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Abstract. The issue of data-driven neural network model construc-
tion is one of the core problems in the domain of Artificial Intelligence.
A standard approach assumes a fixed architecture with trainable weights.
A conceptually more advanced assumption is that we not only train the
weights, but also find out the optimal model architecture. In this pa-
per, we present a new method that realizes just that. We show how to
create a neural network with a procedure that allows dynamic shrinking
and growing of the model while it is being trained. The decision-making
mechanism for the architectural design is governed by a Monte Carlo
tree search procedure which simulates network behavior and allows to
compare several candidate architecture changes to choose the best one.
The solution utilizes a Stochastic Gradient Descent-based optimizer de-
veloped from scratch to realize the task of network architecture mod-
ification. The paper is accompanied with a Python source code of the
prepared method. The proposed approach was tested in visual pattern
classification problems and yielded highly satisfying results.

Keywords: neural network · changing architecture · training · Monte
Carlo tree search · shrinking · growing · Stochastic Gradient Descent.

1 Introduction

Neural network training algorithms development is an essential theoretical and
practical problem of Artificial Intelligence. The underlying task is network archi-
tecture design. Typical methods assume that a programmer specifies subsequent
components of the network and uses an optimization algorithm of choice to find
out weight values. At the same time, there is a pressing need to deliver effective
methods that relieve programmers from the task of neural network architecture
specification. One trend is to use predefined designs, tested by others on some
benchmark datasets. A more conceptually advanced scenario is to offer training
algorithms that optimize the network architecture during the training proce-
dure. In this scenario, the training algorithm is responsible not only for setting
the weights but also for modifying the model design.

The idea of delegating neural model design to an optimization algorithm
has been present in the literature domain for some time now. Unfortunately,
⋆ This research was supported by the Warsaw University of Technology within the

Excellence Initiative: Research University (IDUB) programme.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_25

https://dx.doi.org/10.1007/978-3-031-63749-0_25
https://dx.doi.org/10.1007/978-3-031-63749-0_25


2 S. Świderski and A. Jastrzębska.

up to this day, the practical use of this approach is quite limited. This is first
and foremost due to the modest effectiveness of the available approaches. Most
of the existing studies, such as the ones of Zhang et al. [16], were delivered for
plain feed-forward neural networks. The demands of contemporary data analysis,
especially in the field of image classification, are not matched when such models
are used. There are some studies, such as the very recent paper by Evci et al.
[5], that offer more insights. The aforementioned paper shows an approach when
a network is grown/shrunk neuron-by-neuron. Comprehensive theoretical and
empirical studies are overall rare.

In light of the facts outlined in the previous paragraph, in this paper, we
contribute a novel method for neural network training. We are publishing it as
an open-source package. We chose the name growingnn. It was uploaded to
PyPi. Its description is under https://pypi.org/project/growingnn/. The deliv-
ered method uses error backpropagation as a base for weight update. The action
of architecture design is carried out by enabling a scheduler that after each
K epochs allows the neural architecture to change. The change can be realized
by adding or removing a layer of a predefined type from the network. The cur-
rent implementation covers three types of neural layers: (i) a plain, feed-forward
layer, (ii) a convolutional layer, and (iii) a layer with residual connections. These
three layer types are typical in contemporary advanced models for visual pattern
recognition.

The key novelty of the presented work is the use of Monte Carlo tree search
to simulate network performance. We use it to determine the optimal decision
with regard to the design change. To achieve that, the neural model evolution
strategy is represented as a tree. The network is redesigned in such a way that
a change in the structure has a minimal impact on the already-learned weight
values. In this manner, instead of offering a trivial wrapper solution that trains
from scratch a new model using a library algorithm after an architecture update,
we develop a novel optimizer that performs continual (progressive) training and
reuse of the already-learned neural connections. Furthermore, the changes to the
network architecture concern entire layers, not single neurons.

The proposed approach was empirically evaluated in applied visual pattern
recognition problems involving standard benchmark datasets: MNIST [3] and
FMNIST [14]. The outcomes of the proposed model were compared with base-
line strategies for neural architecture change orchestration: random and greedy
approaches. In both cases, the new method involving the Monte Carlo tree search
yielded much better results.

The remainder of this paper is structured as follows. Section 2 addresses rel-
evant literature positions in the domain of architecture-changing neural network
training methods. Section 3 outlines the theoretical background of our approach.
Section 4 shows the results of empirical tests of the new method. Section 5 con-
cludes the paper.
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2 Literature survey

In recent years, the topic of dynamic neural network architecture change has
attracted noticeable attention. We shall start this discussion by mentioning the
method known as GradMax [5]. It is a method capable of growing a neural ar-
chitecture during the training procedure without costly retraining. The idea is
very similar to the one discussed in this paper, but the methods that handle
each change are very different from our methods. GradMax operates on the level
of a single neuron. In our algorithm, there is a very wide spectrum of possible
changes for a network that allows architecture to grow and shrink. GradMax
maximizes gradients for new weights and efficiently initializes them using singu-
lar value decomposition (SVD). This approach makes new neurons not impact
existing knowledge which is contradictory to our method for which neural net-
work has a short period of instability. The idea of changing the structure using
gradient information is relatively common in the literature. One of the first of
this kind was a model called resource-allocating network [11]. In this method,
when a given pattern was unrecognizable, new neurons were added. An analogous
idea was published by Fahlman and Lebiere under the name Cascade-Correlation
Architecture [6]. Miconi [10] proposed an approach that uses information about
gradient value to adjust the number of layers and layers’ size. However, his
approach works only for residual levels. Neural networks can grow not only by
adding new neurons but also by splitting existing neurons. The article by Kilcher
et al. [9] about escaping flat areas via structure modification introduces a new
strategy of this kind. When the change of loss is slowing down and the net-
work encourages a flat error surface, the proposed method adds new neurons by
splitting the existing ones. This work has two important elements in common
with our method. The changes to the structure are made when the network’s
ability to learn decreases and we also believe that their method of splitting the
neuron is in a few ways similar to our method that uses quasi-identity matrices.
A very important question in the field of neural networks that can change their
structure is how much the neural network can adapt to the problem. A study
about Convex Neural Networks [1] shows that these networks can adapt to di-
verse linear structures by adding neurons in a single hidden layer in each step of
training, which also forces the network to grow.

3 The method

The proposed algorithm consists of two components. The first component per-
forms weight adjustment. The second component is the orchestrator, which
launches a procedure to change the network architecture. The change takes place
each K epoch and it works in a guided manner. Its decisions are made based on
the outcome of the Monte Carlo tree search. A rough outline of the new routine
is given in the Algorithm 1.

The algorithm is fundamentally built upon Stochastic Gradient Descent (SGD)
[4]. It relies on low-level computations, avoiding elaborate tools used in some con-
temporary training algorithms. This simplicity makes it ideal for research that
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focuses on fundamental machine-learning principles. For us, a model is a main
structure that stores layers as nodes in a directed graph structure, it operates
on the identifiers of layers. The layer is assumed to be an independent struc-
ture that contains information about incoming and outgoing connections. The
default starting structure is a graph that has an input and output layer and
one connection between those. In each generation, a new layer may be added
or an existing layer may be removed. As the structure grows, each layer gains
more incoming and outgoing connections. In the propagation phase, the layer
waits until it receives signals from all input layers. Once received, the signals are
averaged, processed, and propagated through all outgoing connections.

Algorithm 1 Training Algorithm
1: Input: Dataset
2: Output: Model
3: Initialization:
4: SimSet ← Create simulation set
5: Model ← Create a model with basic structure
6: for each generation do
7: GradientDescent(Model, Dataset, epochs)
8: if canSimulate() then
9: Action ← MCTS.simulation(Model)

10: Model ← Action.execute(Model)
11: end if
12: end for

The function canSimulate() called in Line 8 in Algorithm 1 represents a mod-
ule that is later referred to as simulation orchestrator. The orchestrator deter-
mines the point in the training procedure when a simulation is executed during
the learning process to change a current neural architecture. At the end of each
generation, the simulation orchestrator checks if a simulation is needed. The
moment at which the simulation is executed is very important because it helps
maintain a balance between the exploration and exploitation of potential struc-
tures. A model may retain a particular architecture for several epochs, or it may
require frequent changes. Too frequent changes may prevent a specific architec-
ture from being fully trained, while infrequent changes may lead to constantly
running into local minima and significantly increase learning time, rendering the
method inefficient. In the section dedicated to parameter exploration, we exam-
ined various approaches, but ultimately, we decided to use a method known as
progress check. In this method, after each generation, we check whether there
has been an improvement in the model’s learning. If there is no improvement,
then the simulation is run.

In our algorithm, the learning rate plays a crucial role. We implemented
a custom modification of the progressive learning rate in line with the work of
Schaul et al. [12]. In this approach, the progressive learning rate ensures that the
learning rate is very close to zero in the first epoch after the structure change.
Thereafter, the learning rate grows to a constant value through the training
process. When the maximum constant value of the learning rate is reached, the
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learning rate slowly decreases before the next action. This minimizes the negative
impact of introduced changes on the already learned information in the network.

3.1 Neural architecture design changes

The algorithm draws inspiration from the achievements of ResNet-50 [8] and
ResNeXt [15], particularly from the success of residual connections. In the pre-
sented algorithm, the model’s structure is treated as a graph, in which layers are
nodes and connections between layers are directed edges. The structure built
from combining residual and sequential connections shapes a directed acyclic
graph, which also functions as a flow network [7]. The algorithm allows adding
and removing layers from the model without losing the residual structure of lay-
ers. All layers operate asynchronously, and signals move through the network
in a manner akin to recursion. Such a structure has key properties, as it allows
for unlimited network size, ensures that data always flows through the network
without supervision, prevents deadlocks, and prohibits cyclic or unnecessary lay-
ers.

In general, a network has a tendency to add new layers, which allows the
network to grow and learn new features. Changes to the network structure are
added in the form of actions. An action concerns essentially either an addition
or a removal of a layer. The algorithm generates all of the possible candidate
connections for a given type of layer. Each possible connection for a given layer
type in structure defines one single action that can be run on the current model.

The current implementation supports four different types of layers.
1. sequential dense layer;
2. residual dense layer;
3. sequential convolution layer;
4. residual convolution layer.

Dense layers can be connected to and from any layer kind as long as a residual
structure is preserved. Convolution layers have a specific rule they can only be
added after another convolution layer as input. In our experiments, the initial
layer is always convolutional as the model is primarily developed to deal with
computer vision tasks.

3.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [13] is a search algorithm used in decision
processes, particularly in games and simulations. It builds a tree structure by
simulating different possible moves, evaluating their outcomes, and expanding
the tree. Each iteration in this simulation is divided into four parts.

1. Selection. Starting from the root of the tree, one child is selected. The main
difficulty is to maintain a balance between exploration and exploitation. This
balance is controlled by upper confidence bound applied to trees [2]:

a∗ = arg max
a∈A(Ms)

(
Q(Ms, a) + Cs ·

√
lnN(s)

N(Ms, a)

)
. (1)
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For a given set of actions A(s) generated for a current model structure Ms,
the formula selects the action chosen in the child node during the selection.
Q(Ms, a) denotes the average result of scores from the rollout phase. N(s) is
a number denoting how many times model structure Ms has been analyzed.
N(Ms, a) denotes the number how many times action a has been processed
for model structure Ms. Initially, the root node consists of a model structure
for the current generation.

2. Expansion. The algorithm adds new children of a node. It executes all pos-
sible actions for a model structure, creating a set of children nodes, each
having a different model structure.

3. Rollout or playoff. For a given node which is a leaf, in the simulation tree, the
algorithm is trying to play a random game. In our adaptation, the rollout
executes n random actions on a given model, to simulate future possible
changes after a given action. After the rollout, the resulting structure is
passed to the score function. The score function trains the resulting structure
on the simulation dataset and the resulting accuracy represents the score
from the rollout.

4. Backpropagation. All nodes are updated according to the score function
after the rollout.

MCTS in this implementation is time-limited. After a user-specified time, the
simulation returns a single action. The assumption is that the action performed
on the current structure should set the stage for subsequent actions to converge
toward an optimal structure. In each generation, MCTS identifies changes in
the structure toward an optimal configuration. This behavior is analogous to
the gradient descent algorithm, which in each epoch determines the change in
weight for improvement.
For each structure, the algorithm has seven possible action types to generate

1. Action: Add a dense sequential layer. Executing this action adds a se-
quential layer between two other layers. Unlike residual layers, the sequential
layer does not have the ability to determine the initial state of weights in
the layer.

2. Action: Add a dense residual random layer. A residual layer between
two layers does not need to be added between layers that are directly con-
nected. A residual layer can be added between any two layers between which
there is a path in the same direction. The initial state of the weights is very
important because it determines what will happen to the network’s knowl-
edge after adding a new layer.

3. Action: Add a dense residual “zero” layer. This action involves adding
a residual layer, for which the initial value of all weights is zero. Since the
weights are zero, the residual layer should have almost no effect on the net-
work output in the first forward propagation execution after adding this
layer. The assumption is that the network may be at a point in space where
it cannot move towards the global minimum, as it lacks a dimension in which
it could move.
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4. Action: Add a dense residual identity layer. The idea in adding this
layer is that the value of the input layer to this layer is enhanced. The weight
matrix in this layer is an identity matrix and the bias values are zero, which
means that the output from this layer is the same as the output from the
input layer to the newly added layer because it is a residual layer.

5. Action: Add a sequential convolution layer. Adding a sequential con-
volution layer works the same as it was in a dense layer, but convolution
layers can be only connected to another convolution layer as input, as out-
put it can be a convolution or dense layer. In the convolution type of actions,
there are no predefined weights initial state.

6. Action: Add a residual convolution layer. Adding a residual convolu-
tion layer works the same as it was in a dense residual layer, with the same
constraints as it was with convolution sequential action.

7. Action: Remove a layer. Removing a layer cannot change the main prin-
ciples in the structure, the graph that the layers create must be directed
and acyclic. The algorithm allows to removal of any layer except the initial
input and output layer of the model. The algorithm may create additional
connections to maintain the established structure.

Before executing the method, a default number of neurons in layers, denoted
as defneu, can be set. This default value does not force all layers to have the
same number of neurons, but rather most of them will align with it. Initially, the
output layer will have the number of incoming connections set to defneu, which
subsequently influences most layers to adopt this neuron count. This alignment
occurs because each added layer adapts to the layers it connects to.

3.3 Training scheme – the complete algorithm

In the presented algorithm, iterations for training the model are divided into
generations and then into epochs. In every generation, the structure of the model
can change. In every epoch, the model changes its weights. For each generation,
the algorithm runs a gradient descent algorithm for a specified number of epochs.
While training learning rate changes progressively. For the first and last epoch in
a single generation, the learning rate is close to zero. In the middle of training,
the learning rate gets to some maximal value, this approach makes it easier
for the structure to adapt to new changes in the network. Although the key
properties of gradient descent are preserved, there is a big change in data flow in
forward and backward propagation. If a layer has more than one input signal, it
waits until all information is gathered, after that all input signals are averaged
and then processed.

The biggest advantage of the residual structure is that there is no need to
supervise the data flow. When a signal is sent to the input layer of the model,
it is guaranteed that the signal will travel through the network up to the final
output layer and then return to the caller.

The model starts forward propagation by sending a signal to the input layer
as a forward signal. Similarly, after calculating the loss, backward propagation
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starts by sending a signal to the output layer as a backward signal. Forward
propagation for a given layer waits until the layer receives inputs from all in-
coming links. The layer assumes that the received input is in the correct form.
When one layer sends the input to another layer, the latter converts it to the
desired size. These steps are summarized in the algorithm 2.

Algorithm 2 Forward propagation in dense layers
1: Input: ILk Input from one incoming connection
2: Output: Output from all outgoing connected layers
3: Initialization: R← Null
4: NI ← Amount of incoming connections
5: NO ← Amount of outgoing connections
6: inputs.append(ILk )
7: if len(inputs) < NI then
8: return R
9: end if

10: Ī ← 1
NI

∑NI

i=0
ILi

11: Z ←Weights ∗ Ī +Bias
12: A← ActivationFun(Z)
13: for each output connection do
14: LO ← Connected outgoing layer
15: QI ←Matrix(A.rows, LO.columns)
16: RLO ← LO.ForwardPropagate((A ·QI)

T )
17: if RLO ! = Null then
18: R← RLO

19: end if
20: end for
21: inputs ← []
22: return R

Start

For each generation

Train
with SGD

canSimulate()

Generate all
possible actions

Find best
action

Execute action
on structure

No

Yes

After all input signals are received, the layer calculates output using learned
weights and activation function. This output is adjusted to each layer on the
outgoing connection by Quasi-Identity matrices (QI). A quasi-identity matrix is
created to mimic identity matrices as closely as possible, by resizing the identity
matrix to fit a specific size, we can quickly adjust a vector to a different size
while maintaining its essential characteristics. It is an efficient way to adjust
vector size without losing their fundamental features.

At this point in the algorithm, a layer can send input signals to all connected
outgoing layers. This happens by running forward propagation recursively on
each of the connected layers. Because the structure of the graph of connections
between layers is a directional non-cyclic graph built on residual or sequential
connections, we know that the last outgoing layer will return the output from
the output layer of the whole model.

3.4 Complexity Analysis

Monte Carlo three search is time limited but it must analyze all actions at
a depth of one in the searched tree. For a structure with k hidden layers, it is
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possible to generate k ∗ (k − 1)/2 actions to add sequential layers, as this is the
maximum number of edges that can be added in a directed graph with k vertices
without introducing cycles. The maximum number of actions for adding residual
layers is (k − 1)!, as the highest number of possible residual connections occurs
in a graph resembling a path, where each vertex can connect to all subsequent
vertices except itself. This means that time complexity for one generation is
O(((k − 1)! + k ∗ (k − 1)/2) ∗ n ∗ e)) + CSGD = O(k! ∗ n ∗ e) + CSGD, where
CSGD denotes the complexity of training the model using SGD, n is the size of
simulation set, e is the number of epochs for training the model in simulation.
In our experiments simulation set had 10 examples per class which means that
n = 100 and the training time in the simulation was 10 epochs.

4 Empirical analysis

4.1 Datasets and empirical setup

The experiments reported in this paper were conducted on the widely used
MNIST [14] and Fashion MNIST [14] datasets. MNIST is a dataset of handwrit-
ten digits, while Fashion MNIST contains images of various items of clothing.
These datasets are suitable for testing both convolutional and non-convolutional
models. We have deliberately reduced the size of the initial neural architecture
in order to efficiently evaluate the validity of the algorithms. The initial network
configuration consists of a single convolutional input layer with a 3×3 filter and
a dense output layer with 10 hidden neurons. In addition, we conducted experi-
ments using different random seeds to ensure the robustness and generalizability
of our results across different training scenarios.

In what follows, we address the overall quality of the designed algorithm.
Furthermore, we inspect the most critical parameters present in the method.
In the conducted experiments, the training set was divided into training and
testing subsets, with the testing set comprising 20% of the training data. The
distribution of images per class was even. More specifically, we used stratified
sampling implemented in the train_test_split function in the sklearn library. As
a result, the testing set for MNIST comprised 8,400 images, with the training
set consisting of 33,600 images. For FMNIST, the testing set included 12,000
images, and the training set comprised 48,000 images.

4.2 Classification quality of the new approach

The conducted experiment aimed to empirically validate two hypotheses:

RH1 The first hypothesis states that the algorithm induces neural network
growth that leads to an optimal structure.

RH2 The second hypothesis states that the Monte Carlo simulation can identify
optimal changes in the network structure.
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To verify the first hypothesis RH1, the experiments were conducted on the
discussed MNIST and FMNIST datasets, with the initial network structure de-
liberately reduced to stimulate network growth.

The second hypothesis RH2 was verified by comparing the Monte Carlo al-
gorithm with greedy and random approaches. The random approach randomly
selects a change to execute on the network. The greedy approach evaluates each
potential change in a single step. The learning process using the Monte Carlo
simulation is characterized by a stable and persistent drive to improve quality,
each subsequent network change was selected to optimize the model’s overall
performance. After introducing a change to the network, there are a few epochs
during which the network is unstable, but it quickly returns to a stable state
and achieves a higher score than before the change. Because the presented data
analysis problem is relatively simple and the network has a very small number of
neurons, it quickly falls into a state of procrastination. In this state, the network
has learned everything it could within its current structure.

Stagnation Action
executed Instability

area

Fig. 1. Neural network learning process with
the use of the Monte Carlo simulation algorithm.

Epochs 0 - 100

Epochs 100 - 200

Epochs 200 - 250

Fig. 2. Graphs represent-
ing history of structure for
FMNIST seed 2

In Figure 1, we observe the model learning process using our algorithm that
employs Monte Carlo simulation. The graphs illustrate classification accuracy,
with architectural changes in the neural network introduced every 50 epochs.
Epoch number is indicated on the OX axis.

Visible “jumps” (see Figure 1) in the learning process occur shortly after the
introduction of a modification to the network. The perturbations and instabilities
during learning represent a transition phase in which the learning rate gradually
changes in the first epochs after the modification. Each generation lasts for
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50 epochs, so the observed phases of stability and procrastination are prominent
in full cycles. The structure in each generation learns all possible features it
can acquire with the structure available in the given generation. A modification
was needed to extend the structure so that it could learn a new feature in the
existing data set. Figure 1 shows that when the model was unable to learn more,
it fell into the stability region. After the Monte Carlo simulation selects the best
action, it allows the network to be better fitted. The results obtained confirm
the hypothesis that the algorithm induces a growth of the neural network that
leads to an optimal structure.

Fig. 3. Ablation study: learning process
with a random simulation algorithm.

Fig. 4. Ablation study: learning process
with a greedy simulation algorithm.

Subsequently, we address the experiments conducted to verify the second
research hypothesis concerning the justifiability of using the MCTS algorithm.
We test two what-if scenarios. In the first scenario, we replace the MCTS method
with a random architecture modification. In the second scenario, we test a greedy
search method in place of the MCTS method. The results are illustrated in
Figures 3 and 4, depicting the learning progress in terms of accuracy across
epochs during training.

Table 1. Classification accuracy reported in a comparative study assessing the impact
of a simulation algorithm. The procedure was repeated nine times with different seeds.

FMNIST MNIST meanalgorithm seed 0 seed 1 seed 2 seed 0 seed 1 seed 2
greedy 83% 67% 82% 86% 55% 91% 77.67%

Monte Carlo 82% 83% 79% 90% 87% 87% 88.35%
random 83% 70% 9% 11% 11% 11% 11.43%

In the plot concerning a randomized scenario (Figure 3), we observe that
the learning process is highly unstable. It is possible that the algorithm may
eventually reach a well-working structure. However, it is much more likely that
the chosen changes will cause a total collapse of the predictive power. Observable
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sudden drops in the learning process indicate that the selected change prevented
further learning.

In Figure 4, we illustrate the learning process for the greedy approach. It
shows significantly better results than the random simulation.

Subsequently, let us examine the numerical quality scores of different pro-
cessing pipelines. These are summarized in Table 1. It becomes apparent that
the overall score of the greedy simulation is worse than the score achieved by the
Monte Carlo simulation. Changes introduced by the greedy algorithm mostly had
a positive impact on the algorithm’s performance but did not lead it to achieve
structures as good as those obtained through the Monte Carlo simulation.

Since the Monte Carlo simulation was able to look further into the future
compared to the greedy simulation, chosen actions had a better long-term impact
on the network structure. The Monte Carlo simulation selects the best change in
the current generation but also considers subsequent ones, thereby determining
the direction of changes in each generation leading to an optimal structure.
In contrast, the greedy simulation only analyzes all possible steps in a single
generation and does not consider potential future changes.

The random simulation effectively illustrates that not all changes are good
for the structure, choosing the best action is crucial for the learning process,
emphasizing the necessity of simulation. It is evident that random changes to
the network result in the development of a structure that is unfortunately not
favorable for the presented problem. This intuitively indicates that there exists
an optimal structure for the given problem, and the Monte Carlo simulation is
the best for discovering this structure. The obtained results confirm the hypoth-
esis that Monte Carlo simulation can identify optimal changes in the network
structure.

4.3 Parameters of the method and their impact on the procedure

The development of this algorithm required some design decisions that were
made based on theoretical analyses and empirical results. In this section, we dis-
cuss the most important parameters that were fixed in the discussed experiments.
Below, we present the results from three experiments aimed at determining key
parameters for this algorithm. The first parameter determines the mode of eval-
uating simulation results, the second parameter dictates the initiation moment
of the simulation, and the third parameter governs how the learning rate pa-
rameter should work. All experiments in this section were run on the MNIST
dataset with three different seeds.

The first parameter to be tested was the mode of operation of the score
function during the algorithm simulation. The algorithm can use either the loss
or accuracy parameter to score a model after a particular action. The choice of
this parameter is particularly important when using Monte Carlo Tree Search.
On the one hand, accuracy values are immediately normalized and fit well with
the established and effective patterns in Monte Carlo Tree Search. On the other
hand, using the loss value as an evaluation criterion has the potential to convey

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_25

https://dx.doi.org/10.1007/978-3-031-63749-0_25
https://dx.doi.org/10.1007/978-3-031-63749-0_25


Growing and Shrinking of Neural Networks with Monte Carlo Tree Search 13

more information about the quality of the model after a specific action has been
performed.

In that regard, we inspect and compare the impact of using loss and accuracy
as two distinct evaluation criteria. The experiments were conducted on both
datasets. They were repeated three times with different seeds.

Table 2. Classification accuracy depending on various score function modes.

score function seed 1 seed 2 seed 3 mean
accuracy 89.5% 85.0% 53.7% 76.0%

loss 44.9% 89.5% 55.7% 63.3%

The experiments have shown that the mean score of the models that used
accuracy in grading actions was bigger than that of those that used loss, which is
shown in Table 2. We stipulate that it is because UCB1 (UCB stands for Upper
Confidence Bounds) in Monte Carlo simulation works better with normalized
values like accuracy.

Subsequently, we examined different operational modes for the simulation
orchestrator. There are several strategies one can design for this task. We chose
to investigate three specific modes: constant, progress check, and overfit.

Table 3. Classification accuracy and the number of changes of network architecture
for various simulation orchestrator working modes.

accuracy number of simulatons
orchestrator seed 1 seed 2 seed 3 mean seed 1 seed 2 seed 3 mean

overfit 89.3% 86.6% 84.6% 86.3% 18 18 18 18
progress check 83.6% 88.0% 90.6% 87.4% 10 7 9 8.6

constant 89.9% 88.2% 87.1% 88.3% 18 18 18 18

Table 3 showcases the average classification accuracy on test sets for vari-
ous orchestrator operation modes. The “overfit” method displayed slightly worse
performance compared to the other two. In this mode, the algorithm triggers
simulations when there is a high probability of overfitting based on the model’s
learning history. The “constant” mode conducts a simulation in each generation,
while the “progress check” mode verifies if the model has achieved improved ac-
curacy compared to the previous generation; if not, a simulation is initiated.
All these methods show promise, yielding similar results. Despite the “constant”
method having the best mean score, the “progress check” mode attains the high-
est maximum score. Consequently, we analyzed the extent of changes induced by
these orchestrators. The primary objective of this module is to find a balance be-
tween exploiting and exploring the model structure and adjusting the number of
changes to the model’s learning progress. Table 3 details the number of changes
caused by the orchestrator. Both the “overfit” and “constant” orchestrators made
changes in each generation. Perhaps the “overfit” mode should be better param-
eterized for a given problem to be less or more sensitive. The “progress check”
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made changes in approximately half of the possible generations. We reduced the
number of neurons in the layers to close to 10, explaining why adding more lay-
ers consistently yielded high scores in all orchestrators. However, the “progress
check” orchestrator, with fewer changes, emerged as the most stable and efficient
method, making it the likely best choice for future experiments.

Table 4. Classification accuracy depending on different learning rate scheduler modes.

Learning rate scheduler seed 1 seed 2 seed 3 mean
constant mode 54.3% 83.9% 81.9% 73.3%
progress mode 86.5% 87.9% 85.2% 86.5%

Subsequently, we compared the use of a progressive learning rate with a con-
stant learning rate. Progressive means that the learning rate increases up to a
certain point during one generation and then decreases almost to zero before
starting the next generation. This happens so that the changes introduced by
the algorithm to the model have the least impact on the features learned so far.
With a constant learning rate, the same value applies throughout all generations.
From the conducted experiments, we inferred that the progressive mode yields
higher results.

5 Conclusion

The paper has brought forward a new approach to dynamic neural network
training procedures. The proposed procedure relies on a simulation orchestrator
that launches an MCTS procedure. The outcome of this procedure is a decision
concerning a change in the neural architecture. The addressed solution works
on the level of a layer: after each simulation, we may decide to add a layer,
remove a layer, or keep the current architecture intact. The detailed formalism
was presented for convolutional, plain sequential (dense) layers, and residual
sequential layers. The new method, in contrast to the approaches existing in
the literature, empowers more flexible model design through the use of a wide
variety of neural layers.

The validity of the use of the MCTS algorithm for design was tested in an
ablation and substitution study. We have replaced the Monte Carlo simulations
with a random decision-making algorithm and with a greedy algorithm. The
latter performed substantially worse. The random algorithm was unacceptable.

An indispensable component of the delivered study was the prepared source
code. It is openly available as a Python package named growingnn. It was up-
loaded to PyPi: https://pypi.org/project/growingnn/. It contains the implemen-
tation of the training algorithm prepared from scratch in Python. We want to
underline the scarcity of open-source codes in the domain of dynamic neural
topology adjustment methods and we believe that our work would bring practi-
cal value to the researchers working in this area.
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