
DAI: How pre-computation speeds up data
analysis

Kira Duwe1[0000−0003−3172−1225] and Michael Kuhn2[0000−0001−8167−8574]

1 EPFL, Lausanne, Switzerland
2 Otto von Guericke University Magdeburg, Germany

Abstract. As data sizes continue to expand, the challenge of conduct-
ing meaningful analysis grows. Utilizing I/O (Input/Output) libraries,
such as HDF5 (Hierarchical Data Format) and ADIOS2 (Adaptable IO
System), facilitates the filtering of raw data, with prior research high-
lighting the advantages of dissecting these formats for enhanced meta-
data management. Our study introduces a novel data management tech-
nique aimed at boosting query performance for HPC analysis applica-
tions through the automatic precomputation of commonly used data
characteristics, as identified by our user survey. The Data Analysis In-
terface (DAI), developed for the JULEA storage framework, not only
enables querying this enriched metadata but also shows how domain-
specific features can be integrated, demonstrating a potential improve-
ment in query times by up to 22,000 times.

Keywords: Scientific data management · Self-describing data formats ·
HPC applications · Pre-computation.

1 Introduction

Growing computing power and sophisticated data analysis techniques have ad-
vanced high-resolution climate research, despite storage and network limitations
emerging as significant bottlenecks. While strategies like data compression and
I/O optimizations can offer relief, the uneven pace of hardware advancements
demands a rethinking of storage systems [5, 8, 23]. Emerging technologies like
NVRAM and NVMe SSDs promise enhanced performance but face constraints
in cost and capacity, underscoring the need for efficient data management in
massive archives like the 300 PB at the German Climate Computing Centre.
Addressing these challenges is vital for sustaining long-term access to critical
data.

Besides the hierarchy of storage hardware, the I/O software stack also in-
terferes with efficient data sifting and the optimal utilisation of the cluster. In
climate research, the applications typically directly employ I/O libraries such
as NetCDF (Network Common Data Form) [17], HDF5 (Hierarchical Data For-
mat) [2] and ADIOS2 (Adaptable IO System) [13]. They offer rich metadata
and optional hints for the I/O libraries to allow performance tuning. Due to the

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

2 K. Duwe and M. Kuhn

complex interplay of different components and optimisations in the I/O stack,
performance issues are common.

No application changes. Developing efficient management techniques for
HPC applications faces significant challenges, primarily due to the legacy code
base. Scientific simulations are often developed by domain scientists, prioritiz-
ing domain knowledge over software engineering principles. Combined with its
large size, this poses difficulties in adapting and implementing novel manage-
ment techniques. Furthermore, asking for application changes is often met with
resistance of varying degrees. This is not done out of bad faith but to preserve
the considerable time and financial investments made into the code development
often over decades. Solutions requiring application changes are unlikely to be
tested, much less employed, on a large scale. Unfortunately, this heavily limits
the design space for new approaches. In order to offer improvements that can be
employed realistically, we focused on making our approach transparent for the
application layer.

Contributions. Following the quote from Jim Gray, ”Metadata enables data
access”, we examined the I/O libraries and their corresponding data formats for
improvements in the data and metadata management [7]. We think there is
great unused potential in these formats, especially ADIOS2. In this paper, we
offer a new data management technique to tackle the challenge of finding new
insights into PB of data. We build on previous work and dissect the file format
inside the I/O libraries, making the changes transparent to the application layer.
We extend the previous work to the automatic pre-computation of additional
data characteristics that are common in post-processing across different scientific
domains, as shown in our user survey. Because we focus on reductions, like
sum and mean, the computation and storage overhead is minimal. To query
the new metadata, we design the data analysis interface (DAI). Besides retrieval
functionality, we show how offering domain-specific functionality like the climate
indices can be incorporated, as well as tagging interesting data parts. We make
the following contributions:

– Identifying opportunities to improve data management in HPC systems
without requiring application changes

– Designing the DAI to allow for the pre-computation of data characteris-
tics, enabling metadata tagging and access at varying levels of granularity,
implemented in two ADIOS2 engines (KV-engine and DB-engine)3.

– Implemented the DAI interface within the JULEA framework, significantly
enhancing analysis application query times by up to 22,000 times4.

2 Observations

The design of the proposed system was influenced by several key observations
we made regarding HPC systems and their applications.

3 https://github.com/parcio/adios2
4 https://github.com/kiraduwe/julea

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://github.com/parcio/adios2
https://github.com/kiraduwe/julea
https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

DAI: How pre-computation speeds up data analysis 3

Data Access in HPC systems. In HPC, checkpointing is a common prac-
tice where applications save their current state to resume computations later,
especially since scientific simulations may run longer than the time allocated on a
cluster. Besides, many HPC workloads follow a write-once-read-many (WORM)
pattern, contrasting with database systems that frequently update data. A study
of CERN workloads, analyzing over 2.49 billion events, highlighted this pattern,
showing minimal updates among the events and a substantial difference between
total written data (over 150 PB) and read data (more than 300 PB), emphasizing
the predominance of reading over writing [16].

Observation 1: HPC data is predominantly written once, barely updated and read
often [19]. Therefore, we focus on improving the read performance, specifically
emphasising the post-processing and analysis phase.

HPC Applications. These applications fall into two main categories: large-
scale simulations, like climate models, and analysis applications that process
data from these simulations. Analysis applications, often crafted by small teams
or individual developers, tend to be less complex, have fewer lines of code, and
lack extensive optimization or parallelization. This makes them notably more
adaptable to code modifications and the adoption of new APIs. Observation 2:
The stark reluctance to accept application changes does not apply to analysis
applications, making them an ideal leverage point for trying new approaches and
using novel interfaces.

Self-describing data formats. I/O libraries like HDF5, NetCDF, and
ADIOS2, which facilitate easy data management and exchange through self-
describing data formats (SDDFs), enable researchers to annotate data with ad-
ditional attributes, e.g. about experiment runs. SDDFs can be split into file data
and file metadata, as shown in Figure 1. The latter encompasses annotations,
such as user-set attributes, as well as structural information about the data,
such as variable dimensions and hierarchical ordering within groups. Separat-
ing file metadata from data is essential due to their differing access patterns;
data servers optimized for large, contiguous I/O are less efficient with the small,
random accesses required for metadata, which is currently stored within files,
limiting performance.

Dataset

Chunked

Attribute

Size
Type

Group File

Time

stamp
Owner

Folder

File Data File Metadata File System Metadata

S
e

lf
-D

e
s

c
ri

b
in

g
 D

a
ta

 F
o

rm
a

t
F

ile
 S

ys
te

m

Fig. 1: Different types of metadata are indicated: File system metadata and file
metadata. The former is further split into attributes set by the user directly
(orange) and structural information encoded in the format (yellow).

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

4 K. Duwe and M. Kuhn

Previous studies have investigated various methods, including using relational
databases, duplicating metadata in databases alongside files (e.g., EMPRESS 1
and EMPRESS 2), and eliminating the file concept to exclusively store data
in databases and object stores, aiming to improve the accessibility of the file
metadata [4, 10, 11]. Further details on these approaches will be discussed in
Sections 3 and 4.
Observation 3: Although the separate treatment of file metadata is a positive
step, we believe there is untapped potential, particularly in ADIOS2. Expanding
upon its capability and pre-computing additional statistics can bring significant
benefits.

Typical post-processing operations. To determine appropriate statistics
for pre-computation, we examined climate research simulations and their analysis
applications. In particular, we looked at the widely used climate data operators
(CDOs) [18]. Additionally, we conducted a survey among scientists from different
domains to identify common mathematical operations used in data analysis.
Observation 4: Through our analysis, we observed that various domains share
typical mathematical operations like reductions, e.g. sum and mean. Therefore,
we pre-compute these statistics to improve data retrieval and analysis efficiency.

3 Format Dissection with JULEA

Designing and implementing a distributed storage solution for HPC clusters is
complex, often involving custom client/server architectures like EMPRESS [11].
To streamline our efforts and capitalize on existing functionality, we chose to
build upon the JULEA framework. JULEA not only reduced implementation
work but also provided benchmarking tools, extensive testing, and continuous
integration. Operating entirely in user space, JULEA simplifies development
and debugging, offering various components like clients, servers, and backends
to construct custom storage systems, as depicted in Figure 2. JULEA provides
versatile interfaces for interacting with clients directly or integrating into I/O
libraries like HDF5 and ADIOS2 through VOL plugins or engines. Supporting
object, key-value, and relational database servers, JULEA enables easy adapta-
tion to various access patterns without altering the application code, allowing
users to focus on functionality while seamlessly transitioning between backend
technologies like LMDB and LevelDB with minimal configuration changes.

The dissection of self-describing data formats using the JULEA storage frame-
work is illustrated in Figure 2. The parallel application communicates across the
different compute nodes through MPI. It uses an I/O library such as ADIOS2 or
HDF5 for writing and reading its data. The data format is then dissected inside
the library and its parts are directed forward to the storage solution by either
the engine or the VOL plugin, depending on the used library.

4 Related Work

The Extensible Metadata PRovider for Extreme-scale Scientific Simulations (EM-
PRESS) stands out as a notable approach to enhanced metadata management,

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

DAI: How pre-computation speeds up data analysis 5

Fig. 2: JULEA setup with two compute nodes and two storage nodes. The key-
value store manages the small file metadata pieces (green with fine-grained pat-
tern), while the object store backend handles the large data chunks (grey with
coarse-grained pattern). It also distributes the chunks over several storage nodes.

offering a metadata service tailored for self-describing data formats like HDF5
and ADIOS2 [11]. However, EMPRESS and its successor, EMPRESS 2, neces-
sitate explicit specification of all desired metadata information, requiring appli-
cation changes. In contrast, our solution builds upon the data model introduced
by I/O libraries, concealing changes and reducing user involvement significantly.

Moreover, the drawbacks of maintaining a separate database for metadata,
as discussed by Zhang et al., underscore the challenges inherent in such ap-
proaches [3, 25]. Projects like BIMM [9] and SPOT [22] also grapple with simi-
lar issues, while solutions like JAMO attempt to mitigate them using document
databases like MongoDB. However, these approaches often encounter duplica-
tion of metadata and struggle to model the hierarchical nature of self-describing
data formats effectively. By leveraging JULEA, our solution avoids these pitfalls,
enabling seamless metadata management without the need for complex trans-
formations or duplication of metadata. Additionally, innovations like MIQS [25]
aim to address these challenges by introducing schema-free indexing solutions,
but they still face limitations such as redundant storage of attribute-file path
relations.

The Fast Forward Storage and IO (FFSIO) project aims to revolutionize ex-
ascale storage systems to meet the demands of HPC applications and large-scale
data workloads. Despite offering a rich I/O interface, DAOS faces limitations due
to extensive requirements for NVRAM and NVMe devices, making it unsuitable
for cost-constrained environments [12].

The European Centre for Medium-Range Weather Forecasts (ECMWF) con-
tributes to data archival through the ECMWF’s File Storage system (ECFS) and
Meteorological Archival and Retrieval System (MARS) systems, catering to the
needs of weather modeling researcherss [6]. While ECFS manages files primarily
with write calls, MARS operates as an object store, providing efficient storage
management through a database-like interface.

In the realm of metadata management, projects like DAMASC [1], SoMeta [21]
and HopsFS [15] present diverse approaches. DAMASC focuses on redefining
the FS interface using database mechanisms, while SoMeta provides metadata

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

6 K. Duwe and M. Kuhn

infrastructure using a distributed hash table. HopsFS overcomes scalability lim-
itations with distributed metadata services. Furthermore, object-based storage
systems have shown efficiency and scalability advantages over traditional I/O
stacks, with object-centric storage systems improving HDF5 performance when
datasets are stored in object stores [14]. Additionally, leveraging Proactive Data
Containers (PDC) as a tuning technique can significantly enhance performance
compared to highly optimized HDF5 implementations [20].

5 Design and Implementation

As discussed in 2, the pre-computation of common mathematical operations in
post-processing and analysis applications is a promising approach to improve
the performance of HPC workflows without requiring any application changes.
More specifically, we demonstrate how moving the computations of the analysis
phase to the writing phase can offer multiple benefits.

1) The data is already present in RAM during the writing phase. So, it is
the ideal point to compute derived characteristics. For the functions we find
to be most suitable, the computational and storage overheads are negligible
and therefore do not impact the writing process much. But even if there is an
impact, given the read-mostly nature of most data in these systems, speeding up
the reading significantly has a bigger impact than marginally slowing down the
writing process. 2) By storing the derived characteristics that are much smaller
in size they can be stored on the faster and smaller hardware tiers like SSDs
or NVRAM. 3) By storing the data in a database we can use optimizations to
improve the retrieval performance such as creating indexes on popular columns.

To select suitable computations, we decided to perform a user survey among
researchers and study the functions offered by the library very commonly used to
analyse climate data, namely the climate data operators (CDOs). By including
a subset of the CDOs which can show how analysis libraries can be tied to the
I/O engines.

5.1 Survey

The survey investigated the usage of self-describing data formats, e.g. the num-
ber of variables and timesteps or the typical hierarchy depth, on the one hand,
and interface preferences and used programming languages on the other hand.
Furthermore, typical post-processing operations were evaluated as well to inform
the pre-computation options. The survey targeted scientists across various insti-
tutes, including Sandia National Laboratories (SNL), University of Tennessee,
Lawrence Berkeley National Laboratory (LBNL), German Climate Comput-
ing Center (DKRZ), Max-Planck-Institute of Meteorology (MPI-M), German
Electron Synchrotron (DESY), Center for Bioinformatics (ZBH), University of
Hamburg (UHH), Helmut-Schmidt University (HSU), German Aerospace Center
(DLR), DDN, and McGill University. In addition to direct outreach, the survey
was shared on the HDF5 user forum and the ADIOS discussions on GitHub,

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

DAI: How pre-computation speeds up data analysis 7

facilitating valuable input from library developers. The survey engaged a total
of 38 participants, with 22 providing complete responses. Note that it is not
intended to be a representative study of one or more scientific domains, it sim-
ply serves as a way to make a more informed decision about what operations to
chose. Given the paper’s focus on the merits of pre-computation, only the results
for typical post-processing and analysis operations are included and discussed
here for brevity.

The survey results illustrated in Figure 3a show that reductions like com-
puting averages, extrema, sums and variances are most common. Aside from
that, researchers often compare simulation data to observational data, create
histograms and identify outliers. As the reductions are used across various fields
from climate research to astrophysics we decided to focus on them to show how
this pre-computation can benefit different domains.

Reductions

Recognizing Outliers

4

8

12

16

Comp. to obs. data

Histograms

Co
un

t

(a) Typical post-processing operations

I/O Libraries

MD Backend

Storage Solution

FS Metadata

SDDF

File

Key-Value Store

MD Backend

Relational Database

Data Backend

Object Store

File Metadata File Data

Data Analysis

Interface
Format Dissection

ADIOS2/HDF5

Application

(b) Data Analysis Interface (DAI)

Fig. 3: Survey results and the architecture of the DAI

5.2 Climate Data Operators

The climate data operators (CDO) are a command line tool offering various op-
erations on climate data [18]. These range from file operations such as copying or
splitting to arithmetic functions. Besides, modifications such as setting the time
or the grid info are also numerous. The arithmetic functions contain operations
to evaluate an expression or compare simulation data to constants. Addition-
ally, CDOs offer the computation of correlation and covariance in the grid space
or over time, as well as regressions to find trends in the data. Interpolation and
remapping, as well as spectral and wind transformation, are common as well. We
chose to focus on operations with a low overhead in terms of computation and
storage space. Reductions like the sum and mean are ideal candidates as they
reduce a potentially large dataset to a single result without requiring complex
calculations. Climate Indices To highlight how the option for pre-computation
can also help more specific scenarios and not just generic derived data character-
istics, the DAI offers functions to trigger the automatic computation of climate
indices. They are part of the European Climate Assessment (ECA) and are used

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

8 K. Duwe and M. Kuhn

to evaluate temperature and precipitation extremes and their variability. The
indices are computed for a time period, typically years. An example of a climate
index is the frost day index which counts the number of days per year that have
a minimum temperature below 0°C.

5.3 Data Analysis Interface

Given the results of the user survey and the analysis of CDO functionality, we
chose to support the following functions: various selection operations for data
retrieval, statistics like the mean, the sum and the variance as well as the climate
indices.

Retrieval Our choice of selection operators for the DAI is motivated by the
6 typical access patterns for a variable in a self-describing data format [24]. A
variable can be read as the whole domain, an xz-plane, xy-plane, yz-plane, a
sub-area or a partial area of a plane. Thus, the DAI supports the selection of
single database fields, timesteps or a subset of a variable. The statistics offered
by the CDOs contain various ranges, e.g. values over an entire ensemble, a field,
and a time range. Thus, the DAI supports different granularity levels, namely
the block level, step level or the variable level.

Pre-computation Most functions of the DAI are related to specifying pre-
computations and respective settings. Only statistics that are implemented man-
ually in the engine can be precomputed. There is currently no option to define
arbitrary mathematical operations as the support is more of a technical challenge
in this setup than a research question. So, we focused on showing that offering
these functions even in the simplest way can greatly benefit the analysis perfor-
mance. For the same reasons, we assumed that the data uses a structured and
uniform grid as this makes the calculation straightforward. Otherwise, a suitable
interpolation must be used which could also involve remapping the data.

Tagging We also offer to tag specific features for a variable, that fulfill a con-
dition specified by the user. For example, all blocks for the temperature variable
could be tagged that have a maximum temperature above 25°C. This allows to
mark and later retrieve interesting data quickly. In the future, this tagging can
be done completely in the configuration file to provide optimal flexibility.

Caching Our current implementation caches previous block and step results,
leading to increased memory consumption. Transitioning to calculations that
rely solely on the latest result could mitigate this issue. Furthermore, keeping
data consistent is not a problem as ADIOS2 does not offer updating, overwriting
or deleting data for a variable. This type of data manipulation is handled at the
file system level instead.

Convenience and Defaults To make the lives of application developers and
users doing post-processing easier, several functions are computed automatically
by default. For one, the mean value, the sum, and the variance are computed
for every block alongside the extrema that are already present in the BP for-
mats. So, to enable the computation of these statistics, setting the engine type
to DB-engine is sufficient meaning that the application does not need to be
recompiled. If the pre-computation is not sensible for a specific scenario, the

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

DAI: How pre-computation speeds up data analysis 9

user can specify to use only the metadata offered by the native BP formats.
One reason to opt out of the default to automatically compute the additional
statistics may be the concern of the increased data size. For every block5, three
additional variables of the same data type as the ADIOS2 variable are stored
in the database. Assuming each array has at least one element or character
and the variable is not a single value, the minimal size is 143 bytes. Assuming
strings with a length of 9 characters and a three-dimensional dataset, the size
is already 247 bytes. This example shows that the project namespace, the file
name and the variable name can contribute significantly more to the entry size
than the additional statistics. Given the small storage overhead, we find storing
three additional doubles to be justifiable. Especially when considering that this
means the user does not have to change anything in the application and can still
benefit from the pre-computation. Due to the expected performance improve-
ment when accessing the data, the pre-computation of the three statistics is the
default. To access the pre-computed values through the CDO interface for the
post-processing, writing a small wrapper is sufficient to map the CDO calls to
the respective JULEA DAI calls.

6 Evaluation

In the following, we present the evaluation of the JULEA engines and the DAI.

The query application representing the analysis application is run on one of the
smallerNode. The JULEA servers run on the largeNode.
smallerNode is equipped with an AMD Epyc 7443 CPU (2.85 GHz, 24 cores),
128 GB of RAM, and a Western Digital 500 GB WD5000AAKS HDD, capable
of 126 MB/s sustained throughput.
largeNode is equipped with an AMD Epyc 7543 CPU (2.8 GHz, 32 cores),
1024 GB of RAM, and an Intel SSDSC2KB960G8 SSD (960 GB) with a max.
performance as per specification of 510 MB/s (write), 560 MB/s (read).

FS The local FS on the cluster is ext4 with a block size of 4096 bytes. Ceph is
used as the distributed FS holding, for example, the home directories. The BP
engines write to Ceph, whereas the JULEA engines write to the local storage of
the nodes running the JULEA servers. This setup is chosen to avoid the overhead
of an additional distributed FS when using JULEA.

Software As the JULEA benchmark revealed, LevelDB has the best overall
performance for different operations, including writing and reading. MariaDB
is the best available option in JULEA to store data in a database. While the
performance of SQLite running in RAM is better, the data are not persisted.
Therefore, MariaDB was chosen. MariaDB is run in a Singularity container that
uses the current docker image. Furthermore, we use ADIOS 2.7.

Real-world application To evaluate write and read performance, we utilized
the HeatTransfer application 6 from the ADIOS2 repository. It solves the 2D

5 A block is the data written by one MPI process in one step.
6 https://github.com/parcio/adios2/tree/master/examples/heatTransfer

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://github.com/parcio/adios2/tree/master/examples/heatTransfer
https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

10 K. Duwe and M. Kuhn

Poisson equation using finite differences for the temperature distribution in ho-
mogeneous media. A constant matrix size of 10242 was used. We introduced
a second variable, precipitation, to facilitate more complex DAI queries. Fur-
thermore, we increased the simulation steps to 100 rather than the matrix size,
intentionally stressing the JULEA engines with additional metadata to rigor-
ously test their capacity under more demanding conditions.
ADIOS2-Query and DAI-Query Two applications were developed to assess the
DAI. Both operate within a single process, as post-processing tasks like visualiza-
tion or plotting scripts are often not parallelized. The first application, ADIOS2-
Query, utilizes the ADIOS2 interface for data access, illustrating how the native
library handles posed queries. Notably, the ADIOS2 interface cannot access the
new custom metadata. The second application, DAI-Query, employs the DAI
interface to query the database and custom metadata. Pre-computation time is
not separately considered, as it was previously measured in the write perfor-
mance of the JULEA engines.
Raw Data All evaluation results, as well as the specifics of how we compiled and
set up the system, will be published along the survey results 7.

6.1 Write and Read Performance

In the following, the I/O performance of the two ADIOS2 (BP3 and BP4) and
the two JULEA engines (KV-engine and DB-engine) is measured to demonstrate
the applicability of our approach across the entire application life cycle not just
the analysis phase. The results shown in the following figures are the mean write
and read throughput averaged over all processes performing I/O in a step for
a total of 100 steps. The write and read throughput for one and six nodes are
shown in Figure 4 for BP3, BP4 and both JULEA engines. The results for 2 and
4 nodes offer no additional insight and are omitted for the sake of space. For
both JULEA engines, the performance gain grows less with a higher number of
processes but does not decrease. In most cases, the engine using the key-value
store is only slightly better than the one using the relational database. Given the
performance differences observed benchmarking the specific backends, this is sur-
prising. We measured the performance for put, get and delete operations both
unbatched and batched8. While LevelDB reached between 59,000 and 65,000 op-
erations per second, MariaDB only achieved between 1,000 to 9,000 operations
per second. Note the wide variation, especially for the BP engines. For reading,
the performance ranges from 4GB/s to about 15GB/s when using BP3 on 6
processes on one node as shown in Figure 4a. This is due to caching effects that
we could not eliminate. Overall, the evaluation shows that our engines provide
a comparable write performance while the read performance is lacking due to
caching mechanisms on ADIOS2’s side.

7 https://github.com/kiraduwe/julea
8 The plots for these results are not included for the sake of space

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://github.com/kiraduwe/julea
https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

DAI: How pre-computation speeds up data analysis 11

1 3 6 12 24
Processes

50

100

150

200

250
M

B/
s

KV
DB

BP3
BP4

1 3 6 12 24
Processes

0

2,500

5,000

7,500

10,000

12,500

15,000

M
B/

s

(a) Write (left) and read (right) for 1 node

6 18 36 72 144
Processes

100

200

300

400

M
B/

s

6 18 36 72 144
Processes

0

20,000

40,000

60,000

M
B/

s

(b) Write (left) and read (right) for 6 nodes

Fig. 4: HeatTransfer Results: Write and read performance for 1 node (a) and for
6 nodes (b). ADIOS2 version 2.7.1 was used.

6.2 Query Time

To evaluate the performance of the DAI and the pre-computed statistics we
evaluated several queries. Four queries have been derived from the use cases
we examined. They have been phrased such that they represent a real-world
question. Our engines have been developed using ADIOS2 version 2.7. In order
to also compare the DAI to the newer BP5 format, we included measurements
for ADIOS2 version 2.8 as noted in Figure 5.

Query 1: Find all locations where the temperature is between -42°C and 42°C.
The first query operates on file metadata in the original BP formats. All engines,
first retrieve all blocks where the temperature variable meets the condition and
then the corresponding x and y coordinates are checked to deduct the location.
The performance of the JULEA engines, when employing the ADIOS2 interface,
is expected to be, at best, comparable to that of the BP engines, in part because
they have an index for this type of metadata. This could be added to the JULEA
engines as well to improve their performance in the future.

Figure 5a illustrates the results, indicating that the runtime for the JULEA
engines, influenced by backend technology performance, is longest with Mari-
aDB, reaching 2,770 ms for 96 blocks. Efforts to enhance performance involve
running the database server on faster hardware, ideally in NVRAM, although
this is currently unavailable in the utilized cluster. When the DAI (DAI-Query)
is used instead of the ADIOS2 interface (ADIOS2-Query), the performance is
improved significantly from 2,770 ms to 4 ms. This shows the advantage when
the interface can access the custom data.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

12 K. Duwe and M. Kuhn

24 48 96
Blocks

100

101

102

103

m
s

KV
DB

DAI
BP3

BP3 2.8
BP4

BP4 2.8
BP5 2.8

(a) Time for Q1

24 48 96
Blocks

100

101

102

103

m
s

(b) Time for Q3

24 48 96
Blocks

102

104

106

m
s

(c) Time for Q2

24 48 96
Blocks

102

104

106

m
s

(d) Time for Q4

Fig. 5: The runtime for Q1 (a), Q3 (b), Q2 (c) and Q4 (d). The results were
written with 1, 2 and 4 nodes with 24 processes per node which equal writing
24, 48 and 96 blocks. Note the logarithmic scale on the y-axis and the value
ranges. Version 2.7 (teal) and 2.8 (blue) of ADIOS2 are used.

Query 2: What is the highest mean value of a location?
This query showcases the efficiency of pre-computed custom metadata, focusing
on mean value calculations. ADIOS2-Query requires reading the variable data to
compute the mean value, introducing additional time, while DAI-Query benefits
from pre-computed mean values during variable writing. To optimize, additional
metadata computations are combined where possible, such as reusing the sum
for mean and standard deviation calculations. DAI-Query outperforms ADIOS2-
Query for DB-engine, with runtimes of 41 ms 96 blocks, compared to 899,400
ms, a factor of 21,940. Notably, the DAI interface achieves impressive results
even with MariaDB as the underlying technology.

Query 3: Which location had the largest increase in maximum temperature
between step 1 and 100?
The third query assesses metadata querying performance across multiple steps,
specifically comparing maximum temperatures for all blocks in steps 1 and 100.
Unlike prior queries, this scenario avoids reliance on pre-computed features and
challenges engines by requiring the reading and comparison of maximum tem-
peratures across steps. Figure 5b illustrates consistent runtimes for JULEA en-
gines, regardless of using one or two servers. The DB-engine engine has the
longest runtime which is in part because of the lower performance of MariaDB
as mentioned before. Notably, using DAI with JULEA clients achieves signifi-
cantly shorter runtimes (around 31 ms for 96 blocks) compared to using MariaDB
through the ADIOS2 interface (2,720 ms), even outperforming LevelDB. The BP
engines have a small runtime, for example, 5 ms for BP3. A possible reason is
the number of small reads that have to be performed using the JULEA engines.
Currently, there is no way to read all file metadata for a specific variable at once.
In contrast, the BP engines only need to read the metadata file of their formats
and all blocks’ maxima are available to the application. One option to mitigate

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

DAI: How pre-computation speeds up data analysis 13

the drawbacks would be to offer an iterator to the application to allow reading
multiple entries more efficiently.

Query 4: What was the highest precipitation sum for a location when the
maximum temperature was above 40°C?
The chosen query for the final evaluation involves multiple variables, adding
complexity compared to previous queries. In Figure 5d, the KV-engine engine
outperforms others with a runtime of approximately 270 ms. In contrast, DB-
engine exhibits a longer runtime of 9060 ms for 96 blocks, a factor of about
35.

BP J-KV J-DB DAI

Query 1 1 2 3 1

Query 2 2 4 3 1

Query 3 1 3 4 2

Query 4 3 1 4 2

Table 1: Assessment of the query runtimes from best (1) to worst (4).

6.3 Discussion

When bringing the format dissection, the file metadata management in a rela-
tional database and the DAI together, they can compete with the BP engines
when writing data. However, they shine when the custom metadata is relevant
to the posed question and even outperform the native engines significantly by
several orders of magnitude .
Query results Some interesting aspects become more evident in the condensed
query results in Table 1. First, the query selection was varied and focused on
different capabilities. Second, no candidate is best for each scenario. This is not
surprising since previous work on access patterns for variables in self-describing
data formats indicated that they could be very varied [24]. Third, the format
dissection itself is not beneficial when a slow backend is used, as evidenced by
the subpar results of DB-engine, whereas using a key-value store proved more
efficient, largely due to the superior performance of LevelDB over MariaDB.
Fourth, the pre-computation of statistics combined with the DAI is a great ad-
dition and helps improve the performance significantly even if a slow backend
like MariaDB is used.
Querying across files Querying across files was not assessed due to the cluster’s
limited storage capacity. Despite this, the centralization of file metadata does
allow for quicker cross-file queries, avoiding the need to open multiple files.
Data modelling One major challenge is that data can be modelled differently
in different formats. For example, in HDF5, time can be represented using a
specific array dimension, or multiple datasets can be written, each correspond-
ing to a specific step, or even individual files for each step. This complicates the
computation of additional data characteristics, e.g. for a time step. Furthermore,
different scientific domains, such as climate simulations versus particle physics,

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

14 K. Duwe and M. Kuhn

introduce varied requirements for statistical analyses and grid structures.
Automatic detection of new statistics To automate the detection of statistics to
precompute the following approaches could be used: 1. Machine Learning Mod-
els: Implement algorithms to predict useful statistics based on past data access
patterns during analysis, enabling adaptive adjustments over time. 2. Metadata
Analysis: Leverage insights from metadata such as access frequency, data size,
and type to inform precomputation decisions. 3. Feedback Loops: Incorporate
direct user input to tailor precomputation strategies to actual user needs. Explor-
ing these approaches allows storage engines to dynamically adapt and optimize
performance to support diverse analytical requirements of HPC data.

7 Conclusion

We present a novel data management technique utilizing ADIOS2 to boost query
performance in HPC analysis applications by automating the precomputation of
frequently used data characteristics that were identified in a user survey. Our
Data Analysis Interface (DAI), integrated within the JULEA storage framework,
demonstrates performance improvements by a factor of up to 22,000 —while
supporting domain-specific features, thereby showcasing its adaptability and ef-
fectiveness across various scientific fields.

References

1. Brandt, S., Maltzahn, C., Polyzotis, N., Tan, W.C.: Fusing data management ser-
vices with file systems. In: Proceedings of the 4th Annual Workshop on Petascale
Data Storage. p. 42–46 (2009), https://doi.org/10.1145/1713072.1713085 5

2. Breitenfeld, M.S., Pourmal, E., Byna, S., Koziol, Q.: Achieving High Performance
I/O with HDF5. http://tinyurl.com/hdf5tutorial (Feb 2020), acc: 28.08.2022 1

3. Byna, S., Breitenfeld, M.S., Dong, B., Koziol, Q., Pourmal, E., Robinson, D.,
Soumagne, J., Tang, H., Vishwanath, V., Warren, R.: Exahdf5: Delivering efficient
parallel I/O on exascale computing systems. J. Comput. Sci. Technol. 35(1), 145–
160 (2020), https://doi.org/10.1007/s11390-020-9822-9 5

4. Duwe, K., Kuhn, M.: Dissecting self-describing data formats to enable ad-
vanced querying of file metadata. In: SYSTOR. pp. 12:1–12:7. ACM (2021).
https://doi.org/10.1145/3456727.3463778 4

5. Duwe, K., Lüttgau, J., Mania, G., Squar, J., Fuchs, A., Kuhn, M., Betke, E.,
Ludwig, T.: State of the Art and Future Trends in Data Reduction for High-
Performance Computing. Supercomput. Front. Innov. 7(1), 4–36 (2020) 1

6. Grawinkel, M., Nagel, L., Mäsker, M., Padua, F., Brinkmann, A., Sorth, L.: Anal-
ysis of the ECMWF storage landscape. In: FAST. pp. 15–27. USENIX Association
(2015) 5

7. Gray, J., Liu, D.T., Nieto-Santisteban, M.A., Szalay, A.S., DeWitt, D.J., Heber,
G.: Scientific data management in the coming decade. SIGMOD Rec. 34(4), 34–41
(2005) 2

8. Isakov, M., Rosario, E.D., Madireddy, S., Balaprakash, P., Carns, P.H., Ross, R.B.,
Kinsy, M.A.: HPC I/O throughput bottleneck analysis with explainable local mod-
els. In: SC. p. 33. IEEE/ACM (2020) 1

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://doi.org/10.1145/1713072.1713085
http://tinyurl.com/hdf5tutorial
https://doi.org/10.1007/s11390-020-9822-9
https://doi.org/10.1145/3456727.3463778
https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

DAI: How pre-computation speeds up data analysis 15

9. Korenblum, D., Rubin, D.L., Napel, S., Rodriguez, C., Beaulieu, C.F.: Managing
biomedical image metadata for search and retrieval of similar images. J. Digit.
Imaging 24(4), 739–748 (2011), https://doi.org/10.1007/s10278-010-9328-z 5

10. Kuhn, M., Duwe, K.: Coupling Storage Systems and Self-Describing Data For-
mats for Global Metadata Management. In: 2020 CSCI. pp. 1224–1230 (2020).
https://doi.org/10.1109/CSCI51800.2020.00229 4

11. Lawson, M., Gropp, W., Lofstead, J.F.: EMPRESS: accelerating scientific discovery
through descriptive metadata management. ACM Trans. Storage 18(4), 34:1–34:49
(2022) 4, 5

12. Lofstead, J.F., Jimenez, I., Maltzahn, C., Koziol, Q., Bent, J., Barton, E.: DAOS
and friends: a proposal for an exascale storage system. In: SC. pp. 585–596. IEEE
Computer Society (2016) 5

13. Lofstead, J.F., Zheng, F., Klasky, S., Schwan, K.: Adaptable, metadata rich IO
methods for portable high performance IO. In: 23rd IEEE IPDPS. pp. 1–10. IEEE
(2009) 1

14. Mu, J., Soumagne, J., Byna, S., Koziol, Q., Tang, H., Warren, R.: Interfacing HDF5
with a scalable object-centric storage system on hierarchical storage. Concurr.
Comput. Pract. Exp. 32(20) (2020) 6

15. Niazi, S., Ismail, M., Haridi, S., Dowling, J., Grohsschmiedt, S., Ronström, M.:
Hopsfs: Scaling hierarchical file system metadata using newsql databases. In: FAST.
pp. 89–104. USENIX Association (2017) 5

16. Purandare, D., Bittman, D., Miller, E.: Analysis and workload characterization of
the CERN EOS storage system. In: CHEOPS@EuroSys. pp. 1–7. ACM (2022) 3

17. Rew, R., Davis, G., Emmerson, S., Davies, H.: NetCDF User’s Guide - An In-
terface for Data Access Version 2.4. http://www-c4.ucsd.edu/netCDF/netcdf-
guide/guide toc.html (February 1996), last accessed: 15.07.2022 1

18. Schulzweida, U.: Cdo user guide (Oct 2022), https://doi.org/10.5281/zenodo.
7112925 4, 7

19. Settlemyer, B.W., Amvrosiadis, G., Carns, P.H., Ross, R.B., Mohror, K., Shalf,
J.M.: It’s time to talk about HPC storage: Perspectives on the past and future.
Comput. Sci. Eng. 23(6), 63–68 (2021) 3

20. Tang, H., Byna, S., Bailey, S., Lukic, Z., Liu, J., Koziol, Q., Dong, B.: Tuning
object-centric data management systems for large scale scientific applications. In:
HiPC. pp. 103–112. IEEE (2019) 6

21. Tang, H., Byna, S., Dong, B., Liu, J., Koziol, Q.: Someta: Scalable object-centric
metadata management for high performance computing. In: CLUSTER. pp. 359–
369. IEEE Computer Society (2017) 5

22. Tull, C.E., Essiari, A., Gunter, D., Li, X.S., Patton, S.J., Ramakrishnan, L.: The
SPOT Suite project. http://spot.nersc.gov/. (September 2013), acc: 2020-10-09 5

23. Uselton, A., Howison, M., Wright, N.J., Skinner, D., Keen, N., Shalf, J., Karavanic,
K.L., Oliker, L.: Parallel I/O performance: From events to ensembles. In: IPDPS.
pp. 1–11. IEEE (2010) 1

24. Wan, L., Huebl, A., Gu, J., Poeschel, F., Gainaru, A., Wang, R., Chen, J., Liang,
X., Ganyushin, D., Munson, T.S., Foster, I.T., Vay, J., Podhorszki, N., Wu, K.,
Klasky, S.: Improving I/O performance for exascale applications through online
data layout reorganization. IEEE Trans. Parallel Distributed Syst. 33(4), 878–890
(2022) 8, 13

25. Zhang, W., Byna, S., Tang, H., Williams, B., Chen, Y.: MIQS: metadata indexing
and querying service for self-describing file formats. In: SC. pp. 5:1–5:24. ACM
(2019) 5

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_8

https://doi.org/10.1007/s10278-010-9328-z
https://doi.org/10.1109/CSCI51800.2020.00229
http://www-c4.ucsd.edu/netCDF/netcdf-guide/guide_toc.html
http://www-c4.ucsd.edu/netCDF/netcdf-guide/guide_toc.html
https://doi.org/10.5281/zenodo.7112925
https://doi.org/10.5281/zenodo.7112925
http://spot.nersc.gov/.
https://dx.doi.org/10.1007/978-3-031-63751-3_8
https://dx.doi.org/10.1007/978-3-031-63751-3_8

