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Abstract. This paper investigates the impact of various modifications intro-

duced to current state-of-the-art Convolutional Neural Network (CNN) archi-

tectures specifically designed for the steganalysis of digital images. Usage of 

deep learning methods has consistently demonstrated improved results in this 

field over the past few years, primarily due to the development of newer archi-

tectures with higher classification accuracy compared to their predecessors. De-

spite the advances made, further improvements are desired to achieve even bet-

ter performance in this field. The conducted experiments provide insights into 

how each modification affects the classification accuracy of the architectures, 

which is a measure of their ability to distinguish between stego and cover imag-

es. Based on the obtained results, potential enhancements are identified that fu-

ture CNN designs could adopt to achieve higher accuracy while minimizing 

their complexity compared to current architectures. The impact of modifications 

on each model’s performance has been found to vary depending on the tested 

architecture and the steganography embedding method used. 

Keywords: Convolutional neural network, Deep learning, Steganalysis, Ste-

ganography. 

1 Introduction 

Every day, billions of images and graphics are transmitted over the Internet. However, 

this medium also provides the opportunity to conceal information within them in a 

way that is imperceptible to the human eye. This form of communication, where digi-

tal images act as carriers for hidden data, requiring specialized analysis for extraction, 

is considered a secure means of conveying information. In such scenarios, only the 

intended recipient, equipped with the necessary software to reveal the concealed in-

formation within the image, can decipher the true message being conveyed. 

The field of techniques of concealing information is known as steganography. Ste-

ganography methods are used to conceal covert communication by embedding infor-

mation within another medium known as the cover object, e.g. digital image. 

Conversely, the development of techniques designed to detect hidden information 

falls under the field of steganalysis. It plays a crucial part in the information systems 

security field and is dedicated to detecting the presence of steganographic techniques. 
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It is important to emphasize that steganalysis primarily focuses on confirming the 

presence of a hidden message within the cover object, rather than extracting it. 

In research related to steganography and steganalysis, two embedding methods are 

often used: Wavelet Obtained Weights (WOW) [1] and Spatial Universal Wavelet 

Relative Distortion (S-UNIWARD) [2]. Both algorithms are content-adaptive, i.e. 

information is embedded primarily within the regions of an image where the com-

plexity in terms of patterns and pixel value diversity is the highest. This approach 

makes the detection of hidden communication by steganalysis methods more difficult. 

For many years, steganalysis has relied on algorithms grounded in advanced statis-

tical models, referred to as SRM (Statistical Rich Models) [3]. Nevertheless, in recent 

years, the concept of using machine learning for this purpose has gained prominence. 

The primary goal of these algorithms is binary classification, determining whether a 

given digital image is containing a hidden information or not. 

Currently, the most promising results in digital image steganalysis are achieved 

through the use of Deep Learning methods [4] employing Convolutional Neural Net-

works (CNNs). As noted in [5], steganalysis has traditionally followed a two-stage 

paradigm, involving manual feature extraction in the initial stage, followed by classi-

fication using Ensemble Classifiers or Support Vector Machines in the subsequent 

stage. However, the emergence of Deep Learning techniques has revolutionized ste-

ganalysis by unifying and automating these two distinct stages, leading to advance-

ments that surpass the Rich Models with Ensemble Classifiers [5]. 

Therefore, the initial objective of this study was to identify the best-performing 

CNN architectures specifically designed for steganalysis. The second objective was to 

conduct experiments on these architectures by creating variants of them with structur-

al modifications. The rationale behind conducting such experiments was to determine 

how specific modifications would impact the model’s performance. Thus, structural 

changes that could increase the classification accuracy of state-of-the-art architectures 

would provide a contribution to the field of steganalysis. 

The goal of this article is to present the research findings concerning the applica-

tion of machine learning for image steganalysis. The research aims to investigate the 

impact of modifying CNNs on steganalysis performance. To the best of the authors' 

knowledge, similar results have not been previously documented in the literature. 

The contributions of this paper are as follows. The paper explores the effects of 

various architectural modifications to the state-of-the-art CNNs on model perfor-

mance. 17 variants for the Yedroudj-Net and 20 variants for the GBRAS-Net architec-

tures were proposed. The study evaluates how individual modifications could intro-

duce enhancements to existing networks that either improve classification efficiency 

or reduce the number of trainable parameters. The obtained results allowed to deter-

mine specific directions for further research. 

The related work section provides an overview of prior research. The methodology 

section presents the research approach, the dataset, types of experiments, as well as 

the experimental setup details. The conclusions are presented in the last section. 
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2 Related Work 

Firstly, autoencoders were used for steganalysis [6]. The study demonstrated that 

initializing a CNN with filters from a pre-trained stack of convolutional autoencoders, 

combined with feature pooling layers, yielded promising results. 

Subsequently, a CNN was introduced in [7], which was capable of autonomously 

learning feature representations via multiple convolutional layers. This model unified 

the feature extraction and classification steps within a single architecture. 

Another application of CNNs in steganalysis was explored in [8]. In this scenario, the 

authors consistently used the same embedding key. Experimental results for a proposed 

CNN and a fully connected NN outperformed the RM+EC approach. 

In [9] the authors employed CNNs as base learners for ensemble learning and tested 

various ensemble strategies. Their methodology included recovery of lost information 

caused by spatial subsampling in the pooling layers during feature vector formation. 

JPEG steganalysis research was presented in [10]. The authors attempted to adapt 

CNNs to a comprehensive feature set through network pre-training. The primary 

challenge in surpassing rich-model-based frameworks were training convergence issues. 

Another JPEG research was proposed in [11]. The authors incorporated JPEG 

awareness into CNNs. They introduced the catalyst kernel allowing the network to learn 

kernels more relevant for detecting stego signals introduced by JPEG steganography. 

A method against J-UNIWARD method was presented in [12]. The author confirmed 

the role of both the pooling method and the depth of CNNs. It was demonstrated that a 

20-layer CNN generally outperforms the most advanced feature model-based methods. 

The Xu-Net against S-UNIWARD and HILL methods was presented in [13]. The 

results show the usefulness of using absolute values in early feature maps and the 

negative impact of larger filter sizes in convolutional layers on network efficiency. 

Next, the SR-Net [14] utilized four original types of layers. In contrast to other nets, 

SR-Net doesn't initially employ a high-pass preprocessing filtering layer. However, the 

depth of this network is very high, leading to high model complexity. 

Another significant architecture is Yedroudj-Net [15]. Yedroudj-Net employs the 

Trunc activation function [16], which limits data values to a chosen range. This 

eliminates the occurrence of large values that would be processed by subsequent layers. 

The repeated use of the stego-key was explored in [17]. The study led to the CNN 

with the state-of-the-art efficiency while having 20 times fewer learnable parameters, 

which means easier convergence and reduced memory and computing power demands. 

The GBRAS-Net [18] incorporated the depthwise layer and the separable layer. The 

goal is to achieve an effect similar to a regular convolutional layer while reducing the 

number of parameters. This architecture does not utilize fully connected layers. 

The work presented in this paper is based on two different deep neural networks: 

Yedroudj-Net [15] and GBRAS-Net [18]. These models were selected due to their high 

performance in terms of classification accuracy. Both models employ preprocessing that 

includes 30 predefined high-pass filters. The weights of these filters are not learned 

during the training process. The output signal from the preprocessing convolutional 

layer is propagated through the deep neural network, where further processing occurs. 
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3 Methodology 

The steganalysis begins with cover and stego images serving as the input (Fig. 1). These 

images undergo processing by a modified CNN. The model's output is a binary result: 

'0' for a cover image prediction or '1' for a stego image prediction. Based on the obtained 

model’s output and true labels assigned to the input images, the overall classification 

accuracy of the architecture variant can be calculated. 

 

Fig. 1. Steganalysis workflow using a CNN. 

3.1 Dataset 

For this study, the BOSSBase 1.01 dataset [19] was used for training, validation, and 

testing. The rationale behind choosing BOSSBase stems from the fact that it is the most 

commonly used dataset in the steganalysis field. This facilitates the comparison of 

results with those described in other studies. The mentioned dataset consists of 10,000 

grayscale images in PGM format. Following the approach presented in the 

aforementioned papers, each image was resized from 512×512 px to 256×256 px. It 

significantly reduces the computational resources required for image processing, 

thereby reducing the training time for each variant. 

The dataset was divided into three subsets: 8,000 images for the training set, 1,000 

images for the validation set, and the remaining 1,000 images for the testing set. This 

8:1:1 split ratio ensures that the neural network receives ample training examples 

while maintaining a sufficient number of images for accurate testing. This particular 

split also proved to yield the best results in the test scenarios described in [20]. 

3.2 Steganographic Techniques 

For the embedding algorithms, WOW and S-UNIWARD with embedding capacity set 

to 0.4 bpp were used. These algorithms are widely employed in steganalysis research 

work, allowing for meaningful comparison of obtained results with other studies. 

All of the original 10,000 images (cover objects) from BOSSBase were embedded 

with a message using a different stego-key for each image. This process resulted in a 

dataset comprising a total of 20,000 images: 10,000 cover and 10,000 stego images. 

MATLAB implementations from [21] were used for the embedding process, with minor 

code modifications to load and embed the payload in large batches of images. 
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3.3 Architectures 

The selection of models for the experiments was based on three primary criteria. Firstly, 

their selection was based on their classification accuracy stated in the papers. Secondly, 

it was based on the number of trainable parameters (architecture’s complexity). Lastly, 

the chosen models were required to exhibit distinct architectural approaches. For these 

reasons, Yedroudj-Net and GBRAS-Net were selected. They exhibited high 

classification accuracy, relatively low complexity, and notable structural differences. A 

detailed comparison of both CNNs, including their architecture and training 

hyperparameters, is provided in Table 1. 

Table 1. Comparison of Yedroudj-Net and GBRAS-Net. 

Information Yedroudj-Net GBRAS-Net 

No. of trainable parameters 445 k 166 k 

Preprocessing stage 
Convolutional layer with 30 

5x5 SRM filters 

Convolutional layer with 30 

5x5 SRM filters 

No. of depthwise-separable layers 0 4 

No. of convolutional layers 5 8 

No. of parameters added by depthwise-

sep. and conv. layers 
298 k 166 k 

Filter (kernel) sizes 5x5 and 3x3 3x3 and 1x1 

No. of filters in conv. layers 30, 30, 32, 64, 128 30, 30, 60, 60, 60, 60, 30, 2 

Activation after conv. layers Trunc, ReLU ELU 

Pooling type after conv. layers 
Average Pooling with 5x5 

kernel and (2,2) stride 

Average Pooling with 2x2 

kernel and (2,2) stride 

Weight initialization method Glorot Uniform Glorot Uniform 

No. of dense layers 3 0 

No. of neurons in subsequent dense 

layers (input-output) 
128-256, 256-1024, 1024-2 - 

No. of trainable parameters in dense 

layers 
263 k 0 

Activation after dense layers ReLU - 

Optimizer SGD Adam 

Learning rate 0.01 0.001 

Weight decay 0.0001 0 

Momentum 0.95 0.2 

Pooling at the output Global Average Pooling Global Average Pooling 

Activation function at the output Softmax Softmax 

 
3.4 Types of Experiments 

The changes introduced to the architectures can be categorized into three main types: 

− Addition and removal of dense or convolutional layers. These alterations of this 

kind typically have the most significant impact on both the model's accuracy 

and complexity. 

− Modifications in the structure of individual layers within the original 

architecture. This category primarily involves changes such as altering filter 

sizes in successive convolutional layers. 

− Simple-to-implement changes that do not increase the model's complexity in 

terms of the number of trainable parameters but do affect the training process 

and may, for example, prolong it. Examples include using a different weight 
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optimization algorithm, weight initialization method, and activation functions 

after each convolutional layer. 

A detailed description of the variants is provided in the Results Section. 

3.5 Metrics 

For each experiment, the training and validation accuracy values for every epoch were 

calculated. It allowed to closely monitor the model’s learning process. Moreover, the 

final classification accuracy for the testing dataset was calculated, which is the main 

performance evaluation criterion in this paper. It provides valuable information about 

the overall model’s performance and its ability to generalize to unseen data. 

Classification accuracy alone does not provide a comprehensive assessment of the 

model’s performance. This is a very general measure that does not provide a complete 

picture of the behavior of the analyzed model. Therefore, two additional metrics were 

utilized: Receiver Operating Characteristic (ROC) curve and the confusion matrix.  

ROC curve provides a comprehensive visualization of a model's True Positive Rate 

(TPR) against its False Positive Rate (FPR) across all classification thresholds. In 

steganalysis, this curve offers insights into the trade-off between correctly identifying 

stego images and incorrectly classifying cover images, which helps to visually com-

pare the performance of different models. This is the best method for comparing 

models. One can compare TPRs at a given FPR or compare Area Under Curve (AUC) 

to indicate a better detector. 

Confusion matrix complements ROC curve by providing a detailed breakdown of a 

model's predictions, including true positives, true negatives, false positives, and false 

negatives. This breakdown helps to identify specific areas for improvement in a mod-

el’s performance. Moreover, all other measures, such as precision, recall, F1 score, or 

specificity, can be derived from the confusion matrix. 

The ROC curve, confusion matrix, and overall classification accuracy results are 

the most important evaluation metrics to determine the performance of a deep neural 

network in binary classification problems like steganalysis. 

3.6 Experimental Setup 

The experiments were performed locally using NVIDIA GeForce RTX 2080 Ti GPU 

with the support of CUDNN v11.6. To implement the variants of Yedroudj-Net and 

GBRAS-Net architectures, Python v3.9.16 programming language, PyTorch 

v1.13.1+cu116, and PyTorch Lightning v2.0.0 libraries were used. The results of the 

experiments were recorded using Neptune.ai API and stored on its cloud platform. 

4 Results 

4.1 Modifications for Yedroudj-Net 

The Yedroudj-Net architecture is more complex than GBRAS-Net, i.e. 445 thousand 

trainable parameters, which is 279 thousand more. This difference primarily stems from 
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the inclusion of three fully connected layers in the classification stage. Therefore, the 

initial experiments focused on simplifying the original architecture. 

Simplification Strategies. In the first two Yedroudj-Net variants, simplification strat-

egies by removal of dense layers were explored: 

− Variant 1: Removal of the last dense layer, resulted in a minor decrease in 

accuracy for WOW, but surprisingly led to an increase of 0.55 pp for S-

UNIWARD. Notably, by removing a dense layer with 1024 neurons, a 

significant reduction of 264 thousand trainable parameters was achieved. 

− Variant 2: Removal of the last two dense layers caused a decrease in accuracy 

by 1.45 pp for WOW and 1.6 pp for S-UNIWARD. 

The obtained results raise a question regarding the necessity of utilizing as many as 

three dense layers from a complexity-to-performance trade-off point of view. A similar 

simplification approach was adopted for the convolutional layers: 

− Variant 3: Removal of the last convolutional layer, which contains 64 filters at 

the input and 128 at the output, resulted in an increase in classification 

accuracy by 0.7 pp for WOW and a decrease of 0.15 pp for S-UNIWARD. 

− Variant 4: Removal of the last two convolutional layers led to a loss of more 

than 4 pp in accuracy for both embedding algorithms, making this type of 

change not justified from a performance perspective. 

Expanding the Architecture. In this set of experiments, the objective was to extend 

the original architecture by incorporating additional and dense layers. Note that after 

each added convolutional layer, batch normalization and ReLU function were applied. 

Initially, one dense layer with 512 neurons was added (variant no. 5). This 

modification resulted in a minor decrease in accuracy while increasing the number of 

parameters. It was decided not to further experiment with the addition of more dense 

layers, as there was no indication that it would enhance the model’s performance. 

Similarly, one and two convolutional layers were integrated into the Yedroudj-Net 

architecture after the preprocessing layer: 

− Variant 6: Added one convolutional layer with 30 filters, 1×1 kernel size, a 

stride of 1, and no padding, ensuring that the output feature map has the same 

dimensions as the input feature map. Classification accuracy increased for both 

embedding algorithms: by 1.75 pp for WOW and 1.35 pp for S-UNIWARD. 

− Variant 7: Added two convolutional layers with 30 filters, but this time em-

ploying a 3×3 kernel size, with a stride and padding of 1. What is more, it 

was decided to maintain uniform filter sizes across all layers, thereby chang-

ing kernel sizes of the original first and second Yedrouj-Net layers from 5×5 

to 3×3. This adjustment also helped to mitigate the increase in the number of 

trainable parameters caused by the addition of two convolutional layers. Accu-

racy increased by 4.5 pp for WOW, and 6.8 pp for S-UNIWARD. The train-

ing/validation accuracy plot for this variant is in Fig. 2, and the ROC curve is 

shown in Fig. 3. According to the results provided in Table 2, the model ex-

hibited a high degree of accuracy in classifying both cover and stego images. 

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_4

https://dx.doi.org/10.1007/978-3-031-63751-3_4
https://dx.doi.org/10.1007/978-3-031-63751-3_4


8  R. Martyniak and B. Czaplewski 

 

Fig. 2. Training and validation accuracy for variant no. 7 of Yedroudj-Net. 

 

Fig. 3. ROC curve for variant no. 7 of Yedroudj-Net architecture. 

Table 2. Normalized confusion matrix for variant no. 7 of Yedroudj-Net. 

 Predicted Cover Predicted Stego 

Actual Cover 0.88 (True Negative) 0.12 (False Positive) 

Actual Stego 0.15 (False Negative) 0.85 (True Positive) 

Convolutional layer parameter tuning. The following set of experiments involved 

altering key parameters within the convolutional layers, such as kernel sizes and aver-

age pooling operation. The results of these experiments are as follows: 

− Variant 8: Changing filter sizes from 3×3 to 5×5 in the last three convolutional 

layers resulted in a decrease in accuracy for both steganography algorithms. 

Furthermore, it significantly increased the model’s complexity as the last three 

layers contain a higher number of filters compared to the initial layers. 

− Variant 9: Altering filter sizes from 5×5 to 3×3 in the first two convolutional 

layers, resulting in a kernel size of 3×3 for each layer, leading to an increase in 

accuracy by 0.55 pp for WOW and a decrease by 0.55 pp for S-UNIWARD. 
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− Variant 10: Changing filter sizes from 5×5 to 3×3 in the first three 

convolutional layers and from 3×3 to 5×5 in the last two convolutional layers, 

led to an increase in classification accuracy by 0.55 pp for WOW and by 0.85 

pp for S-UNIWARD. However, this change also significantly increased the 

number trainable parameters, because the last two convolutional layers of 

Yedroudj-Net feature a greater number of filters (64 and 128 at the output), 

compared to these at the beginning of the architecture. 

− Variant 11: Altering filter sizes from 5×5 to 1×1 in the first convolutional layer 

resulted in increased accuracy for both WOW and S-UNIWARD by 0.85 and 

1.4 pp, respectively. It also reduced the number of parameters by 36 thousand. 

Based on the results obtained from this series of experiments, the most significant 

conclusion is that employing a smaller kernel size in the initial convolutional layer or 

layers can lead to improved classification accuracy. 

In this series of experiments related to convolutional layers, the impact of average 

pooling was investigated with the following variants: 

− Variant 12: Removal of average pooling led to a 1.7 pp increase in 

classification accuracy for WOW, and a decrease by 1.85 for S-UNIWARD. 

− Variant 13: Adjustment of the average pooling settings from (5,2) to (3,1), 

where the first number represents the kernel size, and the second number 

denotes the stride, resulted in a 1.8 pp increase in classification accuracy for 

WOW, and a 1.65 pp decrease for S-UNIWARD. 

Table 3. Classification accuracy results for Yedroudj-Net architecture variants. 

# Description 

Change in classification 

accuracy (in pp) 
Change in the number of 

parameters (in thousands) 
WOW S-UNIWARD 

1 Removed the last dense layer -0.25 +0.55 -264 

2 Removed the last two dense layers -1.45 -1.6 -297 

3 Removed the last two conv. layers -4.2 -6.65 -117 

4 Added one dense layer -0.35 -0.25 +524 

5 Removed the last conv. layer +0.7 -0.15 -90 

6 Added one conv. layer +1.75 +1.35 +1 

7 Added two conv. layers +4.5 +6.8 +138 

8 5x5 kernel size in the last 3 conv. layers -0.5 -0.8 +180 

9 3x3 kernel size in the first 2 conv. layers +0.55 -0.55 -28 

10 
3x3 kernel size in the first 3 conv. 

5x5 kernel size in the last 2 conv. layers 
+0.55 +0.85 +136 

11 1x1 kernel size in the first layer +0.85 +1.4 -36 

12 No average pooling +1.7 -1.85 0 

13 (3,1) average pooling instead of (5,2) +1.8 -1.65 0 

14 Adam optimizer instead of SGD -5 -1.45 0 

15 
Kaiming Normal initialization instead of 

Glorot Uniform 
-0.2 -0.3 0 

16 ELU activation instead of ReLU -3.8 +5 0 

17 ReLU activation instead of Trunc +1.3 -1.1 0 

Optimization and activation strategies. The final four experiments focused on mod-

ifications to the optimization algorithm, weight initialization method, and activation 

functions. Changing the optimizer from SGD to Adam (variant no. 14), as well as the 
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weight initialization method from Glorot Uniform to Kaiming Normal (variant no. 15) 

resulted in decreased classification accuracy. 

However, more intriguing results emerged when the ReLU activation functions were 

replaced with ELU activation (variant no. 16). The classification accuracy decreased by 

3.8 pp for the WOW algorithm but increased by 5 pp for S-UNIWARD, highlighting 

the significant role of the activation function in the context of using CNNs for 

steganalysis, in which case the steganography embedding algorithm used for cover 

communication is most often unknown. 

Contrarily, changing the Truncated Linear Unit (TLU) activation function, which is 

used twice in Yedroudj-Net, to ReLU (variant no. 17 in Table 3) resulted in an in-

crease of 1.3 pp for WOW and a decrease of 1.1 pp for S-UNIWARD. 

In Table 3, the results of the conducted experiments are shown, comprising seven-

teen different variants of the Yedroudj-Net architecture. Changes in the classification 

accuracy compared to the original architecture are expressed in percentage points. 

4.2 Modifications for GBRAS-Net 

Similar to the modifications for Yedroudj-Net, four types of experiments were con-

ducted to assess their impact on the GBRAS-Net architecture performance. 

Simplification Strategies. Convolutional and depthwise layers were removed, as the 

original GBRAS-Net architecture does not incorporate dense layers. 

− Variant 1: Removal of five convolutional layers (3rd–7th) led to a decrease in 

classification accuracy by 1.95 pp for WOW and 1 pp for S-UNIWARD. 

This change involved the removal of a substantial portion of convolutional 

layers, resulting in a reduction of trainable parameters by 121.3 thousand. 

− Variant 2: Removal of the five aforementioned convolutional layers, along 

with the 1st depthwise layer. The test of this variant was carried out to assess 

the significance of depthwise layers. This modification resulted in a major 

decrease in accuracy, exceeding 5 pp for both embedding algorithms. This 

underscores the critical role of depthwise layers within the GBRAS-Net. 

Additionally, three more variants (no. 3, 4, 5) were explored, involving the remov-

al of three, four and seven convolutional layers, all of which yielded similar results. 

Expanding the Architecture. In the subsequent series of experiments, the impact of 

the following additions was investigated: 

− Variant 6: Two convolutional layers at the beginning of the network. These 

layers consisted of 30 filters, kernel size of 3×3, stride and padding set to 1.  

− Variant 7: Two convolutional layers following the 4th depthwise layer. Given 

that in the original architecture, the convolutional layer before the 3rd and 

4th depthwise layer has 60 filters, the added convolutional layers also had 60 

filters. They featured a 3×3 kernel size, stride, and padding of 1. 

The addition of convolutional layers in both cases resulted in a decrease in accuracy 

for WOW and S-UNIWARD algorithms. Batch normalization and the ReLU activa-

tion function was applied after each additional convolutional layer. 
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Furthermore, the impact of incorporating dense layers at the end of the network 

was examined. Initially, two layers were added (variant no. 8) with 512 and 2 neu-

rons, respectively. In the subsequent variant (no. 9) three dense layers were employed 

with 512, 1024 and 2 neurons. In both variants, a minimal increase in accuracy for 

WOW was observed, but conversely, a decrease for S-UNIWARD can be noticed: by 

3.05 pp for variant no. 17 and by 0.3 pp in the case of variant no. 18. 

Convolutional Layer Parameter Tuning. The impact of kernel size was explored: 

− Variant 10: Decrease in filter sizes across subsequent layers, from 5×5 to 

3×3, was implemented. The kernel size of the first three convolutional layers 

was increased from 3×3 to 5×5, while the following convolutional layers 

maintained a 3×3 kernel size, including the very last layer, which originally 

features 30 input and 2 output neurons with 1×1 kernel size. 

− Variant 11: Further reduction in filter size, from 7×7 to 5×5 and then to 3×3, 

was applied. The first three convolutional layers had 7×7 kernels, the next 

two: 5×5, and the subsequent two: 3×3. 

Both variants 10 and 11 resulted in reduced performance for both algorithms. 

The next three experiments involved increasing filter sizes of the last conv. layers: 

− Variant 12: Increase from 1×1 to 3×3 in the last two convolutional layers in-

creased accuracy by 0.15 pp for WOW and by 1.05 pp for S-UNIWARD. 

− Variant 13: Changing the filter size of the 5th-8th convolutional layer from 

3×3 to 5×5. This alteration led to an increase in accuracy by 0.25 pp for 

WOW and a decrease of 1.4 pp for S-UNIWARD. 

− Variant 14: Changing the filter size of the 5th and 6th convolutional layers 

from 3×3 to 5×5 and of the 7th and 8th from 3×3 to 7×7. As a result, the ac-

curacy increased by 0.7 pp for WOW and decreased by 0.5 pp for S-

UNIWARD. The training/validation accuracy plot for this variant is in Fig. 

4, and the ROC curve is shown in Fig. 5. Based on the results presented in 

Table 4, it can be stated that this variant demonstrates slightly better perfor-

mance in the correct classification of images that are steganographic. 

 

Fig. 4. Training and validation accuracy for variant no. 14 of GBRAS-Net architecture. 
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Fig. 5. ROC curve for variant no. 14 of GBRAS-Net architecture. 

Table 4. Normalized confusion matrix for variant no. 14 of GBRAS-Net. 

 Predicted Cover Predicted Stego 

Actual Cover 0.83 (True Negative) 0.17 (False Positive) 

Actual Stego 0.11 (False Negative) 0.89 (True Positive) 

The impact of altering the settings of the average pooling operation was explored: 

− Variant 15: Removal of the average pooling operation, which was used three 

times in the architecture, resulted in a decrease by more than 2 pp for both 

WOW and S-UNIWARD. It is important to note that global average pooling, 

employed just before the softmax activation function, remained unchanged. 

− Variant 16: Adjustment of the average pooling settings from (2,2) to (5,2) led 

to a decrease in accuracy by 1.6 pp for WOW and an increase by 0.1 pp for S-

UNIWARD. Similar results were obtained in the subsequent variant (no. 17), 

where average pooling (3,1) was applied: a decrease of 1.55 for WOW and by 

0.5 for S-UNIWARD. 

Optimization and Activation Strategies. Switching from Adam to SGD optimizer 

(variant no. 18) resulted in a noticeable accuracy decrease for both algorithms. 

Using the Kaiming Normal weight initialization method instead of Glorot Uniform 

(variant no. 19) resulted in an increase by 0.1 pp for WOW and decrease of 0.8 pp for 

S-UNIWARD. 

Replacing ELU activation with ReLU (variant no. 20) resulted in improved accura-

cy by 0.5 pp for WOW, but also a 1.55 pp decrease for S-UNIWARD. 

In Table 5, the results of the conducted twenty experiments for GBRAS-Net are 

presented. Changes in the classification accuracy compared to the original architec-

ture are expressed in percentage points. 
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Table 5. Classification accuracy results for GBRAS-Net architecture variants. 

# Description 

Change in classification 

accuracy (in pp) 
Change in the number of 

parameters (in thousands) 
WOW S-UNIWARD 

1 Removed five (3rd–7th) conv. layers -1.95 -1 -121.3 

2 
Removed five (3rd–7th) conv. and  

the 1st depthwise layer 
-5.35 -7.65 -121.1 

3 Removed three (5th–7th) conv. layers -0.7 -1.2 -97 

4 Removed four (4th–7th) conv. layers -0.65 +1.45 -113 

5 Removed seven (2nd–8th) conv. layers -2.6 -0.35 -129 

6 Added two conv. layers -0.7 -1.45 17 

7 
Added two conv. layers after 

the 4th depthwise layer 
-0.35 -0.85 66 

8 Added two dense layers +0.25 -3.05 18 

9 Added three dense layers +0.3 -0.3 566 

10 
Decreasing filter size in subsequent 

layers: 5x5 → 3x3 
-2.8 -4.8 81 

11 
Decreasing filter size in subsequent 

layers: 7x7 → 5x5 → 3x3 
-2.65 -1.15 287 

12 3x3 kernel size in the last two layers +0.15 +1.05 15 

13 
Increasing filter size in subsequent 

layers: 3x3 → 5x5 
+0.25 -1.4 216 

14 
Increasing filter size in subsequent 

layers: 3x3 → 5x5 → 7x7 
+0.7 -0.5 346 

15 No average pooling -2.2 -2.75 0 

16 (5,2) average pooling instead of (2,2) -1.6 0.1 0 

17 (3,1) average pooling instead of (2,2) -1.55 -0.5 0 

18 SGD optimizer instead of Adam -0.7 -2.25 0 

19 
Kaiming Normal initialization instead 

of Glorot Unifom 
+0.1 -0.8 0 

20 ReLU activation instead of ELU +0.5 -1.55 0 

5 Conclusions 

Firstly, it is evident that different modifications introduced to CNN architectures yield 

varying classification accuracies depending on the steganographic algorithms em-

ployed to embed the payload within images. Notable examples are as follows. 

Yedroudj-Net: The replacement of the ReLU activation with ELU led to a signifi-

cant decrease in accuracy (by 3.8 pp) for WOW and a substantial increase in classifi-

cation accuracy for S-UNIWARD (by 5 pp). Notably, this was the only case in which 

the model exhibited better performance for the S-UNIWARD compared to WOW. 

GBRAS-Net: Increasing filter sizes in subsequent layers resulted in improved clas-

sification accuracy for WOW but decreased it for S-UNIWARD, like in the case of 

changing the activation function from ReLU to ELU. 

The impact of various architectural changes on the effectiveness of CNNs depends 

significantly on their fundamental structure and the embedding algorithms used. Con-

sequently, identifying a universal modification that can consistently lead to improved 

classification performance for any given architecture and embedding algorithms is 

challenging. However, the following set of modifications could be advantageous. 

For Yedroudj-Net: The addition of one or two extra convolutional layers after the 

preprocessing layer significantly improved the classification accuracy for both algo-
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rithms without a substantial increase in spatial complexity. This change can also be 

combined with adjustments to the filter sizes, employing smaller kernels in the initial 

convolutional layers and larger ones (5×5) in the final two layers. To reduce the spa-

tial complexity of the model with these implemented changes, it is possible to remove 

the last dense layer to achieve a similar number of trainable parameters as in the orig-

inal architecture with minimal impact on the neural network performance. 

For GBRAS-Net: Increasing the kernel sizes in the last two convolutional layers 

from 1x1 to 3x3 resulted in an increase in classification accuracy for both algorithms, 

with only minimal additional spatial complexity. If there is a need to further reduce 

the complexity (to less than 166 thousand trainable parameters) with minimal impact 

on classification accuracy, up to five convolutional layers could be removed. 

The change of activation function is a simple and cost-effective change that may 

significantly impact classification accuracy. It is worth noting that the popular ReLU 

activation function decreases the classification accuracy in the case of S-UNIWARD, 

but improves it in the case of WOW (variants 16 and 17 in Table 3, and variant 20 in 

Table 5), e.g. using ELU instead of ReLU decreases the accuracy by 3.8 pp for the 

WOW but increased by 5 pp for S-UNIWARD in Yedroudj-Net. In some cases, 

ReLU function is worse at dealing with the problems of vanishing gradient and dead 

neurons. Similarly, the addition of convolutional layers, especially at the beginning of 

the architecture with filters of small dimensions (e.g. 1×1 or 3×3), can have a minor 

impact on network complexity while substantially improving steganalysis results. 

Further research could involve the creation of additional variants for the architec-

tures and embedding algorithms studied in this work, as well as different ste-

ganographic techniques, such as J-UNIWARD. Future work could also involve exper-

imentation with different variants of preprocessing methods, as the preprocessing 

stage is a crucial component of current state-of-the-art models. Image datasets other 

than BOSSBase are also worth investigating as a future work. 
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