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Abstract. Physics-Informed Neural Networks (PINNs) have emerged
as a powerful tool for solving partial differential equations (PDEs) in
various scientific and engineering domains. However, traditional PINN
architectures typically rely on large, fully connected multilayer percep-
trons (MLPs), lacking the sparsity and modularity inherent in many tra-
ditional numerical solvers. An unsolved and critical question for PINN
is: What is the minimum PINN complexity regarding nodes, layers, and
connections needed to provide acceptable performance? To address this
question, this study investigates a novel approach by merging established
PINN methodologies with brain-inspired neural network techniques. We
use Brain-Inspired Modular Training (BIMT), leveraging concepts such
as locality, sparsity, and modularity inspired by the organization of the
brain. With brain-inspired PINN, we demonstrate the evolution of PINN
architectures from large, fully connected structures to bare-minimum,
compact MLP architectures, often consisting of a few neural units!
Moreover, using brain-inspired PINN, we showcase the spectral bias phe-
nomenon occurring on the PINN architectures: bare-minimum architec-
tures solving problems with high-frequency components require more
neural units than PINN solving low-frequency problems. Finally, we de-
rive basic PINN building blocks through BIMT training on simple prob-
lems akin to convolutional and attention modules in deep neural net-
works, enabling the construction of modular PINN architectures. Our
experiments show that brain-inspired PINN training leads to PINN ar-
chitectures that minimize the computing and memory resources yet pro-
vide accurate results.

Keywords: Brain-Inspired PINN · Bare-Minimum PINN Architectures
· Spectral Bias Phenomenon · Modular PINN

1 Introduction

Scientific Machine Learning (SciML) is a discipline harnessing machine learning
methods, such as neural networks (NNs) [2] and operators [18], to solve scien-
tific computing problems, including scientific simulations, linear and non-linear
solvers, inverse problems, and equation discovery [8]. One of the most active re-
search areas in SciML is the development of Partial Differential Equations (PDE)
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solvers that are the backbone of scientific simulations. The SciML PDE solvers
are part of the so-called SciML approaches with learning bias as the PDE is em-
bedded into the loss function, and the solution is determined by the NN training
or learning. This is opposed to SciML approaches with inductive bias where the
given knowledge about the modeled system, e.g., symmetries and conservation
laws, influences the NN architecture design.

The core concept of SciML PDE solvers revolves around encoding the gov-
erning PDE equation into the NN loss function, facilitating numerical differen-
tiation on NN graphs through automatic differentiation, and optimizing the loss
function using techniques like the first-order Adam [9] or second-order BFGS [14]
optimizers. Prominent SciML PDE solvers include Physics-Informed Neural Net-
works (PINN) [25], deep Galerkin, and Ritz methods [26,30]. PINNs have rapidly
evolved and found wide-ranging applications from computational fluid dynamics
to material science and chemistry and are the focus of this work.

These PDE solvers, termed physics-informed, encode physics conservation
laws into the loss function to guide the learning process toward its minimization.
Conceptually, PINN serves as an extension and non-linear version of Finite Ele-
ment Methods (FEM) [31], with non-linear activation functions acting as piece-
wise basis functions and the loss function representing the residual or equation
error at each solver iteration. Its analogy and equivalence with kernel regression
and other traditional methods have facilitated investigations into PINN’s nu-
merical properties, such as consistency and convergence aspects [28,21], includ-
ing the PINN spectral bias (higher convergence rate for low-frequency solution
components). An increased understanding of the PINN fundamental numerical
properties allows us to develop numerical methods further and integrate new
SciML techniques into traditional approaches [19].

Despite the PINN efficacy, there is a gap in understanding the impact of
PINN architecture and the development of minimal architectures in terms of
neural units, layers, and connectivity while ensuring accurate results. Most PINN
studies analyze fully connected multi-layer perceptron (MLP) architectures with
minimal sparsity and lack of structural modularity. In contrast, traditional nu-
merical solvers, like finite-difference linear solvers, exhibit high structure and
sparsity, which is evident in scenarios such as sparse matrices arising from Pois-
son equation discretization. The absence of macroscale structure in PINN poses
challenges for interpretability and explainability, obfuscating the manifestation
of intrinsic PDE nature within the network architecture.

In the search for PINN solvers and their building blocks that are resource-
efficient and compact, we explore the application of brain-inspired neural net-
work techniques [4,13]. These techniques draw loose inspiration from models
of brain computations, mapping neurons and synapses to neural networks and
weights/biases. A key distinction between traditional and brain-inspired NN
architectures lies in the learning rule, typically local instead of global back-
propagation, and plasticity, reflecting the adaptivity and dynamicity of connec-
tion strengths and connectivity during training. Traditional NN architectures
lack the concept of locality, whereas brain-inspired NN architectures prioritize
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it, leading to modularity, with specific parts of the network specialized in distinct
operations. Moreover, brain-inspired NNs tend to exhibit high sparsity.

Brain-Inspired Modular Training (BIMT) is one of the most successful brain-
inspired neural network techniques [15,16]. Its fundamental idea introduces neu-
ral network locality by associating a spatial coordinate with each neural unit,
enabling the rearrangement of neuron positions to enhance locality and modu-
larity. This approach trains the network for increased locality by adding a loss
function that penalizes non-local connections.

An important aspect concerns the number of resources that should be used
to solve a given PDE with PINN. Typically, a few layers and tens of neural
units, all fully connected, are used for solving simple PDE problems. Still, no in-
sights exist on the bare minimum PINN architecture in terms of computing units
capable of producing the PDE solutions. This study addresses the fundamen-
tal research questions: What is the minimal or reduced number of PINN neural
units required to produce PDE solutions using PINN? The answer might surprise
many: simple PDE requires only a few neural units to encode the PDE solution.
We call this PINN bare-minimum architectures, as they consist only of a few
neural units and are only affected by a small loss of accuracy when compared
to large fully-connected MLP. Through BIMT, we can derive bare-minimum
architectures for solving given PDEs. We demonstrate that the spectral bias
phenomenon [8] (also called F-principle [29]) manifests in the bare-minimum
architectures: solving high-frequency problems requires more neural units than
PINN solving problems with low-frequency components. Finally, we combine
bare-minimum PINN architectures into modular and compact PINN architec-
tures. These basic bare-minimum modules resemble other common deep-learning
building blocks like convolutional kernels/filters and attention modules. We show
that modular PINN provides promising results in terms of performance.

Fully-Connected MLP PINN Modular PINNBare-Minimum Architectures

BIMT

Fig. 1. A graphical illustration of the contributions of this work: i) Brain-Inspired
Modular Training (BIMT) [15] allows us to obtain bare-minimum PINN architectures
ii) we use bare-minimum architectures as basic modules to be combined to build com-
pact modular PINN architectures.
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The primary objective of this study is illustrated in Fig. 1: first, we derive
PINN bare-minimum architectures from fully connected MLP; second, we use
bare-minimum architectures to build modular PINN. Overall, we demonstrate
that BIMT leads to dynamically changing architectures with highly sparse and
modular features akin to traditional numerical approaches, albeit with a slight
compromise in accuracy. Furthermore, employing brain-inspired PINNs, we de-
rive primitive building blocks that can be reused to construct larger PINNs,
referred to as modular PINNs.

The contributions of this work can be summarized as follows:

– We demonstrate that BIMT leads to bare-minimum and compact architec-
tures for PINN PDE solvers. For instance, we illustrate that PINN for solving
simple differential equations, such as the logistic equation, requires only one
neural unit in the hidden layer.

– We identify several neural network architecture primitives capable of serving
as modules in larger neural networks. By examining different basic primi-
tives for solving the Poisson equation with source terms of increasing higher
frequencies, we observe a manifestation of the PINN spectral bias on the
number of PINN connections needed to represent accurately a solution, in-
dicating that higher-frequency source terms necessitate denser PINN archi-
tectures.

– We develop and implement a modular PINN architecture based on the iden-
tified building blocks from training brain-inspired neural networks. Our re-
sults demonstrate that modular PINN architectures built on PINN primitive
modules exhibit lower test errors than fully connected MLP PINNs utilizing
the same number of neural units.

The remainder of this paper is organized as follows. In Section 2, we provide
background information on PINNs and introduce the concept of brain-inspired
neural networks. Section 3 details the methodology employed in this study, in-
cluding the implementation of PINN based on BIMT and the experimental setup.
Section 4 presents the results of our investigation, including the evolution of
PINN architectures, comparisons with analytical solutions, and the derivation
of modular PINN architectures. Section 5 discusses previous work in related ar-
eas of PINNs and BIMT. Finally, Section 6 concludes the paper with a summary
of key findings and suggestions for future research directions.

2 Background

PINNs are neural networks that take a point ti in the equation domain (referred
to as the collocation point) as input and provide the approximated solution
x̃(ti). The solution is encoded into the neural network with l layers. At any given
time, the PINN network acts as a surrogate solver, providing the approximated
solution x̃ by running:

x̃(ti) = a ◦ Zl ◦ . . . ◦ a ◦ Z2 ◦ a ◦ Z1(ti), (1)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_23

https://dx.doi.org/10.1007/978-3-031-63749-0_23
https://dx.doi.org/10.1007/978-3-031-63749-0_23
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where ◦ denotes the composition operation, a represents the non-linear acti-
vation function, and the affine-linear maps Zi are expressed as:

Zi(tl) =Witl + bi. (2)

Here, Wi and bi are the weights and biases of layer i, respectively.
The training process aims to determine the weights and biases through it-

erative steps. It begins with a forward pass, where Eq. 1 is applied to several
collocation points, typically chosen at random positions or according to a specific
distribution. At each iteration, the forward pass yields an approximate solution
at the collocation point, x̃(ti). Subsequently, the error or loss function is mea-
sured to adjust the weights and biases, a process known as back-propagation. An
optimizer then modifies the weights and biases of different layers to minimize
the loss function.

The basic training process of PINNs is unsupervised, as it does not necessar-
ily require labeled data, such as solutions obtained from other simulation tech-
niques. This is made possible by encoding the differential equation and boundary
conditions into the loss function, utilizing the residual to guide the training pro-
cess. This approach is akin to Krylov subspace solvers, where the residual is
minimized iteratively.

For instance, consider solving a Poisson equation d2x(t)/dt2 = sin(t). The
residual at a certain point ti can be calculated as:

ri =
d2x̃

dt2

∣∣∣∣∣
i

− sin(ti). (3)

The second-order derivative at point ti is computed using automatic differen-
tiation, which allows for calculating derivatives on the neural network, exploiting
the chain rule. Unlike finite difference differentiation, automatic differentiation
enables derivative calculation at any given collocation point without requiring a
grid or associated spacing.

Without boundary conditions, PINNs converge to one of the infinite so-
lutions. We impose two boundary conditions to obtain a unique solution for
our second-order PDE. For example, with boundary conditions x(0) = 0 and
x(2π) = 0, two additional residuals are introduced at the boundary collocation
points:

rBC0
= x̃(0), rBC1

= x̃(2π). (4)

These residuals are incorporated as Mean Squared Error (MSE) into the
PINN loss function, which includes the following terms:

LPINN =
1

N

N∑
i

r2i +
1

NBC0

NBC0∑
i

r2i,BC0 +
1

NBC1

NBC1∑
i

r2i,BC1, (5)

where NBC0 and NBC1 represent the number of samples taken at points
0 and 2π, respectively. This approach serves as a soft constraint on solving a
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multi-learning task, minimizing the residual both within the system and at the
boundary. In scenarios involving experimental or simulation data, an additional
component can be added to the loss function to consider the error between the
neural network and observational data. However, in this study, we adopt a fully
unsupervised approach without utilizing experimental data.

3 Brain-Inspired Physics-Informed Neural Networks

This work employs the BIMT approach to determine the PINN architecture, as
detailed in Ref. [15]. For clarity, we summarize the key features of BIMT:

– L1 Penalty (Lasso Regularization): BIMT utilizes L1 penalty or Lasso
regularization during network training to prevent overfitting and enhance
generalization. This regularization induces sparsity in the weight matrix,
wherein some weights may become exactly zero during training. The Lasso
regularization employed in BIMT aims to increase the sparsity and modu-
larity of the neural network architecture. A hyperparameter λ governs the
strength of the L1 penalty and can be adjusted during the simulation.

– Introduction of Geometry and Distance: BIMT incorporates the notion
of geometry and distance into the neural network architecture by associat-
ing a coordinate with each neural unit across different layers. In this work,
we adopt a two-dimensional Euclidean space, with the x-direction spanning
along the neural units within the same layer (input, hidden, and output lay-
ers) and the y-direction spanning across layers. The distance di,j between
two neural units is leveraged to scale the weights and biases when computing
the L1 penalty. By integrating this technique, we can optimize for increased
locality or minimize the distance between neural units by incorporating a
loss function component that accounts for total distance. A hyperparame-
ter A, related to the network size, regulates the importance of locality. For
A = 0, the L1 penalization does not consider locality.

– Neural Unit Swapping: BIMT permits swapping different neural units
within the same layer if it enhances locality, i.e., decreases the distance be-
tween neural units. BIMT introduces the concept of neural unit importance,
computed as the sum of input and output weights to determine which neural
units to swap and select critical swaps. This importance metric is utilized to
swap the most significant neural units within the layer if it improves locality.
However, this operation incurs computational overhead and is typically not
performed at every iteration.

Consequently, BIMT yields neural network architectures that dynamically
evolve during training, characterized by high sparsity due to Lasso penalization
and local structure due to the additional penalty on distances between neural
units. These features align with principles of brain-inspired computing, albeit
resulting in slightly reduced performance (in terms of training and test accuracy)
compared to fully connected MLP counterparts [15].
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3.1 Implementation

The implementation of brain-inspired PINNs extends the Python and PyTorch [23]
BIMT implementation [15] to solve differential equations. We leverage the Py-
Torch autograd [22] for automatic differentiation.

Unless otherwise specified, our implementation initiates with 21 neural units
per layer, starts with a fully connected network comprising one or two hidden
layers, and executes 100,000 epochs. We employ 1,000 collocation points within
the domain and 50 boundary points. The weights are initialized using Xavier
initialization [10], and biases are set to a constant value of 0.01. The learning
rate is fixed at 0.002.

Among various activation functions tested, the sinLU activation function [24]
(a(x) = x sin(x)σ(x), where σ(x) is the sigmoid function) yields the most com-
pact brain-inspired architecture. We utilize the AdamW optimizer [17], which
decouples weight decay and gradient update, as it provides optimal performance,
sparsity, and modularity. Notably, unlike fully connected MLP PINNs, we ob-
served that second-order optimizers such as L-BFGS do not enhance accuracy in
brain-inspired PINNs; they quickly converge to local minima without achieving
higher precision.

Following the approach outlined in the seminal BIMT paper [15], we divide
the training into three phases with varying L1 penalization regimes: λ starts at
0.001 with no bias penalization, increases to 0.01 to enhance locality at one-
fourth of the total training, and finally, at three-fourths of the total training,
switches to bias penalization while reducing λ back to 0.001. We set A to 2, and
neural unit swaps occur every 200 epochs. Prior to the final error evaluation, we
prune the PINN weights to eliminate weights and biases below 10−3 in absolute
value.

For demonstration purposes, this work focuses on solving the one-dimensional
Poisson equation with a harmonic source term:

d2x(t)

dt2
= sin(t) + 4 sin(2t) + 9 sin(3t) + 16 sin(4t), (6)

with boundary conditions x(0) = 0 and x(2π) = 0 in the simulation domain
[0, 2π]. The Poisson equation is omnipresent in scientific computing: it is used
for electromagnetics to solve electrostatic problems and in incompressible flow
in computational fluid dynamics.

Regarding Eq. 6, This particular choice of harmonic source term allows us
to evaluate different and higher spectral components. It has been observed that
PINNs exhibit a spectral bias, converging rapidly to low-frequency parts of the
solution while requiring more time to resolve high-frequency components accu-
rately. By introducing various components with differing spectral characteristics,
we can assess the performance of the brain-inspired architecture. We utilize 100
test collocation points to test and compare the results against the analytical solu-
tion. MSE and Euclidean error metrics are used throughout training to evaluate
the performance of different PINN models.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_23

https://dx.doi.org/10.1007/978-3-031-63749-0_23
https://dx.doi.org/10.1007/978-3-031-63749-0_23


8 S. Markidis

The code utilized in this study is openly accessible on GitHub1.

4 Results

As the first step, we analyze the evolution of the brain-inspired PINN architec-
ture during the training and assess its performance. In Fig. 2, we show the results
of the brain-inspired PINN network training applied to solve the 1D Poisson
equation d2x(t)/dt2 = sin(t)+4 sin(2t)+9 sin(3t)+16 sin(4t) with x(0) = 0 and
x(2π) = 0 for 400,000 epochs. The different inserts show the evolution of brain-
inspired architecture. The red and blue edges connect neural units with positive
and negative weights, respectively. We have evolved from a fully connected MLP
PINN to a sparse and modular computer architecture, only utilizing a small part
of the total capacity of the original network. In the background plot, the train
loss and test error (calculated against the analytical solution) are represented in
blue and orange colors.

Fig. 2. Evolution of the brain-inspired PINN network architecture during the training
for the solution of d2x(t)/dt2 = sin(t) + 4 sin(2t) + 9 sin(3t) + 16 sin(4t) with x(0) = 0
and x(2π) = 0. The PINN architecture evolves from being fully connected to being
highly sparse and modular. The red and blue lines represent connections associated
with positive and negative weights. The training occurs in three phases where the
strength of the L1 penalty (related to the importance of locality) changes.

By analyzing the losses, we can identify the three phases of the training as
we change the value of λ in the three phases. These three phases are represented
1 https://github.com/smarkidis/BrainInspiredPINN/
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Brain-Inspired Physics-Informed Neural Networks 9

as different background colors. Until the epoch of 100,000, the L1 penalty is
relatively low, and the loss function decreases quickly; after that, we increase the
importance of locality and note significant changes in the PINN architecture. At
epoch 300,000, we decrease λ and turn on bias penalization.

Brain-Inspired PINN Error: 0.023
Fully-Connected PINN Error: 0.0094

Fig. 3. Analytical and brain-inspired solutions of the differential equation: d2x(t)/dt2 =
sin(t) + 4s ∈ (2t) + 9 sin(3t) + 16 sin(4t) with x(0) = 0 and x(2π) = 0.

The final PINN solution and its comparison with the analytical solution are
presented in Fig. 3. The brain-inspired PINN can capture all the frequencies
present in the solutions at a reasonable accuracy. To estimate the loss of per-
formance due to large sparsity and modularity, we also run a fully connected
neural network with two hidden layers of 21 neural units and calculate the error
in the Euclidean norm compared to the analytical solution. The final error for
the brain-inspired and fully-connected PINNs are 0.023 and 0.0094, respectively.
As pointed out, architecture with high sparsity comes with a performance loss:
in this example, the brain-inspired PINN has approximately twice the error of
the fully connected MLP PINN.

4.1 Deriving Modular PINN Architectures

One of the advantages of brain-inspired neural networks is the possibility of
deriving basic modules, the bare-minimum PINN architectures, that are small
in scale and compact. These basic modules can be derived by solving simple
problems, such as the logistic or Poisson equation in one dimension, with a
simple archetypal source term, e.g., a sinusoidal source term with a single spectral
component. Fig. 4 shows different PINN bare-minimum architectures that can
be derived by training brain-inspired PINN to solve simple archetypal problems
with one and two hidden layers.

A few important points can be deduced by analyzing Fig. 4. For instance, it is
striking that the solution of the logistic equation (top left panel of Fig. 4) requires
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only one neural unit in the hidden layer. Another important point comes up
when analyzing the final brain-inspired PINN architecture obtained by training
the neural network for source terms with higher frequency terms: to solve a
low-frequency signal sin(t) requires only three neural units in the hidden layer.
As we increase the frequency of the source term, we note that the number of
neural units in the hidden layer increases. For instance, when solving the one-
dimensional Poisson equation with 16 sin(4t), the brain-inspired converges to a
fully connected MLP. In general, we observe that by increasing the frequency of
the source term, more neural units are needed in the hidden layer to converge
to a solution. This clearly manifests the spectral bias in the number of neural
network connections needed to express higher-frequency components. Using a
brain-inspired approach, we show that spectral bias is not only in the rate of
convergence but also in the architecture of the PINN: higher frequency signal
requires a larger number of neural units and layers to be accurately resolved.

As an additional note, we remark that bare-minimum architectures depend
on the activation function that provides the basic basis function to express the
solution. Using other activation functions leads to slightly different architecture
modules for the problem presented here.

<latexit sha1_base64="VkXiuXNleyEnQFzxgRJCP7Y1tqw=">AAACBHicbVC7SgNBFJ2Nrxhfq5ZpBoMQm7AbRG2EoI1lBPOAvJidnU2GzM4uM3fFsKSw8VdsLBSx9SPs/Bsnj0ITD1w4nHMv997jxYJrcJxvK7Oyura+kd3MbW3v7O7Z+wd1HSWKshqNRKSaHtFMcMlqwEGwZqwYCT3BGt7weuI37pnSPJJ3MIpZJyR9yQNOCRipZ+fbgSI09bvlh3HqQ7c8xpe4rbkswknPLjglZwq8TNw5KaA5qj37q+1HNAmZBCqI1i3XiaGTEgWcCjbOtRPNYkKHpM9ahkoSMt1Jp0+M8bFRfBxEypQEPFV/T6Qk1HoUeqYzJDDQi95E/M9rJRBcdFIu4wSYpLNFQSIwRHiSCPa5YhTEyBBCFTe3YjogJhUwueVMCO7iy8ukXi65ZyX39rRQuZrHkUV5dISKyEXnqIJuUBXVEEWP6Bm9ojfryXqx3q2PWWvGms8coj+wPn8AkD+XYw==</latexit>

d2x

dt2
= sin(t)

dx / dt = t (1 – t) [0,1]
d2x / dt2 = sin(t) [0,2 pi]

d2x / dt2 = 4sin(2t) [0,2 pi] d2x / dt2 = 9sin(3t) [0,2 pi] d2x / dt2 = 16sin(4t) [0,2 pi]

d2x / dt2 = t (1 – t) [0,1]

Fig. 4. Bare-minimum architectures derived running brain-inspired PINN for solving
basic differential equations. Interestingly, some differential equations, such as the logis-
tic equation, only require a neural unit in the hidden layer. Another important point
is that source terms with higher frequencies result in denser PINN architectures as a
manifestation of the spectral bias phenomenon.

An essential aspect of the experiments shown in Fig. 4 is that we can identify
PINN bare-minimum architectures that we can use in larger architectures. These
basic building blocks can be used similarly to convolutional [12] and attention [27]
modules in established deep neural networks. Here, we can utilize a modular
architecture based on the module derived from solving the Poisson equation in
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1D for the sin(t) source term. For instance, we can use three modules as depicted
on the right side of Fig. 1: the overall neural network consists of three building
blocks with the same collocation point as input and whose output is combined
by summing up the output of each building block. The modular PINN combines
the modules into a larger NN using PyTorch superclasses and inheritance and is
trained as traditional PINNs with an Adam optimizer. This is a simple example
of modular PINN architecture, and larger modular architecture can be obtained
by using a larger number of modules or using more advanced modules, e.g.,
modules obtained for two or more hidden layers or different source terms.

To understand the potential benefit of the modular compact PINN architec-
ture, we solve the original problem expressed by Eq. 6 with a fully connected
MLP PINN with one hidden layer and nine neural units; we compare the loss
for the training data set and the error of the solution against the analytical
solutions. We present the results in Fig. 5.

When analyzing Fig. 5, we note that the training loss values are similar,
showing a comparable performance. However, the results of the two network
architectures, regarding the test error and comparison of the analytical solution
(bottom panel of Fig. 5), show a considerably higher performance of the modular
PINN. We can see that the modular PINN has a test error (calculated as MSE)
that is approximately two orders lower than the fully-connected MLP PINN.
Compared to the analytical solution, the test dataset’s final Euclidean error
is 0.083 for the modular PINN vs. 0.57 for the fully-connected MLP PINN.
We also note that a simple modular neural network performs better than the
PINN networks (including the brain-inspired NN), whose results are previously
presented in Fig. 3. The modular PINN, built on the top of a module obtained
with BIMT, exhibits improved generalization properties in this use case and
compact formulation.

5 Related Work

This work is at the intersection of PINN, brain-inspired neural networks, and
modular structures for neural networks. PINNS have been extensively studied
since their introduction by Raissi et al. in Ref. [25]. Subsequent research has fo-
cused on aspects such as convergence, stability, and numerical properties. PINNs
have demonstrated versatility across various applications, including computa-
tional fluid dynamics [7], solid mechanics [3], molecular dynamics [5], and battery
life cycle modeling [5]. However, previous PINN studies have primarily focused
on fully connected architectures without incorporating sparsity or modularity.

Brain-inspired machine learning is gaining prominence as researchers seek in-
spiration from neural computations. Modular architectures have been a key focus
in this domain. Convolutional Neural Networks (CNNs) [12] exemplify modular
architecture, preserving symmetries and invariances under various transforma-
tions. Similarly, transformer neural networks [27] utilize attention mechanisms
as fundamental building blocks. Additionally, graph neural networks [1] demon-
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Fig. 5. Performance comparison between a fully connected MLP network with a hidden
layer with nine neural units and a modular PINN using a network primitive obtained
by solving d2x(t)/dt2 = sin(t). The modular PINN has three basic modules with three
neural units. While the fully connected and modular PINNs have similar test loss
values, the MSE against the analytical solution is two orders lower for the modular
PINN.

strate structured architectures for processing graph data. These modular ap-
proaches enhance interpretability and scalability in neural network design.

Unlike previous PINN studies, this work introduces a novel approach where
the PINN architecture evolves into a sparse and modular structure. By integrat-
ing brain-inspired techniques and modular design principles, this study explores
new avenues for enhancing PINN architectures, potentially improving efficiency
and interpretability in solving partial differential equations.

6 Discussion and Conclusion

This study investigated a fundamental aspect of PINN architectures, widely em-
ployed for solving differential equations. Conventionally, PINN methodologies
have predominantly relied on fully connected MLP architectures. However, tra-
ditional numerical solvers for differential equations exhibit sparsity and a modu-
lar structure, wherein computations at a given point depend only on neighboring
points, termed the stencil. This work merges established PINN techniques with
a brain-inspired neural network approach to address these architectural limita-
tions and enhance the solution of differential equations. Specifically, we leverage
brain-inspired neural networks to achieve two primary objectives: first, to de-
rive basic building blocks for constructing larger neural networks, and second,
to obtain solutions for differential equations.

From a computational perspective, brain-inspired neural architectures offer
significant advantages in terms of sparsity, leading to reduced computation and
memory requirements. The examples presented in this work demonstrate remark-
able sparsity, with simple equations requiring minimal neural units to achieve
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satisfactory accuracy. However, the degree of sparsity is influenced by various
factors, including the characteristics of the differential equations, particularly
those involving high-frequency components. While the achieved sparsity impacts
memory storage needs, current support for sparse computations in mainstream
deep-learning frameworks, such as PyTorch and TensorFlow, remains limited,
necessitating advancements in this area to exploit computational benefits fully.
Usage of frameworks and libraries for NN computation [20,6], directly in sparse
formats, such as CSR/CSC/COO [11], is key to achieving both computational
advantages, lowering the complexity costs of matrix multiply and memory re-
quirements.

We observed that by increasing the frequency of the source term, more neu-
ral units are needed in the hidden layer to converge to a solution. This clearly
manifests the spectral bias in the number of neural network connections needed
to express higher-frequency components. Using a brain-inspired approach, we
show that spectral bias is visible not only in the rate of convergence but also in
the architecture of the PINN: higher frequency signal requires a larger number
of neural units and layers to be accurately resolved. Understanding this phe-
nomenon clarifies the challenges inherent in training PINNs for problems with
high-frequency components and indicates the importance of developing architec-
tures capable of accommodating such spectral biases.

This study proposed a novel contribution to PINNs architectures by in-
troducing an approach to constructing modular architectures. By leveraging
brain-inspired neural network techniques, we derived PINN bare-minimum ar-
chitectures through BIMT on basic archetype problems. These modular build-
ing blocks (the bare-minimum architectures) exhibit potential for application in
larger architectures reminiscent of the modular structures found in convolutional
and attention-based modules within established deep NN. Modular PINNs offer
promising possibilities for increasing the accuracy and efficiency of solving PDE
problems, bridging the gap between traditional numerical methods and machine
learning approaches [19]. Moreover, adopting modular architectures facilitates a
transition from complex, fully connected Multilayer Perceptron (MLP) designs
to simpler, more compact PINN architectures, thus reducing computational over-
head and memory requirements. This study clarifies the architectural evolution
of PINNs. It prepares for future research into developing and optimizing mod-
ular neural network frameworks for a wide range of scientific and engineering
applications.

However, it is important to acknowledge that this study represents only an
initial exploration of modular PINN architectures. Our investigation focused
primarily on simple one-dimensional problems and utilized only a single build-
ing block derived from solving the Poisson equation with a sinusoidal source
for the modular PINN. While our findings are promising, further research is
needed to refine the composition of these building blocks and optimize the accu-
racy of compact and modular PINN architectures. Future studies could explore
the incorporation of additional architectural primitives derived from a broader
range of differential equations and problem domains. Additionally, research on
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enhancing the modularity and versatility of these architectures by incorporating
multi-layer modules and exploring alternative activation functions could further
improve their performance.
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