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Abstract. Traditional 3D face models are based on mesh representations with
texture. One of the most important models is Flame (Faces Learned with an Ar-
ticulated Model and Expressions), which produces meshes of human faces that
are fully controllable. Unfortunately, such models have problems with capturing
geometric and appearance details. In contrast to mesh representation, the neural
radiance field (NeRF) produces extremely sharp renders. However, implicit meth-
ods are hard to animate and do not generalize well to unseen expressions. It is not
trivial to effectively control NeRF models to obtain face manipulation.
The present paper proposes a novel approach, named NeRFlame, which combines
the strengths of both NeRF and Flame methods. Our method enables NeRF to
have high-quality rendering capabilities while offering complete control over
the visual appearance, similar to Flame. In contrast to traditional NeRF-based
structures that use neural networks for RGB color and volume density modeling,
our approach utilizes the Flame mesh as a distinct density volume. Consequently,
color values exist only in the vicinity of the Flame mesh. Our model’s core
concept involves adjusting the volume density based on its proximity to the mesh.
This Flame framework is seamlessly incorporated into the NeRF architecture for
predicting RGB colors, enabling our model to represent volume density explicitly
and implicitly capture RGB colors.

Keywords: NeRF · Flame · Avatar 3D.

1 Introduction

Methods to automatically create fully controllable human face avatars have many appli-
cations in VR/AR and games [18]. Traditional 3D face models are based on fully control-
lable mesh representations. Flame [25] is a method used for mesh-based avatars [23,42].
Flame integrates a linear shape space trained using 3800 human head scans with artic-
ulated jaw, neck, eyeballs, pose-dependent corrective blend shapes, and extra global
expression blend shapes. In practice, we can easily train Flame on the 3D scan (or 2D
image) of human faces and then manipulate basic behaviors like jaw, neck, and eyeballs.

⋆ equal contribution
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We can also produce colors for mesh by using textures. Unfortunately, such models have
problems with capturing geometric and appearance details.

In contrast to the classical approaches, we can use implicit methods that represent
avatars using neural networks. NeRFs [29] represent a scene using a fully connected
architecture. As input, they take a 5D coordinate (spatial location x = (x, y, z) and
viewing direction d = (θ, Ψ)) and return an emitted color c = (r, g, b) and volume
density σ. NeRF extracts information from unlabelled 2D views to obtain 3D shapes.
NeRF allows for the synthesizing of novel views of complex 3D scenes from a small
subset of 2D images. Based on the relations between those base images and computer
graphics principles, such as ray tracing, this neural network model can render high-
quality images of 3D objects from previously unseen viewpoints. In contrast to the mesh
representation, NeRF captures geometric and appearance details. However, it is not
trivial to effectively control NeRF to obtain face manipulation.

There are many approaches to controlling NeRF, including generative models [21,38],
dynamic scene encoding [22], or conditioning mechanisms [4]. However, our ability to
manipulate NeRF falls short compared to our proficiency in controlling mesh representa-
tions.

Original position Modified positions

Fig. 1. Our model facilitates the manipulation of
facial attributes in the context of human visage.
NeRFlame use Flame as a conditioning factor in
the NeRF-based model. We can produce novel
views in training positions as well as in modified
facial expressions.

This paper proposes NeRFlame, a hy-
brid approach for 3D face rendering that
uses implicit and explicit representations;
see Fig. 1. Our model is based on two
components: NeRF and mesh, with only
points in the mesh surroundings treated
as NeRF inputs. Our method inherits the
best features from the above approaches
by modeling the quality of NeRF render-
ing and controlling the appearance as in
Flame. We combine those two techniques
by showing how to condition the NeRF
model by mesh effectively. Our model’s
fundamental idea is conditioning volume
density by distance to mesh. The volume
density is non-zero only in the ε neigh-
borhood of Flame mesh. Therefore, we
use the NeRF-based architecture to model
volume density and RGB colors only in
the ε neighborhood of the mesh. Such a
solution allows one to obtain renders of
similar quality to NeRF and a level of control mesh similar to Flame (Tab. 1). In con-
trast to Dynamic Neural Radiance Fields, NeRFlame undergoes training using a single
position of the human face rather than relying on sequences from various positions in
movies. Despite this distinction, our model exhibits comparable functionality. We have
the capability to generate a range of facial expressions and novel perspectives for newly
encountered face positions facilitated by the Flame backbone. This enables us to model
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previously unseen facial expressions. Consequently, we conduct a comparison between
our model and the traditional static Neural Radiance Fields.

The contributions of this paper are significant and are outlined as follows:

– We introduce NeRFlame – an innovative NeRF model conditioning be Flame that
combines the best features of both methods, namely the exceptional rendering quality
of NeRF and the precise control over appearance as in Flame.

– We demonstrate the ability to condition model volume density in NeRF by employing
mesh representation, which represents a significant advancement over traditional
NeRF-based approaches that rely on neural networks.

– We train our model on a single position of the human face rather than using entire
movies, thereby highlighting the versatility and practicality of our approach.

Overall, our contributions offer a substantial advancement in the realms of 3D facial
modeling and rendering, providing a foundation for future exploration and research in
this domain.

Fig. 2. Visualization of transformation in NeRFlame. We aim to aggregate colors along the ray
during rendering in the new position (see the red line in the right image). NeRFlame uses Flame
mesh, therefore we can localize the face’s vertex, which is crossed with the ray p1, p2, p3 and the
corresponding triangle in the initial position mesh q1, q2, q3. Thanks to such pairs of points, we
estimate affine transformation T , which is used to find the ray in the initial position (see the red
line in the left image).

2 Related Works

NeRFlame is a model of controllable human face avatars trained on a single 3D face
represented by a few 2D images. Given our model’s training on 2D facial images,
we naturally refer to Static Neural Radiance Fields. However, our ability to adapt
NeRF is noteworthy due to the utilization of Flame as a backbone. Consequently, in
our exploration of related works, we incorporate considerations for Dynamic Neural
Radiance Fields.
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Original views NeRFlame Classical Flame

Fig. 3. Competition between NeRFlame and classical Flame fitting. NeRF-based model better fits
human expression of the face.

Static Neural Radiance Fields 3D objects can be represented by using many different
approaches, including voxel grids [10], octrees [19], multi-view images [3,27], point
clouds [1,34,41], geometry images [35], deformable meshes [17,25], and part-based
structural graphs [24].

The above representations are discreet, which causes some problems in real-life
applications. In contrast to such apprehension, NeRF [29] represents a scene using
a fully-connected architecture. NeRF and many generalizations [7,8,26,31,32,36,39]
synthesize novel views of a static scene using differentiable volumetric rendering.

One of the largest limitations is training time. To solve such problems in [14], authors
propose Plenoxels, a method that uses a sparse voxel grid storing density and spherical
harmonics coefficients at each node. The final color is the composition of tri-linearly
interpolated values of each voxel. In [30], authors use a similar approach, but the space
is divided into an independent multilevel grid. In [9], authors represent a 3D object as an
orthogonal tensor component. A small MLP network, which uses orthogonal projection
on tensors, obtains the final color and density. Some methods use additional information
to NeRF, like depth maps or point clouds [6,12,32,40].

In our paper, we produce a new NeRF-based representation of 3D objects. As input,
we use classical 2D images. However, RGB colors and volume density are conditioned
by distance to Flame mesh.

Dynamic Neural Radiance Fields Current solutions for implicit reprehension of human
face avatars are trained on image sequences. We assume that we have external tools for
segmenting frames in the movie. We often use additional information like each frame’s
camera angle or Flame representation.

In [15], authors implicitly model the facial expressions by conditioning the NeRF
with the global expression code obtained from 3DMM tracking [37]. In [44], authors
leverage the idea of dynamic neural radiance fields to improve the mouth region’s render-
ing, which is not represented by the face model motion prior. The IMAvatar [42] model
learns the subject-specific implicit representation of texture together with expression. In
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[16] authors use neural graphics primitives, where for each of the blend shapes, a multi-
resolution grid is trained. In RigNeRF [5] authors propose a model that changes head
pose and facial expressions using a deformation field that is guided by a 3D morphable
face model (3DMM).

Diverging from the previously mentioned approach, certain researchers adopt an
explicit apprehension strategy. In the case of [2], the authors introduced ClipFace, a
method facilitating text-guided editing of textured 3D face models. In [23], a one-shot
mesh-based model reconstruction is presented, while in [45,11], a model is proposed
that draws upon a blend of 2D and 3D datasets.

Our method is situated between the above approaches. Similarly to the explicit
approach, we use a single 3D object instead of movies to train. We also use Flame
mesh to edit the avatar’s shape end expressions. On the other hand, we use an implicit
representation of the colors of objects.

3 NeRFlame: Flame-based conditioning of NeRF for 3D face
rendering

In this subsection, we introduce NeRFlame - the novel 3D face representation that
combines the benefits of Flame and NeRF models. We first provide the details about the
Flame and NeRF approaches and further describe the concept of NeRFlame and how it
can be used to control face mesh.

3.1 Flame

Flame (Faces Learned with an Articulated Model and Expressions) [25] is a 3D fa-
cial model trained from thousands of accurately aligned 3D scans. The model is fac-
tored in that it separates the representation of identity, pose, and facial expression,
similar to the human body approach. It is represented by low polygon count, articu-
lation, and blend skinning that is computationally efficient, compatible with existing
game and rendering engines, and simple in order to maintain its practicality. The pa-
rameters of the model are trained by optimizing the reconstruction loss, assuming a
detailed temporal registration of our template mesh with three unconnected components,
including the base face and two eyeballs.

Formally, the Flame is a function from human face parametrization FFlame(β, ψ, ϕ)
where β, ψ and ϕ describe shape, expression, and pose parameters to a mesh with n
vertices:

FFlame(β, ψ, ϕ) : Rkβ×kψ×kϕ → Rn×3,

where kβ , kψ, and kϕ are the numbers of shape, expression, and pose parameters. In
the classical version, we can fit our model to 3D scans or 2D images by using facial
landmarks. Many strategies exist to choose landmarks and parameters for its training [25].
However, in the high level of generalization for input I – image 3D scan (or 2D image)
and arbitrarily chosen method for estimation facial landmark points LP we minimize
L2 distance

min
(β,ψ,ϕ)

∥LP(FFlame(β, ψ, ϕ))− LP(I)∥2
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Original viwes New renders obtain by NeRFlame

Fig. 4. Reconstruction of 3D object obtained by NeRFlame. As we can see, NeRFlame model the
detailed appearance of the 3D face.

Such an approach is effective, but there are a few limitations. Localizing landmarks and
choosing which parameters to optimize first is not trivial. On the other hand, for 2D
images, the results are not well-qualified. We can use a pre-trained auto-encoder-based
model DECA [13] for face reconstruction from 2D images to solve such problems.

In this paper, we train the Flame-based model in a NeRF-based scenario. As input,
we take a few 2D images. As an effect, we obtain a correctly fitted Flame model and
NeRF rendering model for new views.

3.2 NeRF

NeRF representation of 3D objects NeRFs [29] are the model for representing complex
3D scenes using neural architectures. In order to do that, NeRFs take a 5D coordinate as
input, which includes the spatial location x = (x, y, z) and viewing direction d = (θ, Ψ)
and returns emitted color c = (r, g, b) and volume density σ.

A classical NeRF uses a set of images for training. In such a scenario, we produce
many rays traversing through the image and a 3D object represented by a neural network.
NeRF parameterized by Θ approximates this 3D object with an MLP network:

FNeRF (x,d;Θ) = (c, σ).

The model is trained to map each input 5D coordinate to its corresponding volume
density and directional emitted color.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_24

https://dx.doi.org/10.1007/978-3-031-63749-0_24
https://dx.doi.org/10.1007/978-3-031-63749-0_24


NeRFlame: Flame-based conditioning of NeRF for 3D face rendering 7

The loss of NeRF is inspired by classical volume rendering [20]. We render the color
of all rays passing through the scene. The volume density σ(x) can be interpreted as the
differential probability of a ray. The expected color C(r) of camera ray r(t) = o+ td
(where o is ray origin and d is direction) can be computed with an integral.

In practice, this continuous integral is numerically estimated using a quadrature. We
use a stratified sampling approach where we partition our ray [tn, tf ] into N evenly-
spaced bins and then draw one sample ti uniformly at random from within each bin. We
use these samples to estimate C(r) with the quadrature rule [28], where δi = ti+1 − ti
is the distance between adjacent samples:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp

−
i−1∑
j=1

σjδj

 ,

This function for calculating Ĉ(r) from the set of (ci, σi) values is trivially differentiable.
We then use the volume rendering procedure to render the color of each ray from

both sets of samples. Contrary to the baseline NeRF [29], where two "coarse" and "fine"
models were simultaneously trained, we use only the "coarse" architecture. Our loss is
simply the total squared error between the rendered and true pixel colors

L =
∑
r∈R

∥Ĉ(r)− C(r)∥22 (1)

where R is the set of rays in each batch, and C(r), Ĉ(r) are the ground truth and
predicted RGB colors for ray r respectively.

3.3 NeRFlame

We introduce NeRFlame the 3D face model that combines the benefits of mesh repre-
sentations from Flame and NeRF implicit representation of 3D objects. Thanks to the
application of NeRFs, we can estimate the parameters of Flame directly from 2D images
without using landmarks points. On the other hand, we obtain NeRF model, which can
be editable similarly to Flame. In order to achieve that, we introduce the function that
approximates the volume density using the Flame model.

Consider the distance function d(x,M) between point x = (x, y, z) ∈ R3 and the
mesh M := Mβ,ψ,ϕ created by FFlame(β, ψ, ϕ), with parameters β, ψ, ϕ. Note, that
edges between vertices in Flame model can be directly taken from the template mesh
(see [4] for details). We define the volume density function as:

σ(x,M)=

{
0, if d(x,M) > ε
(1− 1

εd(x,M)), otherwise, (2)

where ε is a hyperparameter that defines the neighborhood of the mesh surface.
In practice, the values of the density volume function are non-zero only in the close
neighborhood of the mesh.
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The NeRFlame can be represented by the function:

FNeRFlame(x;β, ψ, ϕ,Θ) = (Fc
Θ(x), σ(x,M)), (3)

where Fc
Θ is the MLP that predicts the color, similar to the NeRF model.

Original views Mesh fitted by NeRFlame

Fig. 5. During the training of NeRFlame, we si-
multaneously model Flame mesh and NeRf ded-
icated to colors. In the above figure, we present
the meshes fitted by NeRFlame.

The model is trained in an end-to-
end manner directly, optimizing the cri-
terion (1) with respect to the MLP pa-
rameters Θ, and Flame parameters β, ψ,
ϕ, which describe shape, expression, and
pose. In NeRFlame, we utilize the original
loss function used to train NeRF models.
Therefore, the structure of colors on rays
must be consistent. During training, the
model modified the mesh structure to be
consistent with the 3D structure of the
target face. The simultaneous neural net-
work F produces colors for the rendering
procedure.

During training, we can see the trade-
off between the level of mesh fitting and
the quality of renders. The main reason is
that we must train our model with small
ε, and color must be encoded in a small
neighborhood of the mesh. Therefore, the
quality of the model is lower than classi-
cal NeRF. With larger ε we obtain mesh
which is not correctly fitted.

Therefore, we use the MLP Fσ
Θ that

predicts the volume density analogical to NeRF. In the first 10000 epoch we train our
model with volume density given by formula (2). Then, Flame parameters are frozen,
and we train only NeRF component with volume density given by

σ(x,M,Fσ
Θ)=

{
0, if d(x,M) > ε
Fσ
Θ(x), otherwise,

where ε is a hyperparameter that defines the neighborhood of the mesh surface and
FσΘ is MLP that predicts volume density. The value of ε increases gradually over time
during training after 10 000 epochs. The value of ε increases up to ε = 0.1 at the end of
the training procedure.

3.4 Controlling NeRF models to obtain face manipulation

The classical NeRF method is known to generate highly detailed and realistic images.
However, it can be challenging to manipulate NeRF models to achieve precise facial
modifications. Several techniques, such as generative models, dynamic scene encoding,
and conditioning mechanisms, have been proposed to address this challenge. Nonetheless,
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Original position Yawning

Smiling

Original position Yawning

Smiling

Fig. 6. Our model allows producing manipulation of the human face. In NeRFlame, we use Flame
for volume density rendering. Therefore, we can manipulate Flame features and modify NeRF
representation. In the figure, we show two faces and their versions with open mouths and changing
expressions from different views.

controlling NeRF models to the same extent as mesh representations remains elusive.
In contrast, the Flame is a straightforward model with three parameters, namely β, ψ,
and ϕ, representing shape, expression, and pose, respectively. By performing simple
linear operations on these parameters, it is possible to rotate the avatar, change facial
expressions, and adjust facial features to a certain degree.

Our NeRFlame is built on the Flame model so that we can manipulate our Flame
model to control density prediction σ. However, accurately predicting the RGB colors of
the modified object is challenging. To solve this problem, we use a simple technique.
To predict color after transformation, we return to the initial position where the color is
known, see Fig. 2.

Let us consider NeRFlame model, which is already trained. We have parameters
β1, ψ1, ϕ1, Θ, ε, function

FNeRFlame(x;β1, ψ1, ϕ1, Θ)

and fitted mesh M1, created by the Flame from parameters β1, ψ1, ϕ1. Let us assume
that we apply some modification of Flame parameters, which means that we obtain new
β2, ψ2, ϕ2. Using these parameters, we can create the modified mesh M2, simply using
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the Flame model. Instead of retraining the NeRF model for new parameters requiring
the 2D images for a new pose, we propose applying a simple transformation between the
modified and original space.

Let’s take a mesh M2 representing the new pose. We postulate using the affine
transformation T (·), which transforms the point x2 on the mesh M2 to the original pose:
T (x2) = x1, where x1 ∈ M1 is the corresponding point on original pose. After the
transformation, we can identify an element in the original pose M1 for each element
on the mesh M2. In practice, finding the transformation T is not a trivial task since it
depends on the local transformation of the mesh.

However, for a given point x1 ∈ M1, we can find a face triangle described by
vertices (q1,q2,q3) ∈ V1 that contains x1, where V1 is the set of vertices of the mesh
M1. Because Flame model is shifting the vertices of the model keeping the connections
unchanged, we can locate the corresponding triangle (p1,p2,p3) ∈ V2 of the mesh M2.
For each of the triangles that create the mesh, we define affine transformation:

T (pi) = qi, for i = 1, 2, 3.

In such a situation, we assume that such transformations T (·) are affine, and we can
use Least-Squares Conformal Multilinear Regression [33] to estimate the parameters.
Practically, finding the transformation for each of the triangles is extremely fast, requires
inverting a fourth-dimensional matrix, and can be parallelized. Having the parameters
of transformations estimated, we can apply them directly to the x in NeRFlame model
given by formula (3) and calculate the colors as in an unshifted pose.

Our approach is sensitive to some particular facial manipulations. When we open
the mouth of our avatar, we obtain artifacts. Three main reasons cause such problems.
First, it is difficult to fit the mouth around the mesh to images since it is very sensitive
to perturbations. Additionally, the mesh lacks internal content, and it cannot represent
the inside of the mouth and tongue. The third problem is that rays go through the open
mouth, cut the mesh back of the head, and render some artifacts.

To solve such a problem, we remove rays through an open-mouth region. Such a
solution is simple to implement since we can easily filter rays that do not cross mesh.
On the other hand, allows for reducing most of the artifacts.

4 Experiments

In this section, we describe the experimental results of the proposed model. To our
knowledge, it is the first model that obtains editable NeRF trains on a single object in
one position. Most of the methods use movies to encode many different positions of the
face. We can produce novel views in training positions and in modified facial expressions
using knowledge only from one fixed position. Therefore, it is hard to compare our
results to other algorithms. In the first subsection, we show that our model produces
high-quality NeRF representations of the objects by comparing our model with our
baseline classical NeRF and classical textured Flame. In the second subsection, we
present meshes obtained by our model. Finally, we show that our model allows facing
manipulations.
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PSNR ↑ SSIM ↑ LPIPS ↓
NeRF NeRFlame Flame NeRF NeRFlame Flame NeRF NeRFlame Flame

Face 1 33.37 27.89 9.67 0.96 0.95 0.76 0.05 0.09 0.26
Face 2 33.39 29.79 12.44 0.96 0.96 0.80 0.05 0.06 0.24
Face 3 33.08 29.70 12.97 0.97 0.95 0.82 0.04 0.08 0.20
Face 4 31.96 25.78 12.51 0.96 0.92 0.79 0.04 0.10 0.23
Face 5 33.15 32.59 11.30 0.96 0.96 0.77 0.05 0.05 0.26
Face 6 32.42 29.18 11.45 0.96 0.95 0.76 0.06 0.07 0.26

Table 1. Comparison of PSNR, SSIM, and LPIPS matrices between our model and NeRF and
Flame baselines. While NeRF achieves better results, it lacks manipulation capabilities. In contrast,
the Flame model produces inferior outcomes as it is trained solely on landmark points for mesh
and texture.

Since the current literature does not provide suitable data sets for evaluating the
NeRF-based model for modeling 3D face avatars, we created a data set using 3D
scenes. We create a classical NeRF training data set. We construct 200× 200 transparent
background images from random positions.

4.1 Reconstruction Quality

In this subsection, we show that NeRFlame can reconstruct a 3D human face with similar
quality as classical NeRF. Since we train our model on a single position, it is difficult
to compare our model to dynamic neural radiance fields. Therefore we show that our
model has a slightly lower quality than classical NeRF but allows dynamic modification.
On the other hand, we show that we obtain better results than textured Flame, which
cannot capture the geometry and appearance details of the human face.

In Fig 3, we compare NeRFlame and textured Flame. As we can see, NeRFlame can
reproduce facial features and geometry. On the other hand, Flame produces well-suited
textures, but the mesh is not well-suited. In Tab. 1, we present a numerical comparison.
We compare the metric reported by NeRF called PSNR (peak signal-to-noise ratio),
SSIM (structural similarity index measure), LPIPS (learned perceptual image patch
similarity) used to measure image reconstruction effectiveness. As we can see NeRF
gives essentially better since do not allow manipulation. On the other hand, Flame model
gives inferior results since we train mesh and texture only on landmark points. In Fig. 4,
we present new renders of the model obtained by NeRFlame. As we can see, NeRFlame
model the detailed appearance of the 3D face.

4.2 Mesh fitting

The RGB colors generated by NeRF are present only in the ε vicinity of the mesh. This
approach allows for a precise fitting of the mesh to the human face, which is critical for
generating animated models. In Fig. 5, we present the rendered faces and corresponding
meshes produced by our NeRFlame approach. The results demonstrate that our method
can accurately capture the underlying mesh structure.
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Fig. 7. The renders obtained by NeRFlame on MoFaNeRF dataset.

4.3 Face manipulation

Our approach enables the manipulation of human facial features. Leveraging Flame as a
backbone, NeRFlame offers the ability to manipulate Flame features and modify NeRF
representations. In Fig. 6, we showcase three faces and their modification including open
mouths and changing expressions, that can be manipulated using our model in a manner
similar to the classical Flame model.

NeRFlame simultaneously train mesh and NeRF components for color. After training,
we can exchange the produced mesh in our model to obtain a modification of the final
look of the avatar, see Fig. 1.

4.4 Comparison with MoFaNeRF [43]

Comparison between MoFaNeRF [43] and NeRFlame is not possible directly. MoFaN-
eRF is trained on a large dataset. MoFaNeRF is a generative model witch ability to
control face position and expression. NeRFlame is a classical NeRF-based model trained
individually on each element of the dataset separately.

This experiment shows that our NeRFlame reconstruct objects with a PSNR value
similar to that of MoFaNeRF. In Fig. 7, we present faces trained on elements from the
MoFaNeRF dataset. In Tab. 2, we present numerical experiments, but it should be noted
that the models were trained entirely differently on different parts of the data set. It only
states that we have similar render quality.

Model PSNR(dB) SSIM LPIPS
FaceScape 27.96±1.34 0.932±0.012 0.069±0.009
i3DMM 24.45±1.58 0.904±0.014 0.112±0.015

MoFaNeRF 31.49±1.75 0.951±0.010 0.061±0.011
MoFaNeRF-fine 30.17±1.71 0.935±0.013 0.034±0.007

NeRFlame* 29.57 0.955 0.060
Table 2. Quantitative evaluation of representation ability. Results are from MoFaNeRF experiments
[43]. * Comparison between MoFaNeRF [43] and NeRFlame is not possible directly. It should be
highlighted that models were trained entirely differently on different dataset parts. It only states
that we have similar-quality of renders.
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5 Conclusions

In this work, we introduce a novel approach called NeRFlame, which combines NeRF
and Flame to achieve high-quality rendering and precise pose control. While NeRF-
based models use neural networks to model RGB colors and volume density, our method
utilizes an explicit density volume represented by the Flame mesh. This allows us to
model the quality of NeRF rendering and accurately control the appearance of the
final output. As a result of offering complete control over the model, the quantitative
performance of our approach is marginally inferior to that of a static NeRF model. We
believe that future work should prioritize advancements in mesh fitting techniques. By
doing so, we can maximize the potential for extensive modifications.
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11. Daněček, R., Black, M., Bolkart, T.: Emoca: Emotion driven monocular face capture and
animation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 20279–20290. IEEE (2022)

12. Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised nerf: Fewer views and faster
training for free. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 12882–12891 (2022)

13. Feng, Y., Feng, H., Black, M.J., Bolkart, T.: Learning an animatable detailed 3d face model
from in-the-wild images. ACM Transactions on Graphics (ToG) 40(4), 1–13 (2021)

14. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: Radiance
fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 5501–5510 (2022)

15. Gafni, G., Thies, J., Zollhofer, M., Nießner, M.: Dynamic neural radiance fields for monocular
4d facial avatar reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 8649–8658 (2021)

16. Gao, X., Zhong, C., Xiang, J., Hong, Y., Guo, Y., Zhang, J.: Reconstructing personalized
semantic facial nerf models from monocular video. ACM Transactions on Graphics (TOG)
41(6), 1–12 (2022)

17. Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative
vector representation for objects. In: European Conference on Computer Vision. pp. 484–499.
Springer (2016)

18. Grassal, P.W., Prinzler, M., Leistner, T., Rother, C., Nießner, M., Thies, J.: Neural head avatars
from monocular rgb videos. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 18653–18664 (2022)

19. Häne, C., Tulsiani, S., Malik, J.: Hierarchical surface prediction for 3d object reconstruction.
In: 2017 International Conference on 3D Vision (3DV). pp. 412–420. IEEE (2017)

20. Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. ACM SIGGRAPH computer
graphics 18(3), 165–174 (1984)
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