x, y) = x+y−xy−e
1−e

Lukasiewicz s-uninorm Ue
Ls

(x, y) = min(1, x + y − e)

U(x, y) =

max(0, x+ y − 1/2) if (x, y) ∈ [0, 1/2]2

min(1, x+ y − 1/2) if (x, y) ∈ [1/2, 1]2

min(x, y) in other cases

U ′(x, y) =

max(0, x+ y − 1/2) if (x, y) ∈ [0, 1/2]2

min(1, x+ y − 1/2) if (x, y) ∈ [1/2, 1]2

max(x, y) in other cases

Note that U and U ′ are andlike and orlike uninorms, respectively. Moreover,
both formulas can be obtained from Lukasiewicz's t-norm and s-norm shown
in Tables 2 and 3, respectively, with the neutral element e = 1/2. For more
information on rough sets and uninorms, see [22],[23].

3 Weighted Priority Uninorm Petri Nets

Let Umin and Umax denote the classes of uninorms of the form (1) and (2),
respectively, de�ned in Section 2, with the neutral element e ∈ (0, 1).

A tupleNU = (P, T, I,O, Pr,M0, S, α, β, γ,Op, δ) is called a weighted priority

uninorm Petri net (WPUP-net for short) if: (1) P = {p1, p2, ..., pn} is a set of
places, T = {t1, t2, ..., tm} is a set of transitions; (2) I:P ×T → [0, 1] is the input
function, O:T × P → [0, 1] is the output function; (3) Pr:T → N is the priority
function (N is the set of natural numbers), M0:P → [0, 1] is the initial marking;
(4) S = {s1, s2, . . . , sn} is a set of statements (P, T, S are pairwise disjoint),
α:P → S is the statement binding function; (5) β:T → [0, 1] is the truth degree
function, γ:T → [0, 1] is the threshold function; (6) Op = Umin ∪ Umax is the
set of operators, δ:T → Op×Op×Op is the operator binding function.

Let NU be a WPUP. For t ∈ T : •t = {p : I(p, t) > 0} is a set of input places
of t, and t• = {p′ : O(t, p′) > 0} is a set of all output places of t.

By tokens we mean the values of the functionM0. We assume that the set Op
contains uninorms. If the arc (p, t) connects p and t, then I(p, t) > 0, otherwise
0. The value I(p, t) is called the input weight t and is denoted iw. Similarly, if
the arc (t, p) connects t and p, then O(t, p) > 0, otherwise 0. The value O(t, p) is
called the output weight t and is denoted ow. Places are graphically represented
by circles and transitions by rectangles. If the weight of the directed arc is 1, then
1 is not shown in the net graph, if the weight of the directed arc is 0, this arc is
skipped in the net graph. In other cases, the weight is placed next to the arc in
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question. Priorities are placed next to transitions. We only consider two priority
values: 0 and 1. If the priority is 0, we do not show it in the net graph. Transitions
representing decision rules have a priority of 1, all others have a priority of 0.
Each place contains one token. The token is placed inside the place. If a token
has a value of 0 in a given place, then that place is empty. Each statement is
associated with only one place. The statement is placed next to the place. The
values of β(t) and γ(t) are shown in the net graph under the transition t. The
�rst value is interpreted as the accuracy factor of the rule represented by t. The
second value a�ects the activation of the transition. If the value of the transition
�ring condition is not less than the threshold value, the transition can be �red.
The value of the function δ is the triple of operators (In, Trs,Out), this triple
is placed under the transition. In is the input operator, Trs is the transmission
operator, and Out is the output operator. Operator In aggregates tokens placed
in the input places of the transition to which it is assigned. The role of the Trs
and Out operators is to aggregate the value received from In with the values
of the remaining net parameters and send the generated value to all transition
output places to which these three operators are assigned. We assume that the
input operators belong to Umin or Umax, while the other two belong to Umin
and Umax, respectively. These operators are used to describe the dynamics of
the WPUP net. Arc weight values and β function values are calculated from
the data table and interpreted using rough set theory concepts (see Section 4).
However, values of the threshold function γ are set by the domain expert.

WPUP-net dynamics are de�ned by a �ring rule, and the net evolution is
represented by a sequence of �red transitions.

Let NU be a WPUP-net. A marking of NU is a function M :P → [0, 1].
Firing rule. Let NU = (P, T, S, I,O, α, β, γ,Op, δ,M0) denotes a WPUP-net,

M be a marking ofNU , t ∈ T , •t = {pi1, pi2, . . . , pik} be a set of input places for t,
β(t) ∈ (0, 1], and δ(t) = (In, Trs,Out). A transition t is enabled (or ready to �re)
for markingM if for all p ∈ •t: In((iwi1·M(pi1), iwi2·M(pi2)), ..., iwik ·M(pik)) ≥
γ(t) > 0, where iwij is an input weight of an arc (pij , t) andM(pij) is a marking
of a place pij for j = 1, 2, ..., k.

If •t consists of only one place p, we assume that a transition t is enabled for
M if the following condition is true: iw ·M(p) ≥ γ(t) > 0, where iw is an input
weight of arc (p, t). A net transition can be �red when it is enabled.

According to the de�nition of WPUP-net, transitions can be assigned prior-
ities, which means that if two or more transitions are enabled simultaneously in
a given marking, the transitions with the highest priority will be activated �rst
[24].

Formula of the next marking. Firing an enabled transition t by a marking
M results in a new marking M ′ de�ned by

M ′(p) =

Out(ow · Trs(In(iwi1 ·M(pi1), iwi2 ·M(pi2), ..., iwik ·M(pik)), β(t)),
M(p)) if p ∈ t•
M(p) otherwise

where ow is an output weight of arc (t, p).
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Fig. 1. A WPUP-net with the initial marking M0 = (2/3, 2/5, 0, 0).

Example 3. For the WPUP-net of Fig. 1, we have: P = {p1, p2, p3, p4}; T =
{t1, t2}; I(p1, t1) = iw1 = 3/4, I(p2, t1) = iw2 = 1/2, I(p3, t1) = iw3 = 0,
I(p4, t1) = iw4 = 0, I(p1, t2) = iw5 = 0, I(p2, t2) = iw6 = 1, I(p3, t2) =
iw7 = 0, I(p4, t2) = iw8 = 0; O(t1, p1) = ow1 = 0, O(t1, p2) = ow2 = 0,
O(t1, p3) = ow3 = 1, O(t1, p4) = ow4 = 0, O(t2, p1) = ow5 = 0, O(t2, p2) =
ow6 = 0, O(t2, p3) = ow7 = 0, O(t2, p4) = ow8 = 1/2; Pr(t1) = 1, Pr(t2) = 0;
M0 = (2/3, 2/5, 0, 0); S = {s1, s2, s3, s4}; α(p1) = s1, α(p2) = s2, α(p3) = s3,
α(p4) = s4; β(t1) = 1, β(t2) = 1/2; γ(t1) = γ(t2) = 1/10; Op = {In, Trs,Out},
where In and Trs are interpreted as uninorm U , and Out as uninorm U ′ from
Example 2; δ(t1) = δ(t2) = (In, Trs,Out). Notice that t1 and t2 are ready to
�re by the initial marking M0. This is because: In(iw1 ·M(p1), iw2 ·M(p2)) =
In(3/4 · 2/3, 1/2 · 2/5) = In(1/2, 1/5) = max(0, 1/2 + 1/5 − 1/2) = 1/5 ≥
γ(t1) = 1/10 and iw6 ·M(p2) = 1 · 2/5 ≥ γ(t2) = 1/10. Only t1 will be �red
because it has priority higher than priority t2. Firing transition t1 with the
initial marking M0 leaves this marking unchanged. This is due to the fact that:
Trs(In(iw1 ·M(p1), iw2 ·M(p2)), β(t1)) = Trs(1/5, 1) = min(1/5, 1) = 1/5 and
Out(ow3 · Trs(1/5, 1),M0(p3)) = Out(1 · 1/5, 0) = Out(1/5, 0) = max(0, 1/5 +
0− 1/2) = max(0,−3/10) = 0.

Remark. Here and in the rest of the paper, instead of β(t) = b, γ(t) = c, where
t is a transition and b, c values from the unit interval [0,1], we will use the
abbreviations β = b, γ = c.

4 WPUP-net Representation of Rules

This section describes the three types of rules, including a list of parameters that
characterize them (cf. [11],[25]).

Let DT = (U,A ∪ {d}) denote a given decision table, and DESC(A, Va) be
the set of its conditional formulas.

Type 1. (A simple rule.) r1: (a = v) → (d = v′) [b; σ(a), cov(r1); acc(r1)]
with descriptors a = v and d = v′ such that a = v ∈ DESC(A, Va) and v

′ ∈ Vd,
a truth degree value b of a = v, signi�cance σ(a) of attribute a given by the
formula for σ2(a), a coverage factor cov(r1) and an accuracy factor acc(r1) of
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rule r1. The method for calculating these parameters can be found in Subsection
2.1.

Fig. 2. A WPUP-net model of the type 1 rule after �ring r1.

The WPUP-net structure of rule r1 is shown in Fig. 2, where iw = σ(a) is an
input weight of r1, and ow = cov(r1) is an output weight of r1. If iw is greater
than ow, the �rst link is stronger than the second. However, value c = β(r1) is
interpreted as acc(r1). As before, the higher the value of β, the more robust the
rule. Value d = γ(r1) represents a threshold that requires degree of truth value
a = v to be not less than d. In, Trs, Out are operators assigned to r1, which
are the appropriate uninorms described in the WPUP-net de�nition (Section 3).
According to Fig. 2 the value of a token at an output place of r1 is calculated as
b′ = ow · Trs(b · iw, c) if b · iw ≥ d.

If a rule's antecedent or successor contains an input operator In, it is called
a compound rule.

Type 2. (A compound rule in the antecedent.) r2 : (a1 = v1) In (a2 = v2) · · ·
In (ak = vk) → (d = v′) [b1, b2, . . . , bk; σ

1(a), σ2(a), . . . , σk(a), cov(r2); acc(r2)]
with descriptors a1 = v1, a2 = v2, . . ., ak = vk, d = v′ and truth degree values
b1, b2, . . ., bk, b

′, respectively. A token value b′ at an output place of r2 is
calculated as follows (Fig. 3): b′ = Trs(In(b1 · iw1, b2 · iw2, . . . , bk · iwk), c)) · ow)
if In(b1 · iw1, b2 · iw2, . . . , bk · iwk) ≥ d. Note that in this case, the operator In
can be interpreted as either andlike uninorm or orlike one.

Fig. 3. A WPUP-net model of the type 2 rule after �ring r2.
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Type 3. (A compound rule in the successor.) r3: (a = v) → (d = v1)
In (d = v2) · · · In (d = vn) [b; σ

1(a), σ2(a), . . . , σn(a), cov1(r3), cov
2(r3), . . . ,

covn(r3); acc
1(r3), acc

2(r3), . . . , acc
n(r3)] with descriptors a = v, d = v1, d = v2,

. . . , d = vn, and a truth degree value b of a = v. A token value b′j for each output
place of r3 is calculated in the following way (Fig. 4): b′j = owj · Trs(b · iw, cj)
if b · iw ≥ dj , j = 1, . . . , n.

Fig. 4. A WPUP-net model of the type 3 rule after �ring r3.

We assume that for the rules of type 3, In is interpreted as an andlike uni-
norm.

Remark. In each of the formulas presented above, in the case of nonzero mark-
ings of output places, the �nal value of the token b” should be calculated accord-
ing to the formula: b” = Out(b′,M(p′)), where b′ is the token value calculated
as described above for each of the considered rule types, and M(p′) denotes the
nonzero marking of the output place p′.

5 An Algorithm

In this section, we introduce an algorithm that describes how a WPUP-net
should work. It can be seen that in each computation of the net NU built on the
basis of a given decision table DT , two phases can be distinguished. In the �rst
phase, tokens are set in input places of transitions representing conditional rules,
not necessarily in all of them. In its second phase, the algorithm transfers tokens
between places on the net as quickly as possible. This phase is implemented by
the part of the net that represents all true and acceptable rules in the decision
table DT . Net computation ends when the net model has proposed a decision
or there are no transitions representing conditional rules ready to �re that have
not been used before.
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Algorithm 1: WPUP-net model for a given DT .

Input : WPUP-net NU .
Output: Final decision.
begin

Set the marking of NU ;
A: if decision transitions are ready to �re then

�re them simultaneously and go to B;

if condition transitions are ready to �re and they have not been �red yet then
�re them simultaneously and go to A

else
Go to C;

B: Read the �nal decision
C: end.

6 An Illustrative Example

In this section, we will illustrate our methodology with the decision table in
Example 1 representing a �u diagnosis system.

After transforming the rules with parameters from Example 1 into Petri nets
(see Section 4) and combining them in common places, we obtain the resulting
WPUP-net shown in Fig. 5. This net contains seven places and ten transitions.
Among all places, there are �ve places (from p1 to p5) corresponding to condi-
tional descriptors in the rules (these are starting places; selecting these places
starts a diagnosis process), the remaining two refer to decision descriptors (these
are treated as decision places whose nonzero tokens indicate the proposed deci-
sions and their calculated degree of credibility). The set of transitions contains
�ve transitions (from t1 to t5), which represent conditional rules (from r1 to
r5), while the rest represent decision rules. Directed arcs connecting places with
transitions and vice versa (elements of the sets P × T and T × P ) along with
their weights on the arcs are illustrated in Fig. 5. In the initial net marking, p2
and p5 contain nonzero tokens, the rest are empty. Place p2 includes token 3/4
which represents the truth degree of descriptor T = high, and place p5 contains
token 1/2 which represents the truth degree of descriptor H=yes. Statement set
S contains all descriptors (conditional and decision) appearing in the set of rules
from Example 1. The initial markings of p2 and p5 are nonzero, the rest are
empty. The marking of p2 is equal to 3/4 and represents the truth degree of
the descriptor T = high, and the marking of p5 is equal to 1/2 and represents
the truth degree of the descriptor H = yes. Statement set S consists of all the
descriptors (conditional and decision) that appear in the rule set in Example
1. The elements of S correspond uniquely to their places in the net, as shown
in the �gure. The role of the degree of truth function β is to assign the value
1 to transitions t5, t6, t7, t10, the value 1/2 to transitions t1, t2, t8, t9, the value
1/3 to t3 and �nally the value 2/3 to t4. Threshold function γ assigns 1/10 to
each transition. Set of operators Op contains three operators In, Trs and Out
interpreted respectively as uninorms U , U and U ′ described in Example 2, but
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Fig. 5. A WPUP-net model for the rules in Example 1 with the initial marking M0 =
(0, 3/4, 0, 0, 1/2, 0, 0).

now we assume that the neutral element e = 1/8. Operator binding function δ
assigns the triple form (In, Trs,Out) to each net transition. When evaluating
statements attached to p2 and p5, we notice that t3, t4, t8 and t9 are ready to �re
in the initial marking. Transitions t8 and t9 will run �rst because their priorities
are higher than the priorities of the other two transitions. After �ring t8 and t9
simultaneously or one at a time in any order, the net operation stops at 1/4 and
1/2 corresponding to decisions F = yes, F = no, respectively. Due to the fact
that the degree of truth of the statement F = no is greater than the degree of
truth of the latter, the net model proposes the statement that there is no �u in
the case under consideration.
Now consider the case where only p2 is marked as before, and the other starting
places are empty. It can be checked that in such a situation no transition repre-
senting a decision rule is ready to be �red, while t3 and t4 are ready. After �ring
these transitions, we will get a marking at which you can see that t8 and t9 are
ready to �re. When these transitions are �red simultaneously or one at a time
in any order, we get a marking where the net computation ends with a decision
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proposal indicating no �u and with the same degree of credibility as before. This
example shows that the proposed net model can also work in the absence of
tokens in some input places of decision transitions in the initial marking, which
may result in the inability to make a decision immediately after starting its
work. Sometimes missing information is obtained. This is the case when, after
starting the model, conditional transitions are ready to �re, which can generate
the necessary tokens. This was in our example. Detailed calculations related to
the description of net operations have been omitted. They are similar to those
described in Example 3 (Section 3).
Remark. All drawings of Petri net models in this paper were made in PNeS [8].

7 Conclusion and Further Work

In the paper, we presented a hybrid methodology that allows you to build con-
current models of decision-making systems based on knowledge extracted from
empirical data stored in a given decision table. A new type of Petri net was
used to represent the decision-making system for diagnosing �u cases. In this
example, the operation of the model was analyzed in terms of the decisions it
proposed, with particular emphasis on the situation when the input data of the
model did not allow for immediate decision-making due to their incompleteness.
The e�ect of such action is obtained by applying true and acceptable rules in
the construction of the model along with the appropriate organization of its
work. The expected functioning of the model became possible additionally due
to the introduction of di�erentiated transition priorities and the appropriate in-
terpretation of three transition operators in the uninorm class, responsible for
the dynamics of the model's behavior.

Due to the fact that in many real-world situations it is di�cult to determine
the exact membership value or degree of truth, in further research we intend
to focus on interval data rather than exact data [26]. For this purpose, in the
WPUP-net model, we intend to replace the classical uninorms with interval
uninorms and check experimentally what positive changes both in operation
and in the e�ectiveness and usefulness of the proposed decisions can be obtained.
Another problem of interest to us concerns the formulation of requirements under
which net models of this type are deterministic (cf. [27]).
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12. Jiang, W., Zhou, K.-Q., Sarkheyli-Hägele, A., Zain, A.M.: Modeling, reasoning,
and application of fuzzy Petri net model: a survey. Artif. Intell. Rev. 55, 6567�6605
(2022)

13. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80,
111�120 (1996)

14. De Baets, B., Fodor, J.: Van Melle's combining function in MYCIN is a repre-
sentable uninorms: An alternative proof. Fuzzy Sets Syst. 104, 133�136 (1999)

15. Yager, R.: Uninorms in fuzzy systems modeling. Fuzzy Sets Syst. 122, 167�175
(2001)
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