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Abstract. The paper presents the interval fast parametric integral equa-
tions system (IFPIES) applied to solve multi-connected boundary value
problems (BVPs) with uncertainly defined complex shapes of a bound-
ary. The method is similar to the fast PIES, which uses the fast multipole
method to speed up solving BVPs and reduce RAM utilization. However,
modelling uncertainty in the IFPIES uses interval numbers and directed
interval arithmetic. Segments created the boundary have the form of the
interval Bézier curves of the third degree (curvilinear segments) or the
first degree (linear segment). The curves also required some modifications
connected with applied directed interval arithmetic. In the presented pa-
per, the reliability and efficiency of the IFPIES solutions were verified
on multi-connected BVPs with uncertainly defined complex linear and
curvilinear domain shapes. The solutions were compared with the ones
obtained by the interval PIES only due to the lack of examples of solving
uncertainly defined BVPs in the literature. All presented tests confirm
the high efficiency of the IFPIES method.

Keywords: Interval fast parametric integral equations system · Interval
numbers · Directed interval arithmetic · Uncertainty

1 Introduction

For many years, our team has worked on developing and applying a parametric
integral equations system (PIES) to solve boundary value problems (BVPs).
The multidirectional research covers problems described by different equations,
such as Laplace’s, Helmholtz or Navier-Lamé (i.e. [1]). On the other hand, some
enhancements of the method are also considered - the authors of this paper are
focused on two of them: application of uncertainty of data in the PIES [2] and
accelerating performance and reducing memory utilization of the PIES [3].

Traditional modelling and solving BVPs assumes that boundary conditions,
the boundary’s shape, and the domain’s parameters must be defined by real
numbers, i.e., precisely. However, the practice indicates that to obtain the men-
tioned data, some measurements should be carried out, which are always affected
by, e.g. gauge reading error or inaccuracy of measurement instruments. Some-
times, the approximation of the model used in the analysis of measurements
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may also cause errors. On the other hand, we should assume that the modelled
components will be manufactured later with a certain margin of error, which
was not considered during the modelling process. Therefore, considering data
uncertainty in modelling and solving BVPs becomes a critical problem.

We must emphasize that classical mathematical models require exact input
data values. Therefore, it is not possible to apply uncertainty directly. However,
many authors modified known methods to consider uncertainty (e.g. [4–6]). The
efficient way of using uncertain data in modelling and solving BVPs is the appli-
cation of interval arithmetic and interval numbers. It has resulted in obtaining
the interval finite element method (IFEM) [7], the interval boundary element
method (IBEM) [8], and also the interval version of the PIES (IPIES) [9]. How-
ever, both the IFEM and the IBEM considered only the uncertainty of boundary
conditions or material parameters. Only in a few papers describing 1D problems
were the boundary shape parameters, such as beam length, uncertainly defined.
The IPIES is more complete - it was developed to solve problems with uncer-
tainly defined boundary shapes. The opportunity to consider all the uncertainties
mentioned above in the IPIES is a significant advantage.

The IPIES has advantages inherited from the PIES, such as defining the
boundary shape by curves widely used in computer graphics (small amount of
input data) and approximating boundary conditions separated from the approx-
imation of boundary shape. Unfortunately, it also has disadvantages connected
with the PIES coefficient matrices, which are dense and non-symmetric. The
way of creating these matrices requires to compute slightly complicated inte-
grals. That process requires a lot of CPU time, especially for problems with a
considerable number of segments describing the shape of the boundary (complex
or large-scale problems). Unfortunately, applying interval arithmetic and inter-
val numbers also negatively affects the computational speed and utilizes more
memory (RAM).

Another problem is the method of solving the final system of algebraic equa-
tions. In traditional PIES, classical Gaussian elimination was first applied. The
authors of this paper adapted the specialized libraries (such as LAPACK) to
solve the system more efficiently. Also, parallelization of the PIES by OpenMP
and CUDA to reduce the time of computations was proposed in our previous
papers (e.g. [10, 11]. However, we must still store all coefficient matrices in the
operating memory. Therefore, RAM consumption is at a high level.

In the mid-1980s of the 20th century, Rokhlin and Greengard developed
the fast multipole method (FMM) [12]. This compression technique reduces the
utilization of RAM and computational time that is well-documented in solving
potential BVPs (i.e. [13]), also in the BEM [14]. Applying the FMM to the PIES
required a new approach to computing matrices coefficients and the iterative
method for solving the system of algebraic equations. Also, we had to make
additional changes in the FMM tree structure[15]. However, obtained that way,
the fast PIES (FPIES) is an efficient method for solving BVPs [3].

The main goal of this paper is to present the interval fast Parametric Inte-
gral Equation System (IFPIES) applied for numerical solving of 2D uncertainly
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Solving multi-connected BVPs with uncertainly defined complex shapes 3

defined multi-connected potential complex BVPs. The IFPIES previously pro-
posed in [16] for single-connected polygonal domains is based on both the IPIES
and the FPIES. In the presented paper, the efficiency and accuracy of the IF-
PIES are tested on the examples of multi-connected complex uncertainly defined
domains described by linear and curvilinear segments.

2 Boundary shape and boundary conditions uncertainty

The application of classical [17] and directed [18] interval arithmetic into the
PIES was troublesome, as is described in previous papers (e.g. [9]). Therefore,
we proposed mapping arithmetic operators to the positive semi-axis (clearly
described in [9]) while applying the directed interval arithmetic to obtain the
IPIES. The same strategy was also applied in the IFPIES.

The general formula of the IFPIES [3] has the following form:

1

2
ul(τ̂ ) =

n∑
j=1

R

{ sj∫
sj−1

Û
∗(c)
lj (τ̂ , τ )pj(s)J

(c)
j (s)ds

}
−

n∑
j=1

R

{ sj∫
sj−1

P̂
∗(c)
lj (τ̂ , τ )uj(s)J

(c)
j (s)ds

}
,

l = 1, 2, ..., n, sl−1 ≤ ŝ ≤ sl, sj−1 ≤ s ≤ sj ,

(1)

where: ŝ and s are defined in the parametric coordinate system, sj−1 (sl−1)
correspond to the beginning while sj (sl) to the end of interval segment Sj (Sl),
n is the number of parametric segments that creates a boundary of the domain
in 2D, J (c)

j (s) is the interval Jacobian, uj(s) and pj(s) are interval parametric
boundary functions on individual segments Sj of the interval boundary, R is the
real part of complex function.

The interval kernels modified to complex functions Û∗(c)
lj (τ̂ , τ ) and P̂

∗(c)
lj (τ̂ , τ )

have the following form [3]:

Û
∗(c)
lj (τ̂ , τ ) = − 1

2π
ln (τ̂ − τ ) ,

P̂
∗(c)
lj (τ̂ , τ ) =

1

2π

n
(c)
j

τ̂ − τ
.

(2)

where n
(c)
j is the complex notation of normal vector to the interval curve, which

creates segment j. Expressions τ̂ , τ are the complex version of parametric func-
tions describing the boundary, which have the following interval form:

τ̂ = S
(1)
l (ŝ) + iS

(2)
l (ŝ),

τ = S
(1)
j (s) + iS

(2)
j (s),

(3)
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where the interval components connected with the direction of coordinates in
a 2D Cartesian reference system: S(1)

j = [S
(1)
j , S

(1)

j ],S
(2)
j = [S

(2)
j , S

(2)

j ], S(1)
l =

[S
(1)
l , S

(1)

l ] and S
(2)
l = [S

(2)
l , S

(2)

l ]. These components have the form of directed
intervals [18].

The boundary is modelled by interval Bézier curves of the first degree (linear):

Sk(s) = a
(f)
k s+ b

(f)
k , 0 ≤ s ≤ 1, (f)− first degree, (4)

and the third degree (curvilinear):

Sk(s) = a
(t)
k s3 + b

(t)
k s2 + c

(t)
k s+ d

(t)
k , 0 ≤ s ≤ 1, (t)− third degree (5)

where vector Sk(s) = [S
(1)
k (s),S

(2)
k (s)]T , k = {l, j} and s is a variable in the

parametric reference system. Coefficients a
(f)
k , b

(f)
k ,a

(t)
k , b

(t)
k , c

(t)
k ,d

(t)
k have also

form of vectors composed of two interval components (similarly to Sk(s)). They
are computed using interval points describing particular segments of the bound-
ary as presented in Fig. 1 (the graphical example assumes k = j):

a
(f)
j = Pe(j+2) − Pb(j+2), b

(f)
j = Pb(j+2),

a
(t)
j = Pe(j) − 3Pi2(j) + 3Pi1(j) − Pb(j), b

(t)
j = 3(Pi2(j) − 2Pi1(j) + Pb(j)),

c
(t)
j = 3(Pi1(j) − Pb(j)), d

(t)
j = Pb(j),

where coordinates of all points P , regardless of their subscript, have the form

Interval control points:

- interpolated

- approximated

x(2)

x(1)

Pe(j)=Pb(j+1)

Pb(j)

Pi1(j)

Pi2(j)

Pi1(j+1)

Pi2(j+1)
Pe(j+1)=Pb(j+2)

Pe(j+2)=Pb(j+3)

Pe(j+3)

Fig. 1. The interval Bézier curves of the first and third degree used to define segments
of the boundary

of a vector of intervals:

P = [P (1),P (2)]T =
[
[P (1), P

(1)
], [P (2), P

(2)
]
]T

.
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The interval boundary functions uj(s) and pj(s) in (1) present boundary
conditions and the following series approximate them:

uj(s) =

N∑
k=0

u
(k)
j L

(k)
j (s), pj(s) =

N∑
k=0

p
(k)
j L

(k)
j (s), (6)

where u
(k)
j = [u

(k)
j , u

(k)
j ] and p

(k)
j = [p(k)

j
, p

(k)
j ] are unknown or given interval

values of boundary functions in defined points of the segment j, N - is the
number of terms in approximating series (6) and L

(k)
j (s) – the base functions

(Lagrange polynomials) on segment j.

3 Process of solving the IFPIES

Applying the FMM into the PIES is the first step in solving the IFPIES. The
FMM is based on the tree structure, which transforms interactions between the
individual PIES boundary segments into interactions between some groups of
segments called cells. In the IFPIES, we applied a modified version of the tree
[15] (presented in Fig. 2). Unlike the classical binary tree, we had to join the
beginning and end of each level to consider that a parametric 1D system describes
the PIES for 2D issues. Also, the PIES’s modified kernels (complex form) are
expanded using the Taylor series. It allows the calculation of complex integrals
to be converted into approximate sums. All process of applying the FMM into
the PIES is clearly described in [15].
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Fig. 2. The example of modified binary tree in the IFPIES for 2D problem
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The process of applying the FMM into the IPIES is very similar, and as a
result, we obtained the following form of integrals in (1) [16]:
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1
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(7)

where: NT is the number of terms in the Taylor expansion, τ̂ = S
(1)
l (ŝ) +

iS
(2)
l (ŝ), τ = S

(1)
j (s)+ iS

(2)
j (s), complex interval points τc, τel, τ ′

c, τ ′
el are mid-

points of leaves obtained while tracing the tree structure (see [3]). Expressions
Mk(τc) and Nk(τc) are called moments (and they are computed twice only) and
have the form [16]:

Mk(τc) =

sj∫
sj−1

(τ − τc)
k

k!
pj(s)J

(c)
j (s)ds,

Nk (τc) =

sj∫
sj−1

(τ − τc)
k−1

(k − 1)!
n

(c)
j uj(s)J

(c)
j (s)ds.

(8)

where n(c)
j = n

(1)
j +in

(2)
j the complex interval normal vector to the curve created

segment j.
Similarly to the original PIES, the IFPIES are written at collocation points

whose number corresponds to the number of unknowns. However, during solving
the IFPIES, the system of algebraic equations A · x = b is produced implicitly,
contrary to the original PIES. It means that only the result of multiplication of
the matrix A by the vector of unknowns x is used by applied iterative GMRES
solver [19]. The solver is modified by applying directed interval arithmetic and
directly integrated with the IFPIES. The authors also applied the same GMRES
solver to the IPIES to prepare a more reliable comparison.

4 Numerical results

All tests are performed on a PC based on Intel Core i5-4590S with 32 GB
RAM. Application of the IPIES and the IFPIES are compiled by g++ 7.5.0 (-O2
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optimization) on 64-bit Linux OS (kernel 6.2.0). Two multi-connected problems
with linear and mixed (linear and curvilinear) segments created the shape of the
boundary are considered.

4.1 L-shaped problem with randomly placed holes

The domain boundary in the first example is composed of linear segments only, as
presented in Fig. 3. Laplace’s equation describes the problem. Interval boundary
conditions are also presented in Fig. 3 (where u - Dirichlet and p - Neumann
boundary conditions).

u
=

[9
.9

5
,1

0
.0

5
]

p=[-0.05,0.05] - in all holes

p=[-0.05,0.05]

[5
.9

5
,6

.0
5
]c

m [1
1
.9

5
,1

2
.0

5
]c

m

p=[-0.05,0.05]

[11.95,12.05]cm

u
=

[4
9
.9

5
,5

0
.0

5
]

p=[-0.05,0.05]
[5.95,6.05]cm

p
=

[-
0
.0

5
,0

.0
5
]

Fig. 3. L-shaped problem with randomly placed holes

The research focused on the CPU time, RAM utilization and accuracy of the
IFPIES compared to the IPIES. Due to the lack of literature on solving problems
with uncertainly defined boundary shapes and boundary conditions, comparison
to others is impossible. The number of terms in the Taylor series is set to 25, and
the value of GMRES tolerance equals 10−8. The number of collocation points in
all segments is constant and is changed from 2 to 8 in subsequent research.

For the L-shaped problem, we solved three examples with different numbers
of holes: 400, 900 and 1600, placed in the part of the domain presented in Fig. 3.
Therefore, we solved the systems from 3 212 to 51 248 equations.

As can be seen from Tab. 1, the IFPIES is as accurate as the IPIES, which is
proved by the result of computation of the mean square error (MSE) between the
lower and upper bound (infimum and supremum) of the IFPIES and the IPIES
solutions. The MSE between both methods is very low and does not exceed 10−8.
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Table 1. Comparison between the IFPIES and the IPIES for L-shaped problem

Number of CPU time [s] RAM utilization [MB] MSE
col. pts eqs IFPIES IPIES IFPIES IPIES inf sup

400 holes
2 3 212 34.13 66.52 57.14 242 6.29 · 10−12 5.60 · 10−11

4 6 424 84.95 290.74 99 962 3.15 · 10−14 4.67 · 10−11

6 9 636 148.33 706.18 113 2 158 8.62 · 10−10 3.47 · 10−11

8 12 848 202.80 1 345.22 170 3 831 1.11 · 10−11 1.46 · 10−10

900 holes
2 7 212 98.38 333.55 140 1 221 8.62 · 10−10 3.47 · 10−11

4 14 424 286.54 1 465.37 339 4 804 5.14 · 10−10 5.62 · 10−11

6 21 636 563.77 3 552.72 585 10 700 1.17 · 10−10 3.65 · 10−11

8 28 848 896.74 6 782.20 957 19 100 6.95 · 10−10 6.14 · 10−11

1600 holes
2 12 812 202.80 1 345.22 170 3 831 7.18 · 10−8 3.28 · 10−11

4 25 624 1 090.83 4 658.04 1 381 15 100 9.57 · 10−8 5.31 · 10−11

6 38 436 2 343.02 — 2 772 — — —
8 51 248 4 130.20 — 4 745 — — —
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Fig. 4. Comparison of computation time of the IFPIES and the IPIES for different
numbers of equations

It is worth emphasising that solving the IPIES for 38 436 and 51 248 equations
is not possible due to utilization of all computer memory, while the IFPIES
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Fig. 5. Comparison of RAM utilization of the IFPIES and the IPIES for different
numbers of equations

consumed about 15% of available RAM. It means that we can solve up to about
35 000 equations using the IPIES due to exhaustion of RAM, while the IFPIES
uses less than 2 GB of memory. It presents limitations of the classical IPIES
contrary to contemporary one.

Also, from Fig. 4 and Fig. 5, it can be seen that the speedup of the IFPIES in
relation to the IPIES grows with an increasing number of equations, whilst RAM
utilization of the IFPIES is smaller and grows much slower than the IPIES. Also,
for a smaller number of equations, the FMM overhead gives us a considerably
smaller gain in CPU time and RAM utilization.

4.2 Current flow through the plate with holes

The domain boundary in the second example is composed of mixed linear and
curvilinear segments, as presented in Fig. 6. Laplace’s equation also describes
the problem. Interval boundary conditions are presented in Fig. 6 (where V -
potential and ∂V

∂n - flux).
The number of terms in the Taylor series and the value of GMRES tolerance

is the same as in the previous problem, equal to 25 and 10−8. The number of
collocation points in all segments is also constant and has changed from 2 to 8.
At last, we solved the systems from 32 048 to 128 192 equations.

We are able to solve only examples with the smallest number of equations
using the IPIES due to exhaustion of RAM. However, the IPIES for 32 048
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Fig. 6. Current flow through the plate with holes

Table 2. Results of solving current flow problem by the IPIES

Number of CPU time RAM utilization
col. pts eqs [s] [MB]

2 32 048 312.30 374
4 64 096 623.43 892
6 96 144 1 151.06 1 624
8 128 192 1 860.20 2 473

equations uses 23.7 GB of RAM and requires 7 031.32 s (almost 2 hours) of CPU
time. It is incomparably more than in the IPIES. The MSE between solutions
of both methods is very small and equal to 2.22 · 10−8 for lower and 1.89 · 10−9

for upper bound.
As seen from Tab. 2, solving the example with over 128 000 equations requires

less than 2.5 GB of memory and about a half hour. The obtained results confirm
the very high efficiency of the IFPIES and allow us to solve large-scale examples
on a standard PC in a reasonable time.

5 Conclusions

The paper presents the IFPIES in solving 2D potential curvilinear multi-connected
boundary value problems with uncertainly defined boundary shapes and condi-
tions. The method gives us the opportunity to include measurement errors (the
uncertainty of measurement data) of the boundary shape and boundary condi-
tions in calculations, which is impossible in classic practical design.

Application of the fast multipole technique in the IFPIES also allows for
the highly efficient solving of complex (large-scale) engineering problems on a
standard PC in a reasonable time. The real power of the IFPIES is very low
RAM utilization. The IPIES is unable to cope with the solution of over 35 000
equations for 32 GB of RAM, while the IFPIES easily solves the examples with
over 128 000 equations. Also, the CPU time of the IFPIES is significantly shorter
than the IPIES.
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The obtained results suggest that the direction of research should be con-
tinued. Our further research should cover problems modelled by other than
Laplace’s equations.
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