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Abstract. Designing deep learning architectures is a challenging and
time-consuming task. To address this problem, Neural Architecture Search
(NAS) which automatically searches for a network topology is used.
While existing NAS methods mainly focus on image classification tasks,
particularly 2D medical images, this study presents an evolutionary NAS
approach for 2D and 3D Medical image classification. We defined two
different search spaces for 2D and 3D datasets and performed a com-
parative study of different meta-heuristics used in different NAS studies.
Moreover, zero-cost proxies have been used to evaluate the performance
of deep neural networks, which helps reduce the searching cost of the
overall approach. Furthermore, recognizing the importance of Data Aug-
mentation (DA) in model generalization, we propose a genetic algorithm
based automatic DA strategy to find the optimal DA policy. Experiments
on MedMNIST benchmark and BreakHIS dataset demonstrate the effec-
tiveness of our approach, showcasing competitive results compared to
existing AutoML approaches. The source code of our proposed approach
is available at https://github.com/Junaid199f/evo_nas_med_2d_3d.

Keywords: Evolutionary Neural Architecture Search · Medical Image
Classification · AutoML · AutoDL · Automatic Data Augmentation

1 Introduction

Deep Learning (DL) algorithms have been widely used for solving real-world
tasks, but designing these architectures requires domain-expert knowledge. Mul-
tiple Neural Architecture Search (NAS) approaches have been proposed to auto-
mate DL architecture design for multiple tasks [17], but they require significant
searching time due to the network evaluation phase.

Multiple performance estimation strategies have been proposed to reduce the
search time. This would not only reduce the search time but also assist the search
algorithm in the exploration of large search space. One such strategy is the Zero
Cost (ZC) proxy, which evaluates a DL architecture on a small number of data
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samples to quickly estimate individual performance [10]. This approach is par-
ticularly effective in medical image classification, where traditional NAS-based
methods are computationally expensive due to the large number of samples.

Data Augmentation (DA) is crucial for performance enhancement in medical
image analysis tasks, as it prevents overfitting and enhances the model’s general-
ization ability to perform well on unseen data. By creating variations of existing
data, DA can help prevent overfitting. However, due to the diverse nature of
medical imaging datasets, a single DA strategy may perform differently on dif-
ferent datasets. To address this issue, multiple automatic DA strategies have
been proposed, employing different optimization strategies to search for the best
DA policy. The combination of architecture components and DA expands the
search space, making it challenging to find an optimal set of DA policies and the
best architecture simultaneously. To tackle this issue, we divided the proposed
approach into two stages: (i) architecture search and (ii) automatic DA search.
At first, an architecture is searched using the proposed NAS approach, and then
the best-suited pair of DA techniques is searched using the proposed automatic
DA approach. The main contributions of this study are as follows:

– We have proposed an evolutionary NAS approach for both 2D and 3D med-
ical image classification.

– The proposition of a DA technique capable of searching the best augmenta-
tion topology for a given dataset.

– Experiments on both small-scale and large-scale datasets are conducted to
demonstrate the effectiveness of the proposed approach.

2 Related Work

In recent years, numerous evolutionary NAS approaches have been proposed
to solve different tasks, including image classification [6] and medical image
classification [3]. These approaches have adopted different performance estima-
tion strategies to reduce the searching time [17]. For experimentation, these
approaches use standard benchmark datasets like CIFAR-10 and ImageNet for
image classification and MedMNIST for medical image classification.

Multiple NAS studies have been proposed for medical image classification and
used MedMNIST datasets for experiments [3] [2] [4] [6]. These studies have used
different performance estimation strategies to reduce the searching time, such
as surrogate models, ZC proxies, and One-Shot NAS approaches. The surrogate
models, also known as performance predictors are machine learning models that
predict the individual’s fitness during evolution to reduce the search time. These
machine learning models are trained on individual representations and their
corresponding fitness values on the initialized population and retrained during
evolution [2]. One-Shot NAS trains a supernet first, then samples sub-networks
and uses a weight-sharing mechanism to save the time required for re-training.
Additionally, ZC proxies use a mini-batch of data to quickly estimate the model’s
performance [6].

Moreover, studies have shown that DA plays a crucial role in enhancing the
model generalization ability and the model performance on unseen data. These
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studies proposed searching for both DA and network topology simultaneously.
Zhang et al. proposed a unified approach for searching both DA policy and
network topology [5]. They introduced an augmentation density matching algo-
rithm that addresses the inefficiency of density matching caused by in-domain
sampling bias. They first trained a Super-Net and then used an evolutionary
algorithm to search for sub-networks with optimal augmentation policy for the
given dataset.

Existing studies were proposed for either 2D or 3D architectures but not
both. To this aim, this study addresses both 2D and 3D NAS architectures for
medical image classification. Compared to 2D NAS approaches, 3D NAS ap-
proaches are computationally expensive due to the increasing model complexity
and computational costs. Incorporating ZC proxies as a performance estimation
strategy could reduce the search time of the overall NAS approach. To the best
of our knowledge, this is the first study to use zero-cost proxies with 3D NAS
for medical image classification.

Furthermore, different meta-heuristic algorithms have been used as a search
strategy in different NAS studies. Some of the famous NAS approaches have used
Genetic Algorithm (GA) [9], Particle Swarm Optimization (PSO) [8], Differen-
tial Evolution (DE) [7] and other different algorithms. Unfortunately, choosing
an optimal metaheuristic for a given problem is a difficult task. In this study,
we performed a comparative study of famous meta-heuristics to compare their
performance to choose the best-performing one.

3 Proposed Methodology

The proposed methodology is mainly divided into two primary stages: (1) the
architecture search stage and (2) the DA search stage, as illustrated in Figure 1.
Initially, a population of individual neural networks is randomly generated, and
then an evolutionary algorithm searches for the best-performing individual. The
SynFlow ZC proxy is used for fitness evaluation, which assesses individual Neural
Network (NN) performance on the validation set. The second stage involves the
GA to search for the appropriate DA policy. The fitness is computed by training
each model on the training set and evaluating it on the validation set. The best-
performing DA strategy is used while training the final architecture. Then, the
accuracy and Area Under the Curve (AUC) scores are computed on the test set.
Further details regarding search space and the encoding scheme are provided in
the following sections.

3.1 Search Space

In this study, we have used cell-based search space initially proposed in NAS-
Net study by Zolph et al. [12] and DARTS study [11], which consists of small
NN blocks called cells that can be repeated or connected in various ways to
form a complete NN architecture. This search space has been widely adopted
in different NAS-based studies due to its simplicity and flexibility in extending
its components. These cells apply different convolution operations to get feature
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Fig. 1: Proposed methodology diagram consisting of two stages (i) neural archi-
tecture search using zero-cost proxies and (ii) data augmentation strategy using
genetic algorithm

maps, which can be passed to other cells. It consists of two types of cells: nor-
mal and reduction cells. The normal cell computes the feature map of an input
image, where convolution and pooling in the cell have a stride of 1 to keep the
same resolution. In contrast, the reduction cell uses the stride of 2 to reduce the
feature map dimension to down-sample the feature maps. The whole architecture
is formed by stacking the cells one after another.

Fig. 2: Operations and attention layers for 2D architecture and 3D operations
for 3D architecture used in the search space to design CNN architectures

Moreover, an attention-based search space is used which comprises 16 differ-
ent convolution and pooling operations and 5 different attention layers as shown
in Figure 2. These attention layers are adopted from the Attention-DARTS [13]
study. The idea behind using attention layers is to focus more on salient regions.
The attention layer is used after the candidate operations. For the 3D search
space, we have used seven different operations, consisting of pooling layers, di-
lated convolution, and separable convolution with varying kernel sizes, as shown
in Figure 2 [c].
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In our 2D search space, we have used various lightweight and efficient CNN
components from different architectures, including InceptionNets, OctoveNet,
MobileNet, Invetable Residual Networks etc. These operations consist of mobile,
dilated, separable, octove and inverted residual blocks with different kernel set-
tings. Attention layers include Gather-Excite (GE) Attention, Squeeze and Ex-
citation (SE), Convolution Bottleneck Attention Module (CBAM), Bottleneck
Attention Module (BAM) and Double Attention (DA) blocks.

3.2 Encoding Scheme

For the representation of an individual, each candidate operation is expressed
as a real value between 0 and 1. This real value is mapped to the correspond-
ing operation by multiplying the number of operations and then applying floor
operation to get the corresponding operation number. Besides, the associated
attention layer is represented by a value between 1 and 5, where 1-5 means dif-
ferent attention types. Similarly, for 3D search space, each candidate operation
in the individual is expressed by a real value between 0 and 1. An example
representation of genotype and phenotype is shown in Figure 3.

Fig. 3: Genotype and phenotype representations of a sample individual consisting
of 16 genes

For instance, a genotype (0.56,4),(0.42,5),(0.29,4), (0.8926,1) which is de-
coded into (InvRes3x3,4), (DilatedConv5x5,5), (Separable Convolution 5x5,4),
(MBConv 5x5,1) such as (0.56,4) mapped into (InvRes3x3,4) and 0.56x16 where
each gene is multiplied with the number of candidate operations in the search
space and the floor operation is applied and corresponding operation is fetched
from the list consisting of different operations.

3.3 NAS Approach

As discussed above, multiple metaheuristic algorithms have been used as search
strategies in NAS. Choosing the optimal meta-heuristic for a given problem is
not straightforward. Thus, we have performed a comparative analysis of different
meta-heuristics and chosen the optimal one in terms of final results. Evaluating
the fitness of an individual is a time-consuming task. To address this challenge,
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we have utilized zero-cost proxies that are based on recent pruning at initial-
ization [27]. They use a single mini-batch of training data to compute a model
score.

Abdelfattah et al. [10] proposed using existing proxies to estimate scoring in
a DL architecture including SynapticFlow (SynFlow) and SNIP, which are used
in this study. Recent works have shown that SynFlow assists the evolutionary
algorithm in reducing the searching time while searching the optimal architecture
[18]. It is noteworthy to mention that these proxies were used for both 2D and
3D datasets in this study.

3.4 Data Augmentation

DA is a series of transformations applied to the input data. It plays an essential
role in DL-based medical image analysis. It increases the amount and diversity
of the training data and reduces overfitting. However, manually developing a
tailored DA strategy for each dataset is difficult because of the heterogeneity of
medical imaging data and the different characteristics of each disease and modal-
ity. To overcome this issue, a GA-based approach is proposed to automatically
search for a suitable DA policy for a given dataset.

Fig. 4: Search space consisting of different data augmentation techniques and
crossover and mutation operators

Figure 4 shows the search space, crossover and mutation operators used in the
proposed approach. Seven DA strategies have been used in the search space, such
as horizontal and vertical flipping, random rotation, resizing, cropping, random
affine, erasing, and colour jitter. Each individual consists of two different kinds
of DAs that have been used. The number of DA for each dataset is set to two, as
experiments with more than two were not significant in terms of improvement
rate. For reproduction and mutation, a one-point crossover is used, and a random
mutation strategy is adopted, replacing a bit with a randomly selected DA from
the search space.

To evaluate individual fitness, we have considered AUC and accuracy scores.
These measures evaluate the model’s performance in different aspects: accuracy
measures the correctness of the model, and AUC measures the model’s ability
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to distinguish between positive and negative instances. The fitness function is
given as:

Fitness = AUC +Accuracy (1)

4 Experimental Settings

We have performed all the experiments with the same hardware configurations
for a fair comparison. All the experiments were performed on a GPU cluster
with a NVIDIA A100 GPU and 96 GB of RAM. The proposed framework is
implemented in Python. PyTorch library is used for DL implementation and
Mealpy for implementing metaheuristics. For NN training, we have used the
Adam optimizer with a MultiStep Learning Rate scheduler and a learning rate of
0.0025, a gamma rate of 0.1, and a weight decay of 0.0003. The final architecture
is trained on 300 epochs; for the GA-based DA strategy, each individual is trained
on 25 epochs. The accuracy and AUC scores on validation sets are used as the
fitness function.

Algorithm Parameters Values

GA (Data Augmentation)

Crossover Probability 0.95
Mutation Probability 0.1
Selection Technique Tournament Selection

Population Size 4
Number of Generations 4
Chromosome Length 2

PSO c1 and c2 2
Population Size 200

Number of Generations 200
Intertia weight decreases from 0.95 to 0.4

DE
F 0.7

Crossover Rate 0.9
Population Size 200

Number of Generations 200
Mutation Strategy DE/Current-to-best/2

LSHADE µf 0.5
Population Size 200

Last Population Size 50
Number of Generations 200

µCR 0.5

ACO
Z 1.5
q 0.7

Population Size 200
Number of Generations 200

Sample Count 35

Table 1: Parameters’ settings of different meta-heuristics

For MedMNIST implementation, we used the implementation provided by
the authors and the same dataset split of train, val, and test. During the search
phase, a validation set is used to evaluate the architecture and the test set is
used to evaluate the final searched architecture with a given DA topology. For
the Breast Cancer Histopathological Image Classification (BreakHIS) dataset,
we divided the dataset into 80:10:10 ratios to create a train/validation and test
set. We also used the same methodology for the MedMNIST dataset. The DA
policy is only searched for MedMNIST 2D datasets, and the number of layers is
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set from 8 to 12 for 2D datasets and 15 to 20 for 3D datasets. For the BreakHIS
dataset, a layer size of 15 is used.

Multiple trials of experiments set up the parameters of GA for DA, and
PSO, DE and ACO parameters are tuned using grid-search parameter tuning.
The population size and number of generations are set to 200 for all the meta-
heuristics. The parameter settings for the different algorithms are given in Table
1, where the best-reported parameters of each meta-heuristic algorithm are given.

4.1 Datasets Description

We have used the datasets from the MedMNIST benchmark and the BreakHIS
(Breast Histopathology) dataset for experiments. MedMNIST is a large-scale
MNIST-like standard dataset benchmark for biomedical imaging. It includes
12 2D and 6 3D datasets from different organs and modalities. All images of
2D and 3D datasets are pre-processed into 28x28 resolution with correspond-
ing labels. These datasets belong to different organs and modalities, such as
histopathology, abdominal computed tomography, breast mammograms, retinal
fundus, microscopy, chest X-ray, and dermoscopy images.

Apart from MedMNIST, we have also performed experiments on the BreakHis
dataset, which consists of 7,904 microscopic images of breast tumors collected
from 82 patients with different magnification levels (40x, 100x, 200x and 400x)
and 8 different classes. As these images are high resolution, we have resized them
to 224x224 for ease of training. It contains 2,480 benign and 5,091 malignant
samples. This dataset includes multiple samples. The idea behind using both
small and large-scale datasets is to evaluate the performance of the proposed
approach.

5 Experimental Results

We have performed experiments on 2D and 3D datasets from the MedMNIST
benchmark and the BreakHIS dataset. The results of the proposed approach
are compared with multiple variants of ResNet architectures with two different
resolutions (28 and 224), AutoML approaches (AutoSKlearn, AutoKeras and
Google AutoML Vision) and multiple NAS approaches proposed for natural
images and medical images. The comparison in terms of accuracy is shown in
Table 2, and the AUC is shown in Table 3.

Figure 5 shows the AUC scores of different NAS and deep learning approaches
on MedMNIST 2D datasets. Each line represents a dataset, and dotted points
represent the results of different methods. These lines show better performance
on NAS-based approaches than other AutoML and deep learning approaches.
Furthermore, the proposed approach also has better or equal performance than
other NAS-based approaches. AutoSKLearn is an AutoML tool to automate the
machine learning process which includes searching for optimal classifiers, features
pre-processing and data processing. AutoKeras is also an AutoML approach
that uses bayesian optimization to evolve the architecture for a given problem.
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Evolutionary NAS for 2D and 3D medical classification 9

Fig. 5: Line graph representing the AUC scores of different NAS and deep learn-
ing approaches on MedMNIST 2D datasets

Google AutoML Vision is a cloud-based solution consisting of state-of-the-art
NAS algorithms that design architecture automatically for the given dataset.

Methods Chest Path OCT Derma Tissue Retina Blood Breast OrganA OrganC OrganS Pneum AVG.
ResNet-18 (28) 0.947 0.907 0.743 0.735 0.676 0.524 0.958 0.863 0.935 0.900 0.782 0.854 0.818
ResNet-18 (224) 0.947 0.909 0.763 0.754 0.681 0.493 0.963 0.833 0.951 0.920 0.778 0.864 0.821
ResNet-50 (28) 0.947 0.911 0.762 0.735 0.680 0.528 0.956 0.812 0.935 0.905 0.770 0.854 0.816
ResNet-50 (224) 0.948 0.892 0.776 0.731 0.680 0.511 0.950 0.842 0.947 0.911 0.785 0.884 0.821
Auto-SKlearn 0.779 0.716 0.601 0.719 0.532 0.515 0.878 0.803 0.762 0.829 0.672 0.855 0.721
AutoKeras 0.937 0.834 0.763 0.749 0.703 0.503 0.961 0.831 0.905 0.879 0.813 0.878 0.813
Google AutoML 0.948 0.728 0.771 0.768 0.673 0.531 0.966 0.861 0.886 0.877 0.749 0.946 0.809
DARTS [11] 0.934 0.872 0.712 0.749 0.648 0.510 0.953 0.832 0.926 0.791 0.808 0.874 0.800
SNAS [26] 0.938 0.850 0.708 0.737 0.708 0.515 0.946 0.811 0.918 0.891 0.778 0.871 0.805
HOPNAS [25] 0.947 0.912 0.761 0.759 0.698 0.523 0.958 0.853 0.937 0.911 0.803 0.852 0.826
NSGA-NET [24] 0.947 0.866 0.765 0.744 0.712 0.540 0.970 0.846 0.952 0.923 0.820 0.907 0.832
Random search 0.946 0.854 0.760 0.773 0.717 0.542 0.966 0.897 0.955 0.923 0.820 0.904 0.838
MSTF-NAS [23] 0.945 0.910 0.780 0.774 0.740 0.550 0.976 0.872 0.962 0.936 0.838 0.912 0.841
Ours 0.949 0.920 0.800 0.769 0.760 0.561 0.967 0.911 0.957 0.935 0.864 0.944 0.861

Table 2: Results comparison of the proposed approach with different NAS meth-
ods and deep learning approaches on the MedMNIST benchmark in terms of
accuracy.

Existing NAS approaches to which the proposed approach is compared in-
clude Differentiable Architecture Search (DARTS), Stochastic Neural Archi-
tecture Search (SNAS), HOPNAS, Non-Dominated Sorting Genetic Algorithm
(NSGA-Net), and Multi-Scale Training Free (MSTF-NAS). We have used the
same results of these approaches given in the recent study named MSTF-NAS
[23]. In MSTF-NAS, the authors have proposed a multi-scale, training-free NAS
approach for medical image classification. They compared their proposed ap-
proach with existing NAS studies on 12 subsets from the MedMNIST bench-
mark.

These NAS approaches include DARTS, SNAS, and HOPNAS, which are
one-shot NAS approaches based on SuperNet. Among these NAS approaches,
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DARTS and NSGANet are specifically designed for natural images, and SNAS
and HOPNAS are designed for medical images. The results of random search on
2D MedMNIST datasets by [23] are also included in the comparison. In random
search, instead of using some guided search algorithm, an architecture is picked
randomly till given iterations and the best architecture is selected at completion.

Methods Chest Path OCT Derma Penum Tissue Retina Blood Breast OrganA OrganC OrganS AVG.
ResNet-18 (28) 0.768 0.983 0.943 0.917 0.944 0.930 0.717 0.998 0.901 0.997 0.992 0.972 0.922
ResNet-18 (224) 0.773 0.989 0.958 0.920 0.956 0.933 0.710 0.998 0.891 0.998 0.994 0.974 0.924
ResNet-50 (28) 0.769 0.990 0.952 0.913 0.948 0.931 0.726 0.997 0.857 0.997 0.992 0.972 0.920
ResNet-50 (224) 0.773 0.989 0.958 0.912 0.962 0.932 0.716 0.997 0.866 0.998 0.993 0.975 0.922
Auto-SKLearn 0.649 0.934 0.887 0.902 0.942 0.828 0.690 0.984 0.836 0.963 0.976 0.945 0.878
AutoKeras 0.742 0.959 0.955 0.915 0.947 0.941 0.719 0.998 0.871 0.994 0.990 0.974 0.917
Google AutoML 0.778 0.944 0.963 0.914 0.991 0.924 0.750 0.998 0.919 0.990 0.988 0.964 0.927
DARTS [11] 0.732 0.975 0.953 0.913 0.965 0.901 0.742 0.994 0.912 0.987 0.969 0.910 0.913
SNAS [26] 0.733 0.969 0.949 0.906 0.974 0.921 0.753 0.996 0.894 0.979 0.927 0.952 0.913
HOPNAS [25] 0.763 0.987 0.948 0.899 0.971 0.913 0.770 0.996 0.907 0.995 0.998 0.975 0.926
NSGA-NET [24] 0.779 0.979 0.958 0.915 0.965 0.942 0.759 0.999 0.857 0.999 0.993 0.978 0.926
Random search 0.774 0.980 0.956 0.923 0.963 0.944 0.750 0.999 0.921 0.999 0.994 0.982 0.932
MSTF-NAS [23] 0.791 0.990 0.968 0.934 0.963 0.951 0.755 0.999 0.930 0.999 0.996 0.983 0.938
Ours 0.760 0.991 0.969 0.941 0.983 0.948 0.759 0.999 0.930 0.999 0.997 0.984 0.9383

Table 3: Results comparison of the proposed approach with different NAS meth-
ods and deep learning approaches on the MedMNIST benchmark in terms of
AUC

One of the reasons behind the good performance of random search in NAS
is that, usually, NAS search spaces are high-dimensional, with a large number
of possible configurations. Random sampling can effectively explore different
regions of the search space in such spaces, thereby increasing the likelihood of
discovering good solutions without the constraints of guided search methods.

Methods Organ Nodule Fracture Adrenal Vessel Synapse Avg.
ResNet-18 + 2.5D 0.977 0.838 0.587 0.718 0.748 0.634 0.750
ResNet-18 + 3D 0.996 0.863 0.712 0.827 0.874 0.820 0.848
ResNet-18 + ACS 0.994 0.873 0.714 0.839 0.930 0.705 0.842
ResNet-50 + 2.5D 0.974 0.835 0.552 0.732 0.751 0.669 0.752
ResNet-50 + 3D 0.994 0.875 0.725 0.828 0.907 0.851 0.863
Auto-SKLearn 0.977 0.914 0.628 0.828 0.910 0.631 0.814
AutoKeras 0.979 0.844 0.642 0.804 0.773 0.538 0.763
Proposed 0.995 0.871 0.728 0.857 0.940 0.820 0.868

Table 4: Results comparison of the proposed approach with different NAS meth-
ods and deep learning approaches on the 3D datasets MedMNIST benchmark in
terms of AUC score.

The reason behind the performance difference between NAS approaches ad-
dressing natural images and approaches addressing medical ones is mainly the
domain gap. On the one hand, natural images depict landscapes, and objects
that are captured by digital means. On the other hand, medical images visual-
ize anatomical structures and pathological conditions within the body obtained
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through different modalities. They also include small lesions and tumour regions.
The attention mechanism highlights important regions to achieve an accurate
feature extraction improving detection accuracy and interoperability. The results
reveal that the proposed approach exhibits a better performance on average com-
pared to the other studies. Regarding MSTF-NAS, the proposed approach has
an advantage over DA as it helps improve model generalization ability on unseen
data.

In Table 4 and Table 5, the comparison in terms of the performance metrics
(AUC and Accuracy) of the proposed approach with different variants of ResNet
and AutoML approaches on 3D datasets from the MedMNIST benchmark is
given. The conclusion from the results is that our proposed approach yields better
performance in comparison with existing approaches, as the average accuracy
and AUC scores are better than existing DL and AutoML approaches.

The proposed approach exhibits an overall satisfactory performance on aver-
age and less searching time than existing approaches. Following the same context,
the number of parameters of searched architectures is less compared to ResNet
DL architectures. The proposed approach can achieve a better exploration and
exploitation of individuals thanks to the ZC proxies, which allow reduced search
costs to evaluate an individual.

Methods Organ Nodule Fracture Adrenal Vessel Synapse Avg.
ResNet-18 + 2.5D 0.788 0.835 0.451 0.772 0.846 0.696 0.731
ResNet-18 + 3D 0.907 0.844 0.508 0.721 0.877 0.745 0.767
ResNet-18 + ACS 0.900 0.847 0.497 0.754 0.928 0.722 0.774
ResNet-50 + 2.5D 0.769 0.848 0.397 0.763 0.877 0.735 0.731
ResNet-50 + 3D 0.883 0.847 0.494 0.745 0.918 0.795 0.780
ResNet-50 + ACS 0.889 0.841 0.517 0.758 0.858 0.709 0.762
Auto-SKLearn 0.814 0.874 0.453 0.802 0.915 0.730 0.764
AutoKeras 0.804 0.834 0.458 0.705 0.894 0.724 0.736
Proposed 0.908 0.877 0.690 0.805 0.940 0.846 0.844

Table 5: Results comparison of the proposed approach with different NAS meth-
ods and deep learning approaches on the 3D datasets MedMNIST benchmark in
terms of Accuracy score.

Similarly, experiments on the BreakHIS were conducted (the histopathology
dataset, which consists of eight classes with a 200x magnification level). While
prior NAS studies mainly focused on small-scale datasets, our research highlights
the potential use of ZC proxies for efficiently exploring an architecture suited for
large-scale datasets. A comparison of the best-performing architecture results
with existing approaches is shown in Table 7. These results are based on the
validation performance after the network training. The results reveal that the
proposed approach performed better regarding multiple performance measures,
taking only two hours to search an architecture with a ZC proxy.

5.1 Comparison of different Meta-heuristics

Although studies on evolutionary NAS have used different meta-heuristic algo-
rithms, choosing a suitable meta-heuristic algorithm for a given problem remains
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Metaheuristics LSHADE ACO PSO DE

Path Accuracy 0.89 0.79 0.80 0.86
AUC 0.97 0.96 0.96 0.93

OCT Accuracy 0.74 0.73 0.74 0.77
AUC 0.95 0.94 0.95 0.96

OrganA Accuracy 0.93 0.92 0.92 0.91
AUC 0.99 0.99 0.99 0.99

OrganC Accuracy 0.89 0.85 0.89 0.90
AUC 0.98 0.98 0.98 0.99

OrganS Accuracy 0.75 0.86 0.78 0.77
AUC 0.96 0.75 0.97 0.97

Breast Accuracy 0.90 0.80 0.89 0.89
AUC 0.89 0.85 0.90 0.88

Retina Accuracy 0.54 0.52 0.54 0.51
AUC 0.75 0.74 0.74 0.72

Pneumonia Accuracy 0.88 0.83 0.84 0.82
AUC 0.95 0.95 0.96 0.96

Derma Accuracy 0.70 0.70 0.74 0.65
AUC 0.89 0.89 0.91 0.85

Chest Accuracy 0.94 0.94 0.94 0.94
AUC 0.62 0.66 0.65 0.65

Tissue Accuracy 0.67 0.65 0.64 0.57
AUC 0.92 0.90 0.91 0.47

Blood Accuracy 0.95 0.95 0.96 0.93
AUC 0.99 0.99 0.99 0.99

Average Value Accuracy 0.815 0.80 0.80 0.79
Average Value AUC 0.90 0.88 0.90 0.86

Table 6: Comparison of Accuracy
and AUC scores of different meta-
heuristic algorithms without data
augmentation strategy.

Fig. 6: Average fitness values on multiple
2D MedMNIST datasets of three differ-
ent fitness functions of proposed Auto-
matic Data Augmentation approach

challenging. In this study, we performed a comparative study of some of the well-
known metaheuristics. It includes DE [19] alongside its variant LSHADE [22],
ACO [21] and PSO algorithms [20].

The results of different meta-heuristics used to search architectures for 2D
MedMNIST datasets are given in Table 6. It is worth noting that no meta-
heuristic performed well on all the datasets, even if the PSO performed better
on average than DE and ACO. As DE performance is sensitive towards its pa-
rameters, LSHADE performed well compared to DE, a variant of DE which
is a successive history-based adoptive DE variant that keeps track of all best
DE parameters with linear population size reduction. LSHADE algorithms have
been widely used to solve large-scale optimization problems. It performed better
despite the parameter tuning of DE due to several reasons, such as its adapt-
ability, as it incorporates an adaptive mechanism that dynamically adjusts its
parameters during the optimization process. This adaptability allows LSHADE
to respond better to changes in the optimization landscape and maintain a bal-
ance between exploration and exploitation more effectively than DE.

Secondly, LSHADE explored the search space more efficiently than DE lead-
ing to the discovery of better solutions. Its methods explore diverse regions within
the search space, which is crucial in finding near-optimal or optimal solutions to
complex problems such as NAS.

6 Discussion and Conclusion

The study presents an efficient evolutionary neural architecture search method
for 2D and 3D medical image classification by utilizing ZC proxies for fitness
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Accuracy Precision Recall F1-Score

Bardou [14] 80.083 81.85 80.83 80.48

Yun Jaing [15] 92.270 90.71 92.24 91.42

Nouman et al [16] 94.710 91.42 91.63 91.76

Proposed 95.05 93.76 93.59 93.66

Table 7: Results comparison of the pro-
posed approach with existing studies on
BreakHIS dataset.

Dataset Best data augmentation searched
OCT RandomAffine RandomHorizentalFlip
OrganS RandomVerticalFlip RandomErasing
OrganC RandomAffine RandomErasing
OrganA ColorJitter RandomAffine
Path ColorJitter RandomVertical
Tissue RandomVerticalFlip RandomRotation
Pneumonia RandomHorizental RandomErasing
Chest HorizentalFlip VerticalFlip
Breast ColorJitter RandomRotate30
Blood RandomAffine RandomErasing

Table 8: Data Augmentation strate-
gies searched by the proposed Auto-
matic Data Augmentation approach

evaluation. It introduces an adaptive DA approach to address model generaliza-
tion and overfitting issues and conducts a comparative study of metaheuristics
to choose the optimal one for the problem at hand. The comparison of our
proposed approach with existing NAS studies demonstrates its effectiveness. It
outperforms existing approaches in terms of average performance. Furthermore,
incorporating attention layers in the search space enables better feature ex-
traction by prioritizing relevant regions of the image and capturing long-range
dependencies.

This shows that the proposal is not only effective in the case of small-scale
datasets such as MedMNIST but also in the case of large-scale datasets such
as BreakHIS, requiring less searching time. DA is crucial for medical images,
improving the robustness and generalization ability of DL models trained on
limited datasets. Moreover, medical images often suffer from overfitting prob-
lems, which can be overcome by using DA. By searching for optimal DA sets for
given datasets, an improvement in the performance is noticed. It reveals that it
plays an essential role alongside NAS when searching architecture topology.

Data Augmentation Path OCT OrganA OrganC OrganS Breast Retina Pneumonia Derma Chest Tissue Blood
0.900 0.780 0.930 0.900 0.841 0.900 0.540 0.926 0.970 0.740 0.940 0.670

✓ 0.920 0.800 0.962 0.935 0.864 0.911 0.561 0.944 0.983 0.769 0.949 0.760

Table 9: Experimental Results on MedMNIST2D datasets on accuracy before
and after data augmentation searched by the proposed Automatic Data Aug-
mentation (ADA) approach

The best-reported set of DA searched by the proposed adaptive DA approach
for different MedMNIST datasets is given in Table 8. This shows that the adap-
tive DA approach searches for various DAs. Besides, performance deterioration
can emerge when using a single DA strategy. The accuracy and AUC scores be-
fore and after training the model with searched DAs are given in Table 9 and
10. The idea behind using the combined fitness value of AUC and accuracy is
to find the data augmentation set that gives better performance on both AUC
and accuracy measures. We also conducted an analysis study to compare the
average accuracy and AUC values using different fitness metrics (AUC, accu-
racy, and AUC+accuracy), as shown in Figure 6. It clearly shows that combined
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fitness function leads to better individual DAs in comparison with other fitness
functions.

Data Augmentation Path OCT OrganA OrganC OrganS Breast Retina Pneumonia Derma Chest Tissue Blood
0.970 0.960 0.990 0.990 0.970 0.925 0.750 0.970 0.910 0.941 0.670 0.920

✓ 0.991 0.969 0.999 0.997 0.984 0.930 0.759 0.983 0.944 0.941 0.769 0.967

Table 10: Experimental Results on MedMNIST2D datasets on AUC before and
after data augmentation searched by the proposed Automatic Data Augmenta-
tion (ADA) approach

As recent studies have been conducted on small-scale datasets, e.g., the
MedMNIST benchmark, we have also performed experiments on the BreakHIS
dataset and demonstrated the potential ability of ZC-NAS approaches to find
the best-performing neural architectures for large-scale medical image datasets.
Moreover, this study demonstrates that ZC is effective on both 2D and 3D
datasets, as shown for multiple 3D MedMNIST datasets. Moreover, the com-
parison of meta-heuristics shows that the adaptive variant of DE and PSO al-
gorithms performed better than other metaheuristics with satisfactory accuracy
and AUC scores. In the near future, we aim to extend the 3D approach for
large-scale 3D medical image datasets and propose a multi-objective approach.
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