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Abstract. The Chilean coast is a very seismically active region. In the
21st century, the Chilean region experienced 19 earthquakes with a mag-
nitude of 6.2 to 8.8, where 597 people were killed. The most dangerous
earthquakes occur at the bottom of the ocean. The tsunamis they cause
are very dangerous for residents of the surrounding coasts. In 2010, as
many as 525 people died in a destructive tsunami caused by an un-
derwater earthquake. Our research paper aims to develop a tsunami
simulator based on the modern methodology of Physics Informed Neu-
ral Networks (PINN). We test our model using a tsunami caused by a
hypothetical earthquake o� the coast of the densely populated area of
Valparaiso, Chile. We employ a longest-edge re�nement algorithm ex-
pressed by graph transformation rules to generate a sequence of trian-
gular computational meshes approximating the seabed and seashore of
the Valparaiso area based on the Global Multi-Resolution Topography
Data available. For the training of the PINN, we employ points from the
vertices of the generated triangular mesh.

1 Introduction

Tsunami waves (or just tsunamis) are "high-energy" ocean waves caused by the
sudden displacement of large masses of ocean water, originating most frequently
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2 A. Niewiadomska, et.al.

from (high-magnitude) (underwater) earthquakes (or, less frequently, from un-
derwater volcanic eruptions, calving of glaciers, massive landslides or meteorite
impacts). Despite the high energy and moving at speeds of up to several hundred
kilometers per hour, due to their low height (up to several dozen centimeters)
and long length (up to several hundred kilometers), tsunami waves may even
be unnoticed in the open ocean. The situation changes, however, dramatically
when they reach the coastal zone, where they accumulate (often rapidly) and,
reaching heights of up to several dozen meters, break onto the land, �ooding and
destroying everything that comes within their range of in�uence.

Due to their unpredictable nature, devastating power, and huge area and
range of impact, we, as humankind, can still not predict their occurrence with
100% e�ectiveness and in a long enough advance to get a chance to evacuate
people from endangered areas. Also, it is not possible to keep all the endan-
gered areas like a green�eld or uninhabited sites, so as important as improving
the methods and tools for monitoring and warning against their occurrence, an
important direction of research are methods and techniques for modeling the
propagation and behavior of these waves (especially while reaching the coastal
zones) to make it possible and reliable to simulate the potential impact of their
occurrence and, for example, to adjust evacuation routes, procedures, and coastal
areas development plans appropriately to minimize their potential devastating
e�ects.

Due to the high seismic activity, tsunami waves are (most) frequently ob-
served in the Paci�c region, where in the so-called (Paci�c) Ring of Fire, or the
Circum-Paci�c Seismic Belt, there are most of Earth's active volcanoes located
(more than 450 in total) and approximately 90% of all earthquakes in the world
occur.

One of the countries particularly exposed to the devastating e�ects of tsunami
waves due to its location in the area of the Circum-Paci�c Seismic Belt, the length
of the coastline (approximately 6.5 thousand kilometers), and a large number of
islands and islets located near the coastline and in the open ocean (around 3,000
in total) is south-American Chile. How real is that dangerous for the Chilean
territory (and the coast in particular) let it be proven by the fact that on the
list of the strongest earthquakes recorded in history, as many as �ve can be
classi�ed as located in the Chilean region (coastline or the interior), including
so-called the Great Chilean Earthquake, on May 22, 1960, considered, with the
magnitude of 9.5 Richter degrees, as the strongest earthquake recorded so far
in the history of seismic measurements. So, that is the direct motivation for the
research undertaken and discussed in this paper.

As for the particular region considered in our research, we focused on the
Valparaiso area. It has been chosen for two reasons. First, it is located approxi-
mately halfway along Chile's coastline so that the results may be representative
of the broader part of the Chilean coast. Second, Valparaiso (the city and the
region) is one of Chili's most densely populated and urbanized regions. Also,
it is one of the most popular tourist regions on the west coast of South Amer-
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ica, so the topic may be even more important and interesting for the Chilean
community, researchers, and authorities.

The goal of this paper is to develop the Physics Informed Neural Network
(PINN) model of a tsunami based on non-linear wave equations and the to-
pography of the seabed and seashore in the Valparaiso region of Chile. Prof.
Karniadakis proposed the PINN citec1 in 2019 as a method of solving Partial
Di�erential Equations (PDEs) by training the neural networks. PINN has been
implemented in the DeepXDE library [9]. It is an extensive library supporting
TensorFlow, PyTorch, JAX, and PaddlePaddle, with huge functionality, includ-
ing ODEs, PDEs, complex geometries, and di�erent initial and boundary condi-
tions for solving forward and inverse problems. Another library for solving the
wave equation, Allan-Cahn equations, Volterra integrodi�erential equations, and
variational minimization problems is IDRLnet [10], which uses pytorch, numpy,
and Matplotlib.

In this paper, we have implemented the PINN solver for the non-linear wave
equation using our PINN-2DT library [14] implemented in PyTorch and executed
in GoogleColab. It enables simple implementation and execution of the wave-
equation simulations. The novelty of our computational method lies in the fact
that we select the points for training PINN residuals following the adaptive mesh
re�nement procedure. Namely, we employ a longest-edge re�nement algorithm
[17] to generate an accurate triangular computational mesh approximating the
seabed and seashore of the Valparaiso area. Our adaptive method employs the
Global Multi-Resolution Topography Database (GMRT) [11]. We express the
longest-edge re�nement algorithm by graph transformation rules. For the train-
ing of the PINN, we use the points from the vertices of the generated triangular
mesh. Following the ideas presented in our previous model [18, 19, 8], we express
the triangular mesh re�nement algorithm by a set of graph transformation rules.

Alternative available state-of-the-art simulators are based on �nite volume
method (GeoClaw [20]), �nite di�erence method (COMCOT [21], CoulWAVE
[22]), a hybrid of �nite di�erence-�nite volume methods (Celeris base [23]), or
�nite element method [8]. We verify the correctness of our PINN simulator by
comparing it to the �nite element method solver [8] executed on the model
"pool" example. The PINN model's potential advantage over the �nite element
method solver lies mainly in its simplicity of implementation, employing space-
time formulations, and lack of problems with time stepping and stabilization.

2 Modeling of tsunami wave with Physics Informed

Neural Networks

Our basic model for simulations of the tsunami waves is based on the formulation
using the wave equation described in [8]. Let us focus on a strong form of the
wave equation: Find u ∈ C2(0, 1) for (x, y) ∈ Ω = [0, 1]2, t ∈ [0, T ] such that:

∂2u(x, y, t)

∂t2
−
(

∂

∂x
,
∂

∂y

)
·
(
g(u(x, y, t)− z(x, y))

(
∂u

∂x
,
∂u

∂y

))
= 0, (1)

(x, y, t) ∈ Ω × [0, T ],
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Here z(x, y) stands for the bathymetry (the seabed and the seashore topog-
raphy function), g = 9, 81 is the acceleration due to the Earth's gravity, and
u(x, y, t) represents the water level. We start the simulation by assuming the
initial tsunami wave shape:

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω. (2)

We assume the no-re�ection zero-Neumann boundary condition:

∂u

∂n
= 0, on ∂Ω × [0, T ]. (3)

We expand the wave equation PDE by computing the partial derivatives:

∂2u(x, y, t)

∂t2
−
(
g

(
∂u(x, y, t)

∂x
− ∂z(x, y)

∂x

)
∂u(x, y, t)

∂x

)
−
(
g (u(x, y, t)− z(x, y))

∂2u(x, y, t)

∂x2

)
−
(
g

(
∂u(x, y, t)

∂y
− ∂z(x, y)

∂y

)
∂u(x, y, t)

∂y

)
−
(
g (u(x, y, t)− z(x, y))

∂2u(x, y, t)

∂y2

)
= 0 (4)

We employ the Physics Informed Neural Network approach, proposed by
Karniadakis [1]. The neural network is understood there as a continuous function
that represents the solution:

u(x, y, t) = PINN(x, y, t) = Anσ

An−1σ(...σ(A1

xy
t

+B1)...+Bn−1

+Bn.(5)

Here, Ai represents the matrices of layers of the neural network, and Bi repre-
sents the bias vectors. Also, σ is the activation function.

We choose the sigmoid activation function after our analysis in [2], where
we show it best �ts for wave equation training with PINN. In our training, we
employed three internal layers, each one with 300 neurons. The motivation was
that a smaller number of neural networks (4 layers with 80 neurons) experience
some problems with the training of the wave equations.

We de�ne the loss function as the residual of the PDE.
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Fig. 1: Physics informed neural network as a continuous function representing
a solution function. The matrix entries Akl

1 , Akl
2 , Akl

3 represents the weight of
edges connecting the neurons. The vector entries Bk

1 , B
k
2 , B

k
3 represent the biases

assigned to neurons.

LOSSPDE(x, y, t) =(
∂2PINN(x, y, t)

∂t2
−
(
g

(
∂PINN(x, y, t)

∂x
− ∂z(x, y)

∂x

)
∂PINN(x, y, t)

∂x

)
−
(
g (PINN(x, y, t)− z(x, y))

∂2PINN(x, y, t)

∂x2

)
−
(
g

(
∂PINN(x, y, t)

∂y
− ∂z(x, y)

∂y

)
∂PINN(x, y, t)

∂y

)
−
(
g (PINN(x, y, t)− z(x, y))

∂2PINN(x, y, t)

∂y2

))2

(6)

On top of the loss function related to the residual of the PDE, we also need
to de�ne the loss function for training the initial condition u0(x, y):

LOSSInit(x, y, 0) = (PINN(x, y, 0)− u0(x, y))
2

(7)

We also de�ne the loss of the residual of the Neumann boundary condition:

LOSSBC(x, y, t) =

(
∂PINN(x, y, t)

∂n
− 0

)2

. (8)

During the training, we adjust the weights of the matrices representing the
neural network layers. We also adjust entries of the vector representing the neural
network biases. This is done by using the derivatives of the neural network with
respect to particular entries. The sketch of the gradient descent procedure is the
following:

The sketch of the training procedure is the following

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_14

https://dx.doi.org/10.1007/978-3-031-63751-3_14
https://dx.doi.org/10.1007/978-3-031-63751-3_14


6 A. Niewiadomska, et.al.

� Repeat
• Select points (x, y, t) ∈ Ω×[0, T ] from vertices of the computational mesh
(excluding its boundary edges) approximating the bathymetry, update

the weights: Ak
i,j = Ak

i,j−η ∂LOSSPDE(x,y,t)

∂Ak
i,j

, Bk
i = Bk

i −η ∂LOSSPDE(x,y,t)

∂Bk
i

.

• Select point (x, y) ∈ ∂Ω from vertices of the computational mesh located
on its boundary, approximating the seabed and the seashore, and update

the weights: Ak
i,j = Ak

i,j − η ∂LOSSBC(x,y,t)

∂Ak
i,j

, Bk
i = Bk

i − η ∂LOSSBC(x,y,t)

∂Bk
i

.

• Select point (x, y, 0) ∈ Ω ×{0} from vertices of the computational mesh
located on its boundary at time moment 0, update the weights Ak

i,j =

Ak
i,j − η ∂LOSSInit(x,y,0)

∂Ak
i,j

, Bk
i = Bk

i − η ∂LOSSInit(x,y,0)

∂Bk
i

.

� Until wPDELOSSPDE + wBCLOSSBC + wInitLOSSInit ≤ δ

As for the parameters, we run our experiments with the following setup:

� Maximum number of epochs: 15000,
� η = 0.00015 (lines 4,5 and 6).

The selection of the training rate came from experimenting with smaller and
larger values. The weights wPDE , wBC , wInit are selected by the adaptive loss
weighting of Neural Networks with multi-part loss functions method.

During the training procedure, we employ the ADAM algorithm [3], storing
the derivatives computed in previous iterations and taking the weighted average
to modify the neural network's weights. In this way, it avoids being trapped
in local minima. There are also several modern modi�cations to the ADAM
algorithm available [6, 4, 5], but ADAM seems to be the most popular one.

3 Veri�cation of the code

To verify the correctness of the PINN, we compare with �nite element method
[8] executed on the "pool" scenario, using the non-linear wave equation

∂2u

∂t2
−∇ (g(u− z)∇u) = 0, (9)

We employ a Bubnov-Galerkin [24] �nite element method for spatial discretiza-
tion and an explicit �nite di�erence time-stepping scheme for temporal dis-
cretization. Namely, we introduce a �nite di�erence approximation of the second

time derivative ∂2u
∂t2 ≈ ut−2ut−1+ut−2

dt2 :

ut︸︷︷︸
Next state

= ‘ ut−1︸︷︷︸
Previous state

+ ut−1 − ut−2︸ ︷︷ ︸
States di�erence

+ ∆t2︸︷︷︸
(Time step)2

∇ (g(ut−1 − z)∇ut−1)︸ ︷︷ ︸
Physics

.(10)

We multiply by test functions v, integrate by parts, and apply the boundary
conditions ∇ut · n = 0. We solve: Find u ∈ V :

(ut, v) = (ut−1, v) + C (ut−1 − ut−2, v)

−∆t2 (g(ut−1 − z)∇ut−1,∇v) ∀v ∈ V
(11)

Following [8], we have introduced a damping constant C in front of the wave
propagation term to stabilize the �nite element formulation.
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Fig. 2: Model simulation of the wave equation in a "pool" using the �nite element
method code (�rst row) and PINN solver (second row).

4 Generation of the computational mesh describing the

seashore and seabed near Valparaiso region

For the training of the Physics Informed Neural Network model, we select the
points as vertices of mesh triangles of the most re�ned mesh from the adaptive
procedure towards the GMRT [11] database data. As the re�nement criterion
we estimate the error between the triangular elements approximation of the
topography and the GMRT topography data. For the adaptation, we employ
the longest-edge re�nement algorithm [8]. We have executed 22 iterations of
the longest-edge re�nement algorithm starting from a rectangle partitioned into
two triangles. The adaptive mesh re�nements were continued until the required
topography accuracy was reached. The overview of the re�nement process is
presented in Figure 3. The resulting mesh is shown in Figure 4. The mesh is
employed as a barymetry function z(x, y). On top of that mesh, we introduce
the sea level u(x, y). Table 1 presents the number of triangles and vertices of the
generated meshes. The �nal mesh has 91,458 triangles and 45,957 vertices. We
employ these 45,957 vertices to train the PINN model.

The longest-edge re�nement algorithm employed for the generation of the
computational mesh approximating the seashore and seabed of the Valparaiso
region of Chile has been expressed by graph transformations. Some representa-
tive transformations are presented in Figures 5-6. The rules presented in this
paper are the transformation of the hyper-graph grammar implementation of
the longest-edge re�nement algorithm described in [16] into the composite graph
grammar, employed previously for hp adaptive mesh re�nements [15]. They ex-
press the rules for the creation of the new triangular elements in a way that
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Fig. 3: The sequence of computational meshes approximating the seabed and
seashore at the Valparaiso area of Chile, obtained by executing the longest edge
re�nement algorithm starting from the rectangular domain partitioned into two
triangles.
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Iteration Number of vertices Number of triangles

0 4 2
1 5 4
2 9 8
3 13 16
4 25 32
5 41 64
6 81 128
7 145 256
8 284 502
9 519 972
10 1008 1890
11 1834 3540
12 3443 6658
13 6050 11869
14 10126 19904
15 15492 30619
16 21144 41866
17 25205 49974
18 28103 55763
19 30909 61372
20 34409 68369
21 38808 77165
22 45957 91458

Table 1: The number of vertices and triangles generated by an adaptive longest-
edge re�nement algorithm executed from two triangles.

no hanging nodes are generated in the mesh. They employ the predicates of
applicability, telling when the transformation can be executed.

5 Numerical results

After initial experiments with the ADAM optimization algorithm [3], due to the
fact that we have residual, boundary and initial loss functions, thus, the multi-
objective optimization problem, we switched to the SoftAdapt algorithm [13]
executing ADAM algorithm with adaptive weighting of three loss functions. The
convergence of these three loss functions, as well as the convergence of the total
loss function, is presented in Figure 7.

The residual loss �rst learns the trivial zero solution, but when the model
learns the initial and boundary conditions, it adjusts and maintains a high accu-
racy of the order of 0.001. The initial loss learns the initial state with an accuracy
of almost 0.003. The boundary loss is also trained with an accuracy of 0.001. As
a result, the PINN has learned the solution with a total loss function accuracy
of 0.003. The initial condition is given by:

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_14

https://dx.doi.org/10.1007/978-3-031-63751-3_14
https://dx.doi.org/10.1007/978-3-031-63751-3_14


10 A. Niewiadomska, et.al.

Fig. 4: The �nal computational mesh representing the seashore and seabed near
the Valparaiso area obtained after 22 iterations of the longest-edge re�nement
algorithm. The topographic mesh represents the bathymetry function z(x, y);
the sea level represents the undisturbed water level u(x, y, t).

Fig. 5: Production (P1).

Fig. 6: Production (P2).
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(a) (b)

(c) (d)

Fig. 7: The convergence of the training for the initial (a), boundary (b), residual
(c), and total (d) loss.

u0(x, y, 0) = 0.04 exp

(
−120

√
(x− x0)

2
+ (y − y0)

2

)
+ 0.5 (12)

in the relative units of [0, 1]3 of the computational domain. This setup represents
the following interpretation. The ocean level is set at 0.5 (the middle of the
horizontal height of the domain). The seashore spans between 0.5 and 0.55,
so the initial tsunami wave height is set to 0.55 (see �rst panel in Figure 5).
The center of the initial tsunami wave is located in 1/5 of the domain in the x
direction and 1/2 of the domain in the y direction (see the �rst panel in Figure
5). The snapshots of the simulations are presented in Figure 9. We can predict
the propagation of the tsunami waves along the coastline as well as check the
water elevation in the coastal area.

6 Conclusions

In this paper, we showed how to use physics-informed neural networks to simu-
late tsunami wave propagation for an assumed sea�oor and coastal topography.
Our application consisted of the following building blocks. The PINN model
used a nonlinear wave propagation equation [8]. Neural network learning was
based on the residuum of the equation, boundary condition, and initial con-
dition using the ADAM algorithm [3], adaptive loss function weight selection
[13]. The topography of the seabed and waterfront was approximated using an
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adaptive generation algorithm for computational grids built from triangular ele-
ments. Adaptation was performed using the longest-edge re�nement method on
the basis of the Global Multi-Resolution Topography Database [11]. The points
selected for learning the neural network, in particular for sampling the equation
residuum, boundary, and initial condition, were chosen based on the nodes of
the generated computational grid. Having the computational meshes generated
for the coastline of Chile, it takes a couple of days for a master's degree student
to implement and run the PINN simulator from scratch, employing the mesh
points for training. Implementing the �nite element method solver [8] requires
weeks of a very careful development and debugging, including issues with the
stabilization of the simulation, proper selection of time iteration schemes, and
dealing with simulator behavior at the coastline area. The PINN solver provides
similar accuracy results as a linear �nite element [8] solver. The future work may
involve comparison to higher-order �nite element method solvers [25, 26].
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Fig. 8: Snapshots from tsunami simulation near the Valparaiso region of Chile
(left panels). Changes of the coastline caused by the tsunami near the Valparaiso
region of Chile (right panels).
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Fig. 9: Snapshots from tsunami simulation near the Valparaiso region of Chile
(left panels). Changes of the coastline caused by the tsunami near the Valparaiso
region of Chile (right panels).

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_14

https://dx.doi.org/10.1007/978-3-031-63751-3_14
https://dx.doi.org/10.1007/978-3-031-63751-3_14


Modeling Tsunami Waves at the Coastline of Valparaiso Chile with PINN 15

9. Lu Lu, Xuhui Meng, Zhiping Mao, George Em Karniadakis, DeepXDE: A deep
learning library for solving di�erential equations, SIAM Review, 63(1), (2021) 208-
228.

10. Wei Peng and Jun Zhang andWeien Zhou and Xiaoyu Zhao andWen Yao and Xiao-
qian Chen, IDRLnet: A Physics-Informed Neural Network Library, arxiv.2107.04320
(2021)

11. Global Multi-Resolution Topography Data Synthesis https://www.gmrt.org/
12. https://en.wikipedia.org/wiki/List_of_earthquakes_in_Chile
13. A. Ali Heydari, Craig A. Thompson, Asif Mehmood, SoftAdapt: Techniques for

Adaptive Loss Weighting of Neural Networks with Multi-Part Loss Functions,
arXiv:1912.12355v1 (2019)

14. P. Maczuga, M. Sikora, M. Skocze«, P. Ro»nawski, F. Tªuszcz, M. Szubert, M.
�o±, W. Dzwinel, K. Pingali, M. Paszy«ski, Physics Informed Neural Network
Code for 2D Transient Problems (PINN-2DT) Compatible with Google Colab
arXiv:2310.03755v2 (2024)

15. A. Paszy«ska, M. Paszy«ski, E. Grabska, Graph Transformations for Modeling
hp-Adaptive Finite Element Method with Triangular Elements. In: Bubak, M., van
Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science � ICCS
2008. ICCS 2008. Lecture Notes in Computer Science, vol 5103. Springer, Berlin,
Heidelberg (2008)

16. K. Podsiadªo, A. O. Serra, A. Paszy«ska, R. Montenegro, I. Henriksen, M.
Paszy«ski, K. Pingali, Parallel graph-grammar-based algorithm for the longest-edge
re�nement of triangular meshes and the pollution simulations in Lesser Poland area,
Engineering with Computers 37, 3857�3880 (2021)

17. M. C. Rivara, New longest-edge algorithms for the re�nement and/or improve-
ment of unstructured triangulations, International Journal of Numerical Methods
in Engineering 40 (1997) 3313�3324.

18. A. Paszy«ska, M. Paszy«ski, E. Grabska, Graph Transformations for Modeling
hp-Adaptive Finite Element Method with Triangular Elements. Computational Sci-
ence�ICCS 2008: 8th International Conference, Krakow, Poland (2008) 604-613.

19. M. Paszy«ski, A. Paszy«ska, Graph Transformations for Modeling Parallel hp-
Adaptive Finite Element Method, Parallel Processing and Applied Mathematics:
7th International Conference, Gdansk, Poland (2007) 1313-1322.

20. R. J. LeVeque, D. L. George, M. J. Berger, Tsunami modelling with adaptively
re�ned �nite volume methods. Acta Numerica. 20 (2011) 211-289.

21. X. Wang, User manual for COMCOT version 1.7. Cornel University (2009)
22. P. Lynett, P.L.F. Liu, K.I. Sitanggang, D. Kim, Modeling Wave Generation, Evo-

lution, and Interaction with Depth-Integrated, Dispersive Wave Equations COUL-
WAVE Code Manual Cornell University Long and Intermediate, Wave Modeling
Package V. 2.0, Cornell University, Itacha, New York (2008)

23. S. Tavakkol, P. Lynett, Celeris base: An interactive and immersive Boussinesq-
type nearshore wave simulation software Compututer & Physics Communication.
248 (2020) Article 106966

24. E. B. Becker, G. F. Carey, J. T. Oden, Finite elements: an introduction, Vol. 1,
Prentice Hall (1981)

25. M. Wo¹niak, M. �o±, M. Paszy«ski, L. Dalcin, V. M. Calo, Parallel fast isogeometric
solvers for explicit dynamics. Computing and Informatics 36 (2) (2017s) 423-448.

26. M. �o±, J. Munoz-Matute, I. Muga, M. Paszy«ski, Isogeometric Residual Minimiza-
tion Method (iGRM) with direction splitting for non-stationary advection�di�usion
problems, Computers & Mathematics with Applications 79 (2) (2020) 213-229.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_14

https://dx.doi.org/10.1007/978-3-031-63751-3_14
https://dx.doi.org/10.1007/978-3-031-63751-3_14

