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Abstract. Subatomic particle track reconstruction (tracking) is a vi-
tal task in High-Energy Physics experiments. Tracking is exceptionally
computationally challenging and fielded solutions, relying on traditional
algorithms, do not scale linearly. Machine Learning (ML) assisted so-
lutions are a promising answer. We argue that a complexity-reduced
problem description and the data representing it, will facilitate the so-
lution exploration workflow. We provide the REDuced VIrtual Detector
(REDVID) as a complexity-reduced detector model and particle collision
event simulator combo. REDVID is intended as a simulation-in-the-loop,
to both generate synthetic data efficiently and to simplify the challenge
of ML model design. The fully parametric nature of our tool, with re-
gards to system-level configuration, while in contrast to physics-accurate
simulations, allows for the generation of simplified data for research and
education, at different levels. Resulting from the reduced complexity, we
showcase the computational efficiency of REDVID by providing the com-
putational cost figures for a multitude of simulation benchmarks. As a
simulation and a generative tool for ML-assisted solution design, RED-
VID is highly flexible, reusable and open-source. Reference data sets
generated with REDVID are publicly available. Data generated using
REDVID has enabled rapid development of multiple novel ML model
designs, which is currently ongoing.

Keywords: Reduced-order modelling, Simulation, High-energy physics,
Synthetic data

1 Introduction

In many computational sciences, the adoption of ML-assisted solutions can lead
to serious gains in computational efficiency and data processing capacity, result-
ing from algorithmic advantages intrinsic to ML. Computational efficiency can
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also be achieved by paving the way for the utilisation of dedicated hardware,
i.e., GPUs, FPGAs and purpose-built accelerators. ML algorithms are highly
compatible with the use of such specialised hardware. In this work, we explore
the use of ML-assisted techniques in high-energy physics.

ML-assisted solution design is an explorative and data-demanding endeavour.
One of the effective approaches to achieve a suitable design is Design-Space
Exploration (DSE). Complex problems involve many parameters, contributing
to a space with many dimensions, which in turn deems the exploration expensive.
There is often a need for simplification of the problem domain, i.e., search-space
reduction, to facilitate the initial steps within this explorative process.

Generative elements are often needed as part of the explorative process, to
enable synthetic data generation in large quantities, at will. Furthermore, de-
signing and training models with better rigour requires total control over all
aspects of data generation. Providing sufficient control and on demand ability to
synthesise data that is representative of corner cases contributes to achieving ef-
fective models. Such corner cases seldom/disproportionally appear in real-world
data or highly accurate, i.e., physics-accurate, simulation data.

Use-case Our focus is a major use-case from the field of High-Energy Physics
(HEP), the critical task of subatomic particle track reconstruction (tracking),
present in data processing for experiments performed at the Large Hadron Col-
lider (LHC). Detectors such as ATLAS, record interaction data of subatomic
particles with detector sensors, allowing physicists to reconstruct particle tra-
jectories through tracking algorithms and to gain knowledge on how subatomic
particles behave. Current solutions rely largely on traditional, computationally
expensive statistical algorithms, with Kalman filtering as their most demanding
block. Even with constant efforts channelled into better parallelisation schemes
for these algorithms, the data consumption capability is rather limited. The chal-
lenge will be even greater with the upcoming High-Luminosity LHC upgrade [3],
given its increased data volume generation and experiment frequency.

Although physics-accurate simulators, such as Geant4 [1], are readily avail-
able, applying such levels of accuracy to generative elements comes at a hefty
computational cost. Accordingly, these simulators are not suitable for frequent
timely executions and constant data generation, as required for DSE iterations.
As such, we propose an exploration methodology that can be much faster,
through the informed simplification of the design-space for the ML-assisted so-
lution. Our methodology is specifically being considered for the tracking use-
case. To this end, we have designed and implemented the REDuced VIrtual
Detector (REDVID), to both simplify the problem at hand and act as an ef-
ficient tool for frequent simulations and synthetic data generation. While our
tool is not a fully physics-accurate one, it does respect the high-level relations
present in subatomic particle collision events and detector interactions. RED-
VID is fully (re)configurable, allowing definition of experiments through varying
detector models, while preserving the cascading effects of every change.

Considering possible complexity reduction strategies, the spectrum varies
from physics-accurate data manipulations, e.g., dimensionality/granularity re-
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duction, to omitting the scenario interactions beforehand. A strategy solely based
on data reduction will fail to preserve the behavioural integrity of the system,
as it will fail to propagate cascading effects resulting from reductions. Even sim-
plified examples such as the TrackML data [2] are too complex.

Contribution REDVID, as an experiment-independent, fully (re)configurable,
and complexity-reduced simulation framework for HEP [20], is provided. Simu-
lations consist of complexity-reduced detector models, alongside a particle colli-
sion event simulator with reduced behavioural-space. REDVID is intended as a
simulation-in-the-loop for ML model design workflows, providing:

– ML model design - Problem simplification facilitates ML solution design,
as opposed to real-world use-case definitions, which are often too complex
to negotiate directly.

– Parametric flexibility - The model generator is capable of spawning detec-
tors based on reconfigurable geometries.

– Computational efficiency - Behavioural-space reductions directly improve
event simulation and processing times.

Our other contributions include:

– Supporting pedagogical tasks in higher education by presenting complex
interactions from HEP experiments through understandable data.

– Publishing open reference data sets, which are of independent interest for
physicists and data scientists alike [21, 18].

Outline Section 2 provides the background on HEP experiments and similar
simulators. In Section 3, we provide the design details considered for REDVID.
Notable implementation techniques are elaborated in Section 4. Data set related
results are given in Section 5, followed by Sections 6 and 7, covering the relevant
literature and our conclusions, respectively.

2 Background and motivation

In this section we elaborate the premise of HEP experiments, as well as the role
of simulation in these, to get familiar with the context of our use-case.

2.1 HEP experiments

When talking about HEP experiments, we refer to high-energy particle collision
events. Two types of collision experiments are performed at LHC: proton-proton
and ion-ion collisions. Protons are extracted from hydrogen atoms, while ions
are actually heavy lead ions. Beams of particles are sent down the beam pipe in
opposing directions and made to collide at four specific spots. These four spots
are the residing points of the four major detectors installed at LHC, namely,
ALICE [9], ATLAS [10], CMS [11] and LHCb [12].
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Take the ATLAS detector for instance. The role played by ATLAS in the
study of fundamental particles and their interactions, rely on two main tasks,
tracking and calorimetry. Through tracking, i.e., particle track reconstruction,
the momentum, p, of a particle can be calculated, while the energy, E, is cal-
culated through calorimetry. Having the momentum and the energy for a given
particle, its mass, m, can be determined, following the energy-momentum rela-
tion expressed as,

E2 = (mc2)2 + (pc)2.

In the above equation, c represents the speed of light and is a constant. The
mass measurement allows the study of the properties for known particles, as well
as potentially discovering new unknown ones. As such, it is fair to state that
particle track reconstruction is one of the major tasks in high-energy physics.

2.2 Role of simulation in HEP

Simulation allows for, amongst others, the validation and training of particle
track reconstruction algorithms. Two distinguished stages are considered for
HEP event simulations, i.e., physics event generation and detector response simu-
lation [15]. Event generation as the first stage, involves the simulation of particle
collision events, encompassing the processes involved in the initial proton-proton
or ion-ion interactions. Event generation is governed by intricate sets of physical
rules and is performed by software packages such as Herwig [13] and Pythia [23],
i.e., physics-accurate simulations.

Detector response simulation, the second stage, integrates the movement of
the particles generated by the first stage through a detector geometry, sim-
ulating the decay of unstable particles, the interactions between particles and
matter, electromagnetic effects, and further physical processes such as hadronisa-
tion. Common event simulators providing such functionality include Geant4 [1],
FLUKA [5] and MCNP [16]. In accelerator physics applications, event simulators
are used to simulate the interactions between particles and sensitive surfaces in
an experiment, as well as with so-called passive material, such as support beams.
Interactions with sensitive surfaces may undergo an additional digitisation step,
simulating the digital signals that can be read out of the experiment. Considering
the example of ATLAS, three data generating simulators are notable, namely,
Geant4, FATRAS [15] and ATLFAST [22].

Following the Monte Carlo simulation approach, FATRAS has been designed
to be a fast simulator. It is capable of trajectory building based on a simplified
reconstruction geometry and does provide support for material effects, as well
as particle decay. FATRAS also generates hit data.

ATLFAST follows a different approach towards trajectory simulation and
doesn’t generate hit data, making it unsuitable for tracking studies. ATLFAST
relies on hard-coded smearing functions based on statistics from full simulations.
These functions are dependent on particle types, momentum ranges and vertex
radii. Such details are specific to the design elements of the virtual detector
geometry. A change in the design will require finding new functions.
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Reduced Simulations for High-Energy Physics 5

REDVID fills the gap for a reconfigurable framework, suitable for first-phase
solution exploration and design. This is due to the deliberate reduction in com-
plexity, for both the generated data and the problem description, while keeping
the high-level causal relations in place. REDVID is end-to-end parametric, i.e.,
all the generated data is built upon the detector geometry and randomised par-
ticle trajectories, both reconfigurable. REDVID has been developed in Python,
making its integration with Python-based ML design workflows seamless. Fig-
ure 1 positions REDVID versus other well-known tools, as we consider it.
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Fig. 1: Different simulators are capable of providing different levels of complexity,
depicted as grey areas. ATLFAST is not included for lack of hit data generation.

3 Simulation application and design

The underlying question here is what is a good strategy for designing and train-
ing a capable and rigorous ML model to predict the behaviour of a (complex)
real system? For our HEP use-case, the system is already complex; and when
considering the upcoming High-Luminosity LHC upgrade [3], this complexity
will increase even further. As such, when looking for an ML-assisted solution for
tracking, we need to efficiently explore a large set of options.

Addressing complex real-world tasks directly will require synthesising close
to real-world data, which can be performed by high-accuracy simulations. High-
accuracy simulations in general, and physics-accurate simulations in particular,
are extremely expensive computational tasks. Having such tools as part of an
exploration workflow, e.g., ML model design, triggering frequent executions of
the simulation with altered configuration, will inevitably turn into a serious chal-
lenge. Even if there are accommodating hardware resources available, algorithmic
limitations will turn software tools into workflow bottlenecks. Yet another no-
table drawback is the high cost of energy when running frequent computationally
expensive tasks. To alleviate this massive challenge, it is highly beneficial, and
perhaps necessary, to not only design reduced models and simulators6, but to
provide parametric (re)configurability to support automated exploration.
6 A model and a simulator go hand in hand to form a simulation.
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However, the initial testing of new ML-assisted solutions, i.e., ML model
designs, does not require the ground truth, which physics-accurate simulations
are designed to produce. Instead, we argue that a cost-effective and reduced
simulation, preserving the behavioural relations of the complex system (proton-
proton/ion-ion collision event experiments), can be better and more effectively
integrated in ML model design workflows, as shown in Figure 2.

Detector model Event simulator

Simulation 
configuration

Simulation NAS framework
(manual/automated)

TestTrainDesign

Data 
set

Steering for data requests,
e.g., corner case data

Design exploration loop

Fig. 2: Reduced simulations in ML model design workflows, e.g., a Neural Archi-
tecture Search (NAS), with this paper’s focus on the area with the yellow fill.

3.1 Reduction approach

Having a validly approximate representation is achieved through the reduction of
the behavioural-space to a minimal subset, best encapsulating the complex sys-
tem. Both model complexity and simulator complexity can be targets of such
a reduction. The first and foremost effect of an approximate simulation is bet-
ter computational efficiency. Note that there can be many such approximations,
depending on the intended balance between computational efficiency and be-
havioural approximation level. The other advantage, especially when it comes to
ML model design processes, is facilitation of an effective model design by pro-
viding a middle ground that has a lower complexity and can be used for better
understanding of the challenge and testing of the early designs.

Both actual experiments and physics-accurate simulations for our use-case,
i.e., proton-proton/ion-ion collision events inside a detector such as ATLAS,
are immensely complex. Removing (some of) the physics-accurate constraints
results in major behavioural-space reductions. This applies to both the detec-
tor model and the behaviour affecting the event simulator. While moving away
from physics-accuracy, our aim has been to conserve logical, mathematical and
geometrical relations, which would provide the basis for a flexible parameteri-
sation. Preserving relations between interacting elements of a system preserves
occurrence of cascading effects when the system is being steered through re-
configuration. For instance, a change in the structural definition of the detector
model will affect the recorded hit points during the event simulation. It must
be noted that we have intentionally avoided the time dimension complexities.
Accordingly, a list of major reductions that we have considered follows.

– Simplified detector geometry: Compared to the real detector, we have con-
sidered much simpler elements for the geometry of our virtual detector
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model, consisting of elements with disk or cylinder shapes, ultimately ar-
riving at a Reduced-Order Model (ROM).

– Particle types: Currently, we do not consider explicit particle types in our
event simulator. The track type variation however, could be seen as a con-
sequence of differing particle types.

– Simplified tracks: Currently, we consider particles traversing a linear (straight),
helical uniform, or helical expanding paths. Helical tracks could be seen as
the effect of a magnetic field on charged particles.

– Collision points: The real experiments involve multiple collisions happening
almost at the same time. We consider a single event at the origin for linear
tracks and a non-aligning one for helical tracks, i.e., origin smearing.

– Hit coordinates smearing: We introduce noise in our hit calculations and
hit coordinate parameters by drawing random samples from a Gaussian
distribution. We also consider the noise standard deviation as proportional
to the variable range. The noise ratio can be adjusted by the user.

3.2 Detector model

At its core, a detector model is comprised of the geometric definitions of the
included elements, shapes, sizes, and placements in space. Although we can sup-
port a variety of detector geometries, the overall structure, especially for our
experimental results, is based on the ATLAS detector. Accordingly, there are
four sub-detector types, Pixel, Short-strip, Long-strip and Barrel. The pixel and
the barrel types have cylindrical shapes with the pixel being a filled cylinder,
while the barrel being a cylinder shell with open caps. These are not hard re-
quirements, as the geometry is fully parametric, and differing definitions can
be opted for, e.g., a pixel as a cylinder shell. The long-strip and the short-strip
types are primarily intended as flat disks, but can be defined as having a thick-
ness, rendering them as cylinders. Sub-detector types can be selectively present
or absent. Figure 3 depicts a representative variation of the detector geometry
involving the aforementioned elements.

Structurally speaking, in a real-world detector, like ATLAS, the internals of
short-strip and long-strip sub-detector types are different. We on the other hand,
reduce such complexities to placement location and size, i.e., distance from the
origin and sub-detector disk radius. Note that our geometric model does support
disk thickness, which basically would turn disks into shallow cylinders. However,
we have considered flat disks for our experiments.

3.3 Particle collision event simulation

One of the simplifications for our complexity reduction approach is to consider a
single collision per event. However, the list of complexities, even without the pol-
luting effects of multiple collisions, is extensive. Particles travelling through the
detector matter could lead to secondary collisions, resulting in drastic changes
in their trajectory. Such secondary collisions could also lead to the release of
particles not originating from the collision event itself. These will show up as
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X-axis

Y-axis Barrel
sub-detector

Short-strip
sub-detector

Long-strip
sub-detector

Pixel
sub-detector

Z-axis

Fig. 3: Parametric detector geometry, allowing for inclusion/exclusion of different
sub-detector types, with full control over sub-layer counts, sizes and placements.

tracks with unusual starting points within the detector space. Some particles
could also come to a halt, which would be seen as abruptly terminating tracks.

Such physics-accurate behaviour of particles interacting with the present
matter in detectors is not considered for our simulator. It must be noted that
the generation of tracks originating far away from the origin and prematurely
terminating tracks, can be emulated in our simulator in a randomised fashion.

4 Implementation

Though both two-dimensional (2D) and three-dimensional (3D) spaces are sup-
ported, we will focus on the implementation details relevant to the 3D case.
REDVID is open source [19] and has been developed in Python.

4.1 Modules

Considering the tasks at hand, detector spawning and event simulation, our
software can be divided into three main logical modules: Detector generator,
Event simulator and Reporting, depicted in Figure 4. The current implementa-
tion considers the sequential execution of modules in the order given. However,
one can easily generate detectors without simulating events, or simulate events
with previously generated detectors, or even calculate hits based on previously
generated tracks. Such input/output capability will allow our software to in-
teract with other commonly utilised tools. The main configuration parameter
defining the execution path is the detector_type, which can be 2D or 3D.

4.2 Coordinate systems

We have opted for the cylindrical coordinate system to represent sub-detectors,
tracks and hits. This is convenient, as we are considering the Z-axis as the beam
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Geometry 
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Probabilistic 
sensing and 

smearing

Track 
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protocol

Fig. 4: REDVID modules, including a detector model generator, an event simula-
tor, generating randomised tracks and calculating sub-detector hit points based
on tracks and geometric data, as well as different reporting elements.

pipe in LHC experiments and all geometric shapes defined within a detector,
whether disks or cylinders, are actually of the type cylinder. The three param-
eters to define any point in the cylindrical coordinate system are the radial dis-
tance from the Z-axis, the azimuthal angle between the X-axis and the radius,
and the height of the point from the XY-plane, i.e., r, θ and z, respectively.

In this coordinate system, hit points can be precisely defined given the tuple
(rhit, θhit, zhit). Geometric shapes can also be defined with boundaries for rsd
and zsd, e.g., a disk will have fixed zsd, unbounded θ and bounded rsd. Here sd
stands for sub-detector. Our software does support partial disks, i.e., a disk with
a hole in the middle, which can be considered when the beam pipe is expected
to be part of the geometry. Disks with thickness (cylinders) will have a small
boundary for the parameter zsd. As previously explained, short-strip and long-
strip sub-detector types are defined as disks. For the pixel type, as it is a filled
cylinder, both rsd and zsd will be bounded. When it comes to the barrel type,
as it is a cylinder shell, there will be a fixed rsd with bounded zsd.

To implement linear tracks and to define them in the cylindrical coordinate
system, both a direction vector and a point, P0, that the track (line) goes through
are needed. The direction vector, Vd, is considered as a vector from the origin,
landing on a point in space, represented with a tuple (rd, θd, zd). The direction
vector is randomised and then normalised for the z parameter, meaning that
the direction vector will either have zd = 1 or zd = −1. The boundaries of this
randomisation depend on the track randomisation protocol, explained in the
next section. If we consider all linear tracks as starting from the detector origin,
the point (0, 0, 0) is considered on the track. However, this is rarely the case.
The resulting parametric form of a track (line) is,

r = r0 + t · rd,
θ = θ0 + θd,

z = z0 + t · zd,

with (r, θ, z) representing a point on the track, (r0, θ0, z0) as the origin point,
⟨rd, θd, zd⟩ as the direction vector, and t as free variable. Similarly, the parametric
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form for helical track definitions is,

r = r0 + a · t,
θ = θ0 + d · t,
z = z0 + b · t,

with (r, θ, z) representing a point on the track and (r0, θ0, z0) as the origin point,
while a, d and b represent radial, azimuthal and pitch coefficients, respectively.

Regarding both linear and helical tracks, our software supports origin smear-
ing, i.e., the starting point of helical tracks is in a randomised vicinity of the
point (0, 0, 0).

4.3 Track randomisation protocols

As seen in Figure 4, the track randomisation step directly affects sub-detector
hit calculation and is totally dependent on the randomisation protocol indicated
in the configuration. Focusing on the implementation for the 3D space, different
track randomisation protocols can be considered. We list four base protocols and
five combination protocols, mixing the characteristics of base protocols:

Protocol 1 - Last layer hit guarantee Hits are guaranteed to occur on the farthest
layer of every sub-detector type, which means the farthest layer of every sub-
detector type is the randomisation domain for the landing points of tracks. A
hit guarantee on the last layer will also guarantee hits on the previous layers
for that sub-detector type. This protocol is designed to maximise the number of
hits per sub-detector type within the data set.

In principle, our implementation applies Protocol 1 per each available sub-
detector type and randomly selects from the total generated track pool. Since
for instance, if a track lands on the last layer of strip sub-detector types, it might
not necessarily result in hit points on barrel layers.

Protocol 2 - Spherically uniform distribution To have a more uniform distribution
of randomised tracks, without imposing any geometric conditions, is to have the
track end points land on a sphere. Note that tracks do not have actual end points
as these are unbounded lines.

Protocol 3 - Conical jet simulation Tracks are randomised in distinct subsets,
bundled in a close vicinity within a narrow cone, representing a jet(s). This
protocol on its own may not be a sensible choice and it would work best in
combination with other protocols.

Protocol 4 - Beam pipe concentration Tracks have a higher concentration around
the beam pipe, i.e., higher track generation probability as the radius gets smaller.

Without giving exhaustive and repetitive descriptions, feasible combination
protocols are: Protocols 1 and 3, Protocols 1 and 4, Protocols 2 and 3, Protocols
3 and 4 and Protocols 1, 3 and 4.
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For data generation we have only considered protocol 1 to increase recorded
hit points for all tracks and to have hit points for all sub-detector types. Ad-
ditional track randomisation protocols focusing on specific corner cases, can be
easily defined and added to the tool. To implement protocol 1, i.e., to guarantee
that tracks land on the last layer of a sub-detector type, we consider the coor-
dinate domain of the last layer as the randomisation domain for track direction
vectors. Thus, before normalisation, all randomised Vd will land on the last layer.

Not every combination is allowed. For instance, protocols 1 and 2 cannot be
applied at the same time, as it is self-evident that a spherical uniform distribution
and a last layer hit guarantee cannot be true at the same time. Accordingly, we
can consider the base protocols within two main categories, distribution proto-
cols, affecting how tracks are distributed in space, and feature protocols, defining
special forms of localised distribution. Currently, protocol 3 is the only feature
protocol defined. While feature protocols can be combined with any distribution
protocol, most distribution protocols are mutually exclusive. A combination of
two or more base distribution protocols will also lead to another, more specific,
distribution protocol, e.g., protocols 1 and 4. Figure 5 provides a visual overview.

1-4-3

1 2 4 1-4

1-3 2-3 4-3 3

Distribution protocols

Feature
protocols

Fig. 5: Visualising how different base distribution and feature protocols can be
combined to achieve more complex track randomisation behaviour.

4.4 Hit point calculation

Regarding hit point coordinates, i.e., (rhit, θhit, zhit), depending on the sub-
detector shape, we are dealing with either a fixed zsd or a fixed rsd, for disks and
barrels, respectively. Here, we consider the disks as being flat and to have no
thickness, while the barrels consist only of cylinder shells. Shapes with thickness
are supported, for which the techniques involved will be similar.

Considering the set of track equations, we are to calculate the free variable t
at the sub-detector layer of interest, i.e., tsd. For hit coordinates at disks,

zhit = zsd,

θhit = θd,

tsd =
zsd
zd

=
zsd
1
,

⇒ tsd = zsd,

rhit = tsd · rd = zsd · rd.
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Note that in the above calculation zd and zsd must have matching signs,
rendering tsd > 0. In other words, tracks extruding towards the positive or the
negative side of the Z-axis can hit sub-detector layers present at the positive or
the negative side of the Z-axis, respectively. We also know that zd ̸= 0.

A similar calculation considering the rsd as fixed will result in the hit coor-
dinates for a barrel sub-detector layer, which we will not repeat here. General
approach towards calculation of hits resulting from helical tracks follows the
same principles, which we will not repeat here. Figure 6 depicts a simple event
with five tracks, including separate views of the full event (Figure 6a) and cal-
culated hits (Figure 6b), for demonstration purposes. Note that the detector
orientation is vertical.

(a) The full view of this event (b) The hits view of this event

Fig. 6: An example event with five tracks

5 Data set generation

We have followed simulation recipes with 10 000 events and varying track counts
of [1, 10 000] per event for each experiment, for both linear and helical tracks.
Hit recording is performed with smearing enabled and the detector geometry is
the same for all recipes. These generated data sets for linear and helical tracks
are intended as reference for physicists and data scientists alike and are publicly
accessible over Zenodo open repository [21, 18]. Data set schema alongside data
header descriptions are included in the accompanying README files.

In order to evaluate the performance of REDVID, we have benchmarked the
execution of simulations with a lower event count, 1 000 events per simulation
and similar variations of track concentrations per event as before, i.e., [1, 10 000].
For our metric collections, including CPU-time and execution duration, high-
precision counters from the time library available in Python have been used.
The collected CPU-time results are provided in Table 1.

Simulations have been performed on the DAS-6 compute cluster [4]. The
machines used are each equipped with a single 24-core AMD EPYC 7402P pro-
cessor and 128 GB of main memory. Note that the mean CPU-time calculations
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Table 1: REDVID execution CPU-time cost for simulations of 1 000 events with
various track concentrations. All values are in milliseconds. Full simulation times
are provided in minutes as well.

Track(s)
per event

3D detector
spawning

Track
randomisation

Mean

Hit discovery
Mean

Full simulation
1 000 events
(minutes)

1 0.025 0.043 1.463 2 731.17 (0.05)
10 0.025 0.083 13.429 15 418.589 (0.26)
100 0.025 0.465 129.864 137 623.954 (2.29)
1 000 0.025 4.582 1 285.989 1 353 396.641 (22.56)
10 000 0.024 43.765 12 496.208 13 591 628.526 (226.53)

do not include the first event of each recipe batch. This is due to the presence
of cold-start effect for the first event and delays resulting from it.

Though we have enforced single-threaded operation for our benchmarks,
workload parallelisation is rather trivial. The number of events to be gener-
ated can be divided into any desired number of batches and distributed amongst
multiple threads. Considering the timing results, we observe that the CPU-time
values scale linearly, i.e., a tenfold increase in the track concentration per event
results in roughly a tenfold increase in the full simulation CPU-time.

6 Related work

While the overall available data is abundant, corner case data is rather scarce.
Real-world data, or data synthesised with accurate (in our case physics-accurate)
simulations is complex in terms of data dimensionality and granularity. This
complexity is directly resulting from the complexity of the real system, or the
accurate model of the system in case of simulations. Within the HEP landscape,
we touched upon the complexity of simulators such as Geant4 in Section 2, as
well as the dependence on these simulators by tools like ATLFAST.

The first challenge, lack of annotated data for one or more specific scenarios,
has been recognised in the literature [14]. The second challenge though, the issue
of complexity, is not as well known. A closely related acknowledgement has been
made regarding the complexity level of models for simulations [8].

The two main shortcomings of the previous efforts towards the use of ML in
physics problems have been use-case specificity [24] and the lack of user-friendly
tools [6]. As noted by Willard et al. [24], the efforts surrounding the use of
ML for physics-specific problems are focused on sub-topics, or even use-cases.
Although our methodology and synthetic data focuses on the domain of tracking
for detector data, we could claim that it is independent of the chosen detector.

The point from [24] regarding the computational efficiency of ROMs matches
our motivation. Where our work differs is in the placement of our ROM within
our methodology. Our reduced model of a detector is considered as the model for
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simulations aimed at synthetic data, which is different than ML-based surrogate
models as ROMs [7, 17], or ML-based surrogate models built from ROMs [25].

7 Conclusion and future work

With many computational science applications exploring the use of ML-assisted
solutions, there is a need for reduced complexity simulations to facilitate the
design process. We show how such a reduction through ROMs and a smaller
behavioural-space for the simulator, can result in a lower complexity for synthe-
sised data. This is particularly relevant for our HEP use-case.

We have presented the design and implementation details of REDVID (RE-
Duced VIrtual Detector), our simulation framework fulfilling such a reduction.
To demonstrate REDVID’s feasibility, we executed it with relevant workload
recipes, and have made available the resulting data sets over Zenodo open repos-
itory. We further analysed the computational cost figures for these experiments,
and we conclude that, even though our tool is developed in Python, compu-
tational cost figures (case in point, 15 seconds, 138 seconds and 22 minutes of
CPU-time for 1 000 events with 10, 100 and 1 000 tracks per event, respectively)
indicate efficiency for frequent executions. Accordingly, the lightweight nature of
REDVID simulations makes our tool a suitable choice as a simulation-in-the-loop
with data-driven workflows for HEP, e.g., searching for a ML-assisted solution
to address the challenge of tracking.

We have explained that, to opt for such an approximation, is a deliberate act,
positioning REDVID as a suitable middle ground amongst other available tools,
not as exact as physics-accurate simulations, and not as synthetic as dummy
data generators. The reduced complexity especially allows for early problem
formulation and testing at early stages, when dealing with ML-assisted solution
design workflows. Yet another advantage of reduced complexity data that still
respects the high-level relations, is in its pedagogical merit, enabling problem
solving practices in higher education.
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