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Abstract. Recently proposed methods for reconstructing 3D objects
use a mesh with an atlas consisting of planar patches that approximate
the object’s surface. However, in real-world scenarios, the surfaces of re-
constructed objects exhibit discontinuities that degrade the mesh’s qual-
ity. Therefore, conducting additional research on methods to overcome
discontinuities and improve mesh quality is always advantageous. This
paper proposes to address the limitation by maintaining local consistency
around patch vertices. We present LoCondA, a Locally Conditioned At-
las that represents a 3D object hierarchically as a generative model. The
model initially maps the point cloud of an object onto a sphere and
subsequently enforces the mapping to be locally consistent on both the
sphere and the target object through the use of a spherical prior. Using
this method, the mesh can be sampled on the sphere and then projected
back onto the manifold of the object, yielding diverse topologies that can
be seamlessly connected. The experimental results demonstrate that this
approach produces structurally coherent reconstructions with meshes of
comparable quality to those of competitors.

Keywords: Mesh · Point cloud · Atlas · Hypernetwork.

1 Introduction

Efficient 3D object representations are crucial for various computer vision and
machine learning applications, from robotic manipulation [17] to autonomous
driving [32]. Modern 3D registration devices, such as LIDARs and depth cameras,
produce representations in the form of sparsely sampled, unordered sets of 3D
points on objects’ surfaces, which are known as point clouds [24,25]. While a
single point cloud may offer surface details for object reconstruction [12], it does
not provide enough information about the neighborhood structure of 3D points.
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2 P. Spurek et al.

Fig. 1. Our approach extends the current hypermodels [27,28] (Stage A) by adding a
mesh generation module (Stage B). First, we generate a seamless representation of the
object by training a hypernetwork H that produces weights for a target network T that
transforms a prior (usually uniform) distribution on the 2D unit sphere to the object
surface S. This results in the ability to reach any point of S as a value of T . Next,
we train another hypernetwork Hϕ designed to produce weights for a target network
Tϕ conditioned on a given point p = T (x) ∈ S, which maps the 2D unit square to the
patch on S, aligned with the neighborhood of p.

This lack of information makes it difficult to reconstruct a smooth, high-fidelity
manifold for the entire object’s surface.

Recently, researchers have proposed using polygonal meshes to model object
surfaces for improved accuracy [14,27,36]. A mesh is a collection of vertices con-
nected by edges to form triangles, which create the surface of an object. This
representation is efficient and easily rendered, while also providing additional
advantages such as the ability to sample the surface at a desired resolution and
apply texturing in any 3D computer graphics software. To obtain such a repre-
sentation, it is necessary to use advanced methodologies that utilize deep learning
models based on an autoencoder architecture [27,28,31], or utilize an ensemble of
parametric mappings from 2D rectangular patches to 3D primitives, commonly
known as an atlas [14,36]. Previous methods were limited by the topology of the
autoencoder’s latent space distribution, which made them unable to model intri-
cate structures with a non-spherical topology [27,28,31]. In contrast, atlas-based
approaches offer a greater flexibility and can model virtually any surface. How-
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ever, these methods often result in discontinuities in the reconstructed shapes
and their deformation due to the inconsistency of individual mappings.

Although [6,11] propose adjustments that improve the quality of the out-
come, their aim is to correct distortions resulting from the combination of differ-
ent mappings. It is postulated that the continuous nature of neural architectures
may be leveraged to prevent the formation of distortions by enforcing local con-
sistency among patch vertices within a model’s objective function. Therefore,
we present a new method called Locally Conditioned Atlas (LoCondA) that can
generate and reconstruct high-quality 3D meshes. This method enhances the
existing base hypermodels [27,28] by introducing a new module for mesh gener-
ation that relies on local surface parametrization, as shown in Fig. 1. It is based
on the concept of the continuous atlas, which provides a new approach that ex-
tends existing atlas methods and allows for adaptive sampling of any number
of patches to cover any part of the reconstructed object. Specifically, we trans-
form the point cloud embedding obtained from the base model to parameterize
the bijective function represented by the multilayer perceptron (MLP) network5.
This function aims to map a canonical 2D patch to the 3D patch on the surface
of the target object. The positioning and shape of a 3D patch are conditioned
using a single point from a point cloud generated by the base model. The process
is repeated for each generated point while maintaining the local neighborhoods
between the point cloud and the points located in the generated mesh. This
procedure allows us to include the patch’s stitching and reshaping in our frame-
work’s training objective, reducing the likelihood of shape discontinuities.

We summarize our contribution as follows:

– We propose a comprehensive framework for patch-based reconstruction meth-
ods that generate high-fidelity meshes from raw point clouds.

– We present the continuous atlas, a new paradigm that expands on existing
atlas methods and enables adaptive sampling of any number of patches to
cover any part of the reconstructed object.

– We introduce the Locally Conditioned Atlas (LoCondA), a new method for
conditioning atlas-based approaches that effectively shares information be-
tween patches and resolves issues related to self-intersections and holes in
reconstructed meshes.

2 Related work

The literature presents a wide range of 3D shape reconstruction models, such
as dense pixel-wise depth maps [4,5], normal maps [30], point clouds [12,25,36],
meshes [4,31], implicit functions [8,21], voxels [9,16], shape primitives [7,10],
parametric mappings [6,14], or combinations thereof [22,23]. All of the aforemen-
tioned representations have advantages and disadvantages depending on their
memory requirements and accuracy in fitting the surface.
5 This is a neural network in which every node is connected to each node of the

subsequent layer.
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Our paper focuses on one of the most popular representations, which is based
on polygonal meshes. A mesh is a set of vertices connected by edges that allows
for a piecewise planar approximation of a surface. The object’s mesh can be then
accessed by transforming it onto a unit sphere [27,28,31]. However, this method
is limited to reconstructing objects that are topologically similar to spheres.

Patch-based approaches, proposed by [6,11], offer a greater flexibility and
can model virtually any surface, even those with non-disk topology. To achieve
this, parametric mappings are used to transform 2D patches into 3D shapes, also
known as 2D manifolds. An example of this is FoldingNet [36], which utilizes a
single patch to model an object’s surface.

AtlasNet [14] is a method that simultaneously trains a number of functions,
which together form an atlas, to obtain multiple patches that model a mesh.
Each function transforms a unit square into a neighborhood of a point on the
surface. The atlas elements are trained independently, resulting in maps that are
not stitched together. This can cause discontinuities, such as holes or intersecting
patches (see, e.g., Fig. 3 in [14]).

To address the aforementioned problem, many methods extend the Chamfer
loss function of the basic AtlasNet by adding extra terms. In [6], the authors
included terms to prevent patch collapse, reduce patch overlap, and analytically
calculate the exact surface properties instead of approximating them. In [11],
two new terms were introduced to improve the overall consistency of the local
mappings. One of these terms uses surface normals to ensure local consistency
in estimation within and across individual mappings. The other term minimizes
stitching errors to enforce better spatial configuration of the mappings. Although
these modifications improve the quality of the obtained results, their objective
is to correct deformations after patch stitching. In this paper, we propose a
different approach to solve this problem by reformulating the classical definition
of an atlas to obtain maps that are correctly connected. Therefore, our method
aims to prevent the issue from occurring in the first place.

Given a data set X containing point clouds X1, . . . , Xn, an autoencoder
aims to transport the data through a latent space Z ⊂ RD while minimiz-
ing the reconstruction error. This is accomplished by identifying an encoder
E : X → Z and a decoder D : Z → X that minimize the reconstruction error
between each Xi and the reconstruction D(E(Xi)). In the generative frame-
work, we also ensure that the data sent to the latent space is drawn from a
predetermined prior distribution [18,19]. To effectively represent point clouds,
it is essential to define an appropriate reconstruction loss. In the literature,
two distance measures are commonly used: Earth Mover (Wasserstein) Distance
[26] and Chamfer Distance [29]. Earth Mover Distance (EMD) is a metric be-
tween two distributions based on the minimum cost to transform one distribution
into the other. Specifically, for two equally sized sets X,Y ⊂ R3, EMD is de-
fined as EMD(X,Y ) = minϕ:X→Y

∑
x∈X c(x, ϕ(x)), where ϕ is a bijection and

c(x, ϕ(x)) = 1
2∥x−ϕ(x)∥22. On the other hand, Chamfer Distance (CD) measures

the squared distance between each point in one set and the nearest neighbor in
the other set, i.e., CD(X,Y ) =

∑
x∈X min

y∈Y
∥x− y∥22 +

∑
x∈Y miny∈X ∥x− y∥22.
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Point clouds may contain a variable number of data points that correspond
to a single object and are registered at various angles. Therefore, methods that
process them must be permutation and rotation invariant. The PointNet [24]
framework enables the processing of 3D point clouds of varying sizes as input for
neural networks. However, the output size remains a challenge. Hypernetworks
[15] are a potential solution as they are neural models that generate weights
for a separate target network capable of solving a specific task. Instead of pro-
ducing a fixed-size 3D point cloud, a hypernetwork creates a target network to
parametrize the object’s surface and generate any desired number of points. The
parameters of the target network are not directly optimized; only the weights of
the hypernetwork are optimized during the training procedure.

3 Local parametrization of a surface

This section introduces the continuous atlas, a new approach for creating meshes
from patches. It also discusses the limitations of current methods based on dis-
crete atlas representations and presents our model as a solution to these limita-
tions.

A set S ⊂ R3 is defined as a 2-manifold6 (also called a surface) if for every
point p ∈ S there exists an open set U in R2 and an open set V in R3 containing
p such that S ∩ V is homeomorphic to U . A corresponding homeomorphism is
referred to as a chart. An atlas is a collection of charts that cover the 2-manifold.

By a discrete atlas of a 3D object surface S supported by a set of points
P = {p1, . . . , pk} ⊂ S we mean a collection of charts {ϕ1, . . . , ϕk}, such that each
ϕi maps the open square U = (0, 1)×(0, 1) onto a neighborhood V (pi) of a point
pi and the following condition is satisfied:

⋃k
i=1 ϕi(U) =

⋃k
i=1 V (pi) = S. In prac-

tice, the charts are represented by MLP networks ϕ1(·; θ1), . . . , ϕk(·; θk) trained
together to minimize the global reconstruction error L

(⋃k
i=1 ϕi(U ; θi), S

)
, where

L is either the Chamfer Distance or the Earth Mover Distance. Using such a for-
mulation, the charts are trained to induce the patches ϕ1(U ; θ1), . . . , ϕk(U ; θk),
which together create a mesh that approximates the target object surface S as
closely as possible. In theory, the method should produce a single seamless mesh.
In practice, however, the result obtained is not ideal and requires additional post-
processing to be used in real-world applications. This is because it works with a
given number of charts (each generating a single patch) and does not take into
account the stitching process itself, as no information is shared between patches.
If a patch does not correctly cover the underlying neighborhood of a point, no
other patch fixes that part, resulting in empty spaces on the object’s surface. To
mitigate the issues of the discrete atlas, we propose an approach that leverages
the local structure of 3D objects [3,34,35,37].

By a continuous atlas of a 3D object surface S we define a continuous mapping
ϕ : U × S → S which transforms the open square U = (0, 1)× (0, 1) and a point
p ∈ S onto a neighborhood V (p) ⊂ S of the point p. Note that, unlike a discrete
6 We adhere to the concept presented in [14] (see also [6,11]).
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atlas, instead of using a finite set of charts, we use only a transformation ϕ
that locally models the surface of the object, leading to a potentially infinite
number of charts ϕ(·, p). In contrast to a traditional conditioning mechanism in
the AtlasNet, p is not a global descriptor but a direct point of S. In consequence,
we can produce an arbitrary number of patches ϕ(U, p), which may be located
in any place on the object’s surface.

The proposed approach overcomes the limitations of previous discrete meth-
ods. Specifically, we theoretically solve the problem of stitching partial meshes
since every chart is informed about the local neighborhood. Moreover, using a
continuous atlas approach we can easily fill the missing spaces in the final mesh
by adding a new mapping for the region of interest. Since we can create an
arbitrary number of patches, we can locate a point in the empty space neighbor-
hood and create an additional patch using ϕ function conditioned on the selected
point.

Fig. 2. Sample airplane patches created using our method, with structurally similar
parts placed next to each other to create smooth surfaces.

Fig. 3. Sample mesh representations generated by our method. Note that our model
is capable of reconstructing complex shapes such as chair legs and backs.

We present in Fig. 2 that the resulting model can stitch patches on a sample
airplane object. Note that the obtained surface is smooth due to the continuity of
a continuous atlas. Additionally, Fig. 3 displays complete sample mesh represen-
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Fig. 4. Mesh representations with a different number of patches that were created by
our method. Note that we need at least 200 patches to get high-quality reconstructions.

tations produced by our method. In contrast, Fig. 4 shows mesh representations
generated using varying numbers of patches.

4 Local approximation of a surface

This section introduces the Locally Conditioned Atlas (LoCondA), a two-stage
framework for generating and reconstructing meshes of object surfaces using the
point cloud representation and the introduced notion of the continuous atlas
(see Fig. 1). Both stages utilize a hypernetwork paradigm, which has an advan-
tage over autoencoder architectures in processing inputs of varying sizes. In our
approach, each point cloud is parametrized individually, unlike traditional ap-
proaches where conditioning parameters are shared among different point clouds.
This can be beneficial for retrieval purposes.

Stage A: Generative autoencoder using hypernetworks As we operate directly on
points located on the surfaces of 3D objects, we utilize two state-of-the-art gen-
erative autoencoder models based on hypernetworks, namely HyperCloud [27]
and HyperFlow [28], instead of the traditional generative autoencoder archi-
tecture. These solutions use hypernetworks to generate weights of small neural
networks that map a known prior distribution of points onto 3D objects. Thus,
after training, we can implicitly sample any point p ∈ S without accessing the
actual target object surface S.

In our framework, we use a hypernetwork H(·;WH) which, for a given point
cloud X ⊂ S, returns the weights of the corresponding target network T (·;WT ).
Thus X is represented by the function T (·;WT ) = T (·;H(X;WH)). As T we use
a classical MLP in the case of the HyperCloud implementation, and a Continuous
Normalizing Flow (CNF) [13] in the case of the HyperFlow implementation. The
hypernetwork H is pre-trained beforehand7 using the following procedure: we
take an input point cloud X and pass it to H to obtain the weights WT of the
target network T , which reconstructs X from a uniform noise XS2 ⊂ R3 on
the 2D unit sphere S2, and then we minimize the reconstruction loss, expressed
either by the Chamfer Distance or the Earth Mover Distance (as far as the

7 So it does not contribute to the total training time.
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HyperCloud architecture is considered), or by the negative log-likelihood (as far
as the HyperFlow architecture is considered).

Stage B: Locally Conditioned Atlas (LoCondA) Our LoCondA model implements
the introduced approach of continuous atlas. Specifically, we represent the un-
derlying mapping ϕ with a neural architecture consisting of the following parts:
(1) a (small) target network Tϕ(·;WTϕ

) that transforms a sample XU from the
uniform distribution on the square U = (0, 1) × (0, 1) and a point p from the
(reconstructed) point cloud X ⊂ S into the object surface S, (2) a hypernet-
work Hϕ(·;WHϕ

) that generates weights WTϕ
conditioned on a given point p to

ensure that the image of Tϕ forms its neighborhood V (p) ⊂ X. Note that due
to a conditioning mechanism, we do not need to model each of the charts ϕ(·, p)
separately, which significantly reduces the number of parameters.

Training the LoCondA model can be done by minimizing the following loss
function: L

(
Tϕ(XU , p;Hϕ(X, p;WHϕ

)), V (p)
)
, where L is either the Chamfer

Distance or the Earth Mover Distance, p = T (x;WT ) is a random point from
the reconstructed point cloud X (see Stage A), and V (p) is taken as the set of
k elements closest to p in X (here k is treated as a hyperparameter). This leads
to the point cloud (the image of Tϕ) that reconstructs V (p), which can be easily
transformed into a mesh by connecting the points with edges, as in a natural
mesh built on XU . The problem however is that such a formulation causes many
of the generated patches to have unnecessarily long edges, and the network folds
them so that the patch fits the surface of an object. To mitigate this problem,
we add an edge length regularization motivated by [31]. Specifically, we include
a regularization term of the form: lloc =

∑
e ||e||22, where ∥e∥22 is the squared

norm of the length of an edge e. So we get the total loss L+ λlloc, where λ is a
hyperparameter of the model.

5 Experiments

This section presents the experimental results of the proposed method. Firstly,
we evaluate the model’s generative capabilities. Secondly, we provide the recon-
struction results in comparison to reference approaches. Finally, we compare the
quality of the generated meshes to baseline methods. The models were trained
using the Chamfer Distance as L and λ was set to 0.0001. LoCondA-HC and
LoCondA-HF are acronyms used to refer to different autoencoder architectures
(see Stage A). LoCondA-HC uses HyperCloud, while LoCondA-HF uses Hyper-
Flow. A grid search was employed to optimize the hyperparameters of all models.
The source code is available at https://github.com/gmum/LoCondA.

It is important to note that our method has a significant advantage in its
ability to generate an unlimited number of patches. To estimate the minimum
number of patches required, divide the number of points in a point cloud rep-
resentation of the entire object by the number of points in one patch used in
training (i.e., hyperparameter k). From a practical standpoint, there is a trade-
off between reconstruction quality and time performance. If we prioritize quality,
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we should produce as many patches as possible. However, if we prioritize time,
we should decrease the number of patches. In our experiments, we used 400
patches per object.

Generative capabilities In this experiment, the generative capabilities8 of the
LoCondA model are compared to existing reference approaches. The evaluation
protocol provided in [33] is followed, and standard measures such as the Jensen-
Shannon Divergence (JSD), the Coverage (COV), and the Minimum Match-
ing Distance (MMD) are used. The last two measures are calculated separately
for the Chamfer Distance (CD) and the Earth Mover Distance (EMD). The
study compares the results of various existing solutions for point cloud gener-
ation, including l-GAN [1], PC-GAN [20], PointFlow [33], HyperCloud(P) [27]
and HyperFlow(P) [28]. Additionally, two baselines, HyperCloud(M) and Hy-
perFlow(M), capable of generating meshes from the unit sphere, are considered
in the experiment. Each model is trained using point clouds from one out of the
three categories in the ShapeNet dataset: airplane, chair, and car.

Table 1. (Generative capabilities) Metric scores for different generative models
performed on the ShapeNet dataset according to the evaluation protocol described in
[33]. To simplify the notation, MMD-CD (lower is better) scores are multiplied by 103,
MMD-EMD (lower is better) and JSD (lower is better) scores are multiplied by 102,
and COV (greater is better) scores are expressed on a percentage scale. HC refers to
the use of the HyperCloud autoencoder in LoCondA (our), and HF refers to the use of
the HyperFlow autoencoder. For the HyperCloud and HyperFlow models, we use both
variants that generate point clouds (P) or meshes (M). The most successful outcomes
are indicated in bold.

Method

Airplane Chair Car

JSD
MMD COV

JSD
MMD COV

JSD
MMD COV

CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

Point cloud generation

l-GAN 3.61 0.26 3.29 47.90 50.62 2.27 2.61 7.85 40.79 41.69 2.21 1.48 5.43 39.20 39.77
PC-GAN 4.63 0.28 3.57 36.46 40.94 3.90 2.75 8.20 36.50 38.98 5.85 1.12 5.83 23.56 30.29
PointFlow 4.92 0.21 3.24 46.91 48.40 1.74 2.42 7.87 46.8346.980.870.91 5.22 44.03 46.59

HyperCloud(P) 4.84 0.26 3.28 39.75 43.70 2.73 2.56 7.84 41.54 46.67 3.09 1.07 5.38 40.05 40.05
HyperFlow(P) 5.39 0.22 3.16 46.66 51.601.50 2.30 8.01 44.71 46.37 1.07 1.14 5.30 45.74 47.44

Mesh generation

HyperCloud(M) 9.51 0.45 5.29 30.60 28.88 4.32 2.81 9.32 40.33 40.63 5.20 1.11 6.54 37.21 28.40
HyperFlow(M) 6.55 0.38 3.65 40.49 48.64 4.26 3.33 8.27 41.99 45.32 5.77 1.39 5.91 28.40 37.21
LoCondA-HC 16.1 0.66 4.71 30.37 32.59 4.45 3.03 8.55 42.45 38.22 1.91 1.13 5.50 53.6950.56
LoCondA-HF 4.80 0.22 3.20 44.69 47.91 2.54 2.23 7.94 43.35 42.60 1.16 0.92 5.21 44.88 47.72

Tab. 1 presents the results. LoCondA-HF achieves results comparable to
those of the reference methods dedicated to point cloud generation. The evalu-
8 These refer to the ability of the model to produce fake samples that are indistin-

guishable from real data.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_7

https://dx.doi.org/10.1007/978-3-031-63751-3_7
https://dx.doi.org/10.1007/978-3-031-63751-3_7


10 P. Spurek et al.

ated measures for HyperFlow(P) and LoCondA-HF (which uses HyperFlow(P)
as a base model in Stage A) are on the same level. Incorporating an additional
module dedicated to mesh generation (Stage B) does not have a negative im-
pact on our model’s generative capabilities. However, when we use HyperFlow
to directly generate meshes according to the procedure described in [28] (see the
results for HyperFlow(M)), the generative capabilities are significantly inferior
for the evaluated metrics.

Reconstruction capabilities The goal of this experiment is to evaluate the ability
of our model to encode different shapes, measured by comparing the original
objects with their reconstructions. The autoencoding task was conducted on 3D
point clouds from three categories in the ShapeNet dataset, namely airplane,
chair, and car. We compare LoCondA with AtlasNet [14] (the current state-of-
the-art), where the prior shape is either a sphere or a set of patches. Additionally,
we compare it with l-GAN [2] and PointFlow [33]. The experimental setup of
PointFlow was followed.

Table 2. (Reconstruction capabilities) Metric scores for shape reconstruction by
different models obtained on the ShapeNet dataset according to the evaluation protocol
described in [14]. To simplify the notation, the scores are multiplied by 10, CD (lower
is better) is multiplied by 104, and EMD (lower is better) is multiplied by 102. In
LoCondA (our), HC refers to the use of the HyperCloud autoencoder, while HF refers
to the use of the HyperFlow autoencoder. The most successful outcomes are indicated
in bold.

Dataset Metric
l-GAN AtlasNet

Po
in
tF

low
Lo

Co
nd

A-
HC

Lo
Co

nd
A-

HF
Ora

cle

CD EMD Sphere Patches

Airplane CD 1.020 1.196 1.002 0.969 1.208 1.135 1.513 0.837
EMD 4.089 2.577 2.672 2.612 2.757 2.881 2.990 2.062

Chair CD 9.279 11.21 6.564 6.693 10.120 10.382 12.519 3.201
EMD 8.235 6.053 5.790 5.509 6.434 6.738 6.973 3.297

Car CD 5.802 6.486 5.392 5.441 6.531 6.575 7.247 3.904
EMD 5.790 4.780 4.587 4.570 5.138 5.126 5.275 3.251

ShapeNet CD 7.120 8.850 5.301 5.121 7.551 7.781 - 3.031
EMD 7.950 5.260 5.553 5.493 5.176 5.826 - 3.103

The results are presented in Tab. 2, including the performance in both the
Chamfer Distance (CD) and the Earth Mover Distance (EMD). It is worth not-
ing that these two metrics depend on the point clouds’ scale. The ‘oracle’ col-
umn shows the upper bound, which is the error between two different point
clouds with the same number of points sampled from the same ground truth
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meshes. The results show that LoCondA-HC achieves competitive results com-
pared to reference solutions. All competitors were trained using an autoencoding
framework. However, LoCondA-HC and LoCondA-HF were also able to preserve
generative capabilities during the experiment.

LoCondA-HC

AtlasNet

Fig. 5. AtlasNet and LoCondA-HC (our) comparison for reconstruction task. Note that
both meshes have similar quality, but our method provides a more accurate description
of objects that have holes, such as empty spaces in the back of chairs.

Fig. 5 presents a comparison between AtlasNet and LoCondA-HC on the
reconstruction task. The quality of the meshes is similar, but our method better
describes objects that contain holes, such as empty spaces in the back of chairs.
On the other hand, reconstruction results obtained by decoding the linearly
interpolated latent vectors of two objects from each class are shown in Fig. 6.
Note that LoCondA-HC generates coherent and semantically plausible objects
for all interpolation steps. However, during the middle stage of the interpolation,
we encountered patches that were not properly stitched together.

Mesh quality evaluation Empirical evidence demonstrates that the proposed
framework generates high-quality and seamless meshes, solving the initial prob-
lem of disjoint patches occurring in the AtlasNet model. To evaluate the conti-
nuity of the output surfaces, we recommend using the measure described below.
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Fig. 6. Mesh interpolations generated by LoCondA-HC (our). Note that for all in-
terpolation steps, our method produces coherent and semantically plausible objects.
However, in the middle stage of the interpolation, we ran into patches that were not
stitched together in the correct way.

A mesh is typically described either as watertight or not watertight, without
a clear measure to define the degree of discontinuities in the object’s surface. To
address this issue, we propose the parity test, which provides an approximate
check of whether a mesh is watertight. According to the test, for a ray cast from
infinity towards the object, it must enter and leave the object. This is determined
by checking the number of crossings the ray makes with all triangles in the mesh,
which should be an even number for the ray to pass the parity test. The mesh
is considered watertight if all rays pass the parity test.

To apply this knowledge, we express the measure of watertightness as the
ratio of rays that passed the parity test to the total number of casted rays.
We begin by sampling N points p ∈ Ŝ from all triangles of the reconstructed
object Ŝ. Since each point is associated with the triangle it was sampled from,
we use the corresponding normal n̂ and negate it to obtain the direction of a
ray R(Ŝ) ∋ r = −n̂p towards the object9. The calculation of the number of
crossings c(r) with all triangles is performed. A value of 1 is assigned to each ray
that passes a test, and 0 is assigned otherwise. The measure of watertightness
is determined by summing the test results for all rays and dividing by the total
number of rays: WT(Ŝ) =

∑
r∈R(Ŝ) I{c(r) mod 2=0}

|R(Ŝ)| , where I denotes a characteristic
function.

Experiments were conducted to compare AtlasNet with LoCondA-HC and
LoCondA-HF in terms of the watertightness of generated meshes. The results
are presented in Tab. 3. Note that AtlasNet is unable to generate watertight
meshes for any of the considered classes (airplane, chair, and car), which limits its
applicability. On the other hand, LoCondA creates meshes in which all sampled
rays pass the test.

9 It is important to note that if a random direction of sampling were employed, con-
fusion would arise due to the possible presence of tangent rays.
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Table 3. Comparison of the LoCondA (our) and AtlasNet approaches in terms of
watertightness (greater is better). Note that all meshes produced by our method are
watertight.

Method Airplane Chair Car Average

AtlasNet (25 patches) 0.516 0.507 0.499 0.507
LoCondA-HC 1.00 1.00 1.00 1.00
LoCondA-HF 1.00 1.00 1.00 1.00

6 Conclusions

This paper introduces the Locally Conditioned Atlas (LoCondA), a new method
for generating high-quality 3D meshes composed of 2D patches directly from raw
point clouds. The proposed approach is based on the continuous atlas paradigm,
which allows our model to produce an arbitrary number of patches to form a
watertight mesh.

The framework presented here addresses the limitations of previous meth-
ods by resolving the challenge of stitching partial meshes. This is achieved by
ensuring that each chart is aware of the local neighborhood. Furthermore, our
approach can effectively fill in any missing regions in the final mesh by creating
a new mapping for the relevant area. The empirical evaluation of LoCondA in
several extensive experiments confirms its validity and competitive performance.

The main limitation of the proposed method is the use of a two-stage training
procedure. In future work, we plan to extend this approach to an end-to-end
training algorithm. Furthermore, we consider the possibility of working with
colored meshes.
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